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Numerical Approximation of a Cauchy Problem for a
Parabolic Partial Differential Equation

By Richard E. Ewing and Richard S. Falk *

Abstract. A procedure for the numerical approximation of the Cauchy problem for
the following linear parabolic partial differential equation is defined:

u,— (p(x)u,,), + gx)u=0, 0<x<1,0<t<T; u©,1t= 1@,
0<t<T; u(l,)=/[(), 0<t<T; p(0)u,0,1)=g),

0<ty<t<T; lulx D<M, 0<x<1,0<z<T

The procedure involves Galerkin-type numerical methods for related parabolic initial

boundary-value problems and a linear programming problem. Explicit a priori error

estimates are presented for the entire discrete procedure when the data fy, f,, and g

are known only approximately.

1. Introduction. In many physical problems in heat conduction, the interior of
the body is inaccessible for temperature measurements. Since it is then impossible to
obtain an initial temperature distribution within the body, any approximations of the
temperature distribution at later times must rely entirely upon data which can be
measured at the boundary. For example, one can often use both measurements of
temperature and heat flux at the boundary to compensate for the lack of an initial
temperature distribution. An additional problem is that these boundary data are only
accurate to within some prescribed measurement errors.

We shall obtain error estimates for the numerical approximation of a mathemati-
cal formulation of a class of problems of this type. Consider the numerical approxi-
mation of the solution of the following Cauchy problem for a linear parabolic partial
differential equation:

Problem (P): Find a function u = u(x, t) satisfying

ou 0

ou
> _2 =)+ = <
(a) 3 3 <p(x)a> gx)u=0, 0<x<1,0<¢<T,

(®) w0, =f(), 0<t
an © wLo=hH0, 0<:

ou

F™ = <<
@ PO)Z0,0=gt), 0<ty<t<T,
(e) lu(x, HI<M, 0<x<1,0<¢<T,
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1126 RICHARD E. EWING AND RICHARD S. FALK

where the data f,, f,, and g are known only approximately as f}*, £;*, and g* such
that

@ Nfy = fMlio,r) <eo
(1.2) ®) If, = flljo,r) <é€os

(©) g =&*llzy,7) <€o
with €, > 0 and where for any function f = f(¢)

(13) flig,py = sup_ IO
ast<

We assume that the following hypotheses are satisfied:

(H1) f,, f,, & p, and q are such that a classical solution u to (1.1) exists.

(H2) The functions p, p' and ¢ are uniformly Holder continuous in 0 < x <1
and satisfy

(@) 0<py<plx)<p

(b) 0<g4<qlx)<q¥

(© IP'e)i<p'*

(H3) f, and f, and their derivatives through order 2 are absolutely continuous
on [0, T'] and 83fi/at3 €L,[0,T],i=1,2. Denote by K, a constant satisfying

1fillo, 71 + 1ilo, 71 + Whalljo,ry + 1 F3llio 7y + gl sy ry <K

(H4) For the Sturm-Liouville problem with eigenvalues and corresponding nor-
malized eigenfunctions, satisfying

@) (poy)' —aqe, + N0, =0,0<x<1,

(b) ¢,(0) = 0,(1) =0
there exists a d > 0 such that

d = inf(\, 1, = Ay)-
n

(HS) The approximations (1.2) hold. In addition

(@) ||f; ||[0 T} 60>

() IIf; - ||[0 ] S

(H6) If M > 0 is the constant given in (1.1 (e)), we have

(a) ||f1||[0 T] <M,

®) Ifylljo.r) <M,

() Ify o,y SM,

@ 1fllo ) <M

Without the extra assumption (1.1 (e)), the Cauchy problem (1.1 (a)—(d)) is not
well-posed in the sense of Hadamard [3]—[8], [13] since the solution does not de-
pend continuously upon the data. However, for the problem as stated with hypotheses
(H1)—(H6) satisfied, a continuous dependence result was obtained in [6].

Many studies of the continuous dependence of the Cauchy problem for various
parabolic problems have appeared in the literature [3]—[8], [13]. Other formulations
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in terms of control problems have also appeared in the control theory literature [11],
[12], [14]. In [7] Ginsberg considered numerical approximation of the Cauchy prob-
lem for the heat equation u, = u, . with g(#) = 0 in (1.1 (e)) by expanding the data in
Fourier series and estimating Fourier coefficients. In [3], [4] Cannon and Douglas
outlined numerical procedures for various Cauchy problems for the heat equation by
reducing the problems to mathematical programming techniques. In [5] Cannon and
one of the authors presented a direct numerical method for a slightly different Cauchy
problem for the heat equation in which a Taylor series expansion for the data is nu-
merically approximated. In [6] a numerical scheme requiring numerical approximation
of several unknown eigenvalues and eigenfunctions was presented without explicit error
estimates for the approximations. In this paper the numerical schemes involve only
solution of linear parabolic initial boundary-value problems and a simple linear program-
ming problem. More importantly, explicit a priori error estimates for the entire pro-
cedure are presented.

In Section 2, basic notation is presented and Problem (P) is reduced by linearity
into two simple initial boundary-value problems and an optimization problem. In Sec-
tion 3, Galerkin-type numerical schemes are defined for the initial boundary-value
problems and a linear programming problem is formulated to solve the optimization
problem. Several basic lemmas needed to prove the main result are stated in Section 4.
Then a priori error estimates for obtaining approximations to (1.1) with approximate
data satisfying (1.2) are stated and proved. Finally proofs of two of the technical
lemmas are given.

2. Preliminaries. We shall first define some of the notations used for various
norms throughout the paper. Recall that in Section 1 we used the notation that, for
any function f'= f(¢),

1f a5y = ail;gblf(t)l.

For functions ¢ = y(x) defined on (0, 1), we shall denote by {y|., the norm
1l o 1y and by W™:* (m a positive integer) the usual Sobolev space of functions
with norm

For real s, we further denote by H® the Sobolev space W*?2 of real-valued functions
defined on (0, 1) and by [[Yll; its corresponding norm. We note that L?(0, 1) will be
denoted by HO® and ”w”ﬂ(o,l) by [IYlly. For definitions of the other spaces, we re-
fer the reader to [10].

Also, for X a normed space with norm |||l and u: la, b] — X, we define

b
llull = [PluC, Ol dr and Jul .. = sup |lu(;, Dlly-
L2(a,b:X) a (Dl L (a,b;X) a<tp<b G Dl

Finally, for convenience, we define a bilinear form
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a(u, v) = (p(uy, v,) + (q()u, v),
where (-, -) denotes the L2(0, 1) inner product.
We shall next present a reformulation of Problem (P) on which our approxima-
tion scheme will be based. We first choose a function x = x(x, t), depending linearly
on f,, f, and their derivatives, which satisfies

@ xO0,0=f1, x(1,H=f1, 0<r<T,

of,
®) Ix(-,0)l. <K* max —©O)|{,
i=1,2 at]
J=0,..00,
of,
© IX(5 Dy o SK** max 1O | —O) | 0<t<T, and
ot

i=
(2.0) J=0,.0d5

@ . a t)_ax< _;()

where K*, K** and K*** are positive constants, 0 <J, <1,0<J, <2, and
0 <J; < 1. If x is chosen so that it is necessary that J, = 2 for (2.0 (c)) or (2.0(d))
to be satisfied, we shall require the additional hypothesis

2f 2f*
“—(0)

O] <

(H7) <eg, =12

One choice of x (denoted X) which satisfies (2.0) withJ;, =0,J, =0,J; =1,
K*¥=1,K** =2 and K*** =1+ 2p'* + ¢™ is given by

X, =1 -x)f(6) +xf,(), 0<x<1,0<r<T

We shall also consider different choices of x later which make full use of conditions
(2.0(c)) and (2.0(d)).
We next define a function w = w(x, ) satisfying the initial boundary-value prob-

lem
ow 3 ( ow
ot ox + 1,0<¢<T,
@ % ax<” > qw=F(x, 1, 0<x<I,
21 ® w0,H=00<r<T
(c) w1, =0, 0<t<T,
(@ wx 0)=0, 0<x<lI,
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where

(2.2) Fix, t) = _ax + o (p%) ax

with x satisfying (2.0). Also, for each ¥ € L2(0, 1), we define a function z¥ satisfy-
ing the initial boundary-value problem:

az¥ o [ az¥ v
ot ox = <
@ = ax<Pax>+qz =0, 0<x<1,0<t<T,
23 ® 2X@n=00<:<T
© 2¥(1,0)=0, 0<:<T,

@ z¥(x 0=y, O0<x<I.

Using M from (1.1 (d)), let
K= {p€C°0, 1]: ¢l <M and ¢(0) = £,(0), «(1) = £,(0)}.

We can now reformulate Problem (P) using (2.1)—(2.3) and linearity of the operator
in (1.1) as follows:
Find ¢ (corresponding to u(x, 0) from (1.1)) with ¢ € K such that

(2.4) — ¢(0) = PO 320, ) - p(0) 2X(0, 1) = 600,
where
(2.5) Hx) = x(x, 0).

To see that this reformulation is equivalent to Problem (P), observe that, using
linearity, the function u¥ = w + z¥ + x satisfies

ouY

ou?
- Vo=
@ = ax< >+qu =0, 0<x<1,0<t<T,

() u(0,0=rf@), 0<t<T,
(26) (¢) u¥q,d =f,(), O0<t<T,
@ wE 0)=y+r, 0<x<1

© POUL0,0=pO)w, 0,0 +pOL 0,0 +p0) 2,0, 1,<t<T

Choosing Y = ¢ — r, we see that u¥ ™" solves Problem (P) provided we can find a ¢
satisfying (2.4). (We note that since |f, (1)l <M and [f,(£)I <M, 0 <t <T, the
maximum principle implies that the condition |¢|, < M is equivalent to requiring that
ux, )I <M, for0<x<1,0<t<T)

Using this notation, we can now state a form of the continuous dependence re-
sult (proved in [6]) which we shall need later in the derivation of the error estimates.
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LEMMA 1. Under hypotheses (H1)—(H6), there exist computable constants C,
and v (0 < vy < 1) such that for all ¢ with | i, <M,

2.7 v < Clizf 0, I
@7) 1220 o )y S CLl22 O Mgy

where zV is the solution of (2.3).

3. Description of the Numerical Approximations. In this section we consider
the problem of numerically approximating the solution of (1.1) (or equivalently, its
reformulation described in Section 2) subject to the restriction (1.2). The restriction
(1.2) comes from the fact that data measurement error is, in general, accurate only to
within some measurement tolerance €,. We denote by x* the function chosen in ex-
actly the same way as x with f; replaced by f;*,i = 1, 2, in (2.0). Let F* denote the
function defined as F in (2.2) with x replaced by x*. Then define w* as the solution
of (2.1) with F replaced by F*,

(3.1) r* = x*x, 0),
and
(32) G*(1) = £*(0) - p0) 2 0, 1 - p(©) 250, )

We note here that from (H3), (H5), (1.2), (2.0), (2.5), and (3.1), we have
(a) |r|oo <K*K1’

(3:3) (b) Ir¥l. <K*K, + ¢),
© lr=r¥lly < Ir-r¥. <K%

Since the data is only known approximately as described above, we now define
an approximation scheme based on a finite-dimensional analogue of Eq. (2.4) with G
replaced by G* from (3.2). We first describe schemes for obtaining approximations to
w and z¥ (assuming Y is known).

Let Sﬁ denote the space of continuous piecewise polynomials of degree § — 1 de-
fined on a uniform mesh of width 4 on [0, 1] and vanishing at x = 0 and x = 1. We
shall consider a family of such spaces for 0 < 2 < 1. We assume each space in this
family satisfies the following so-called “inverse assumptions”: u € Sﬁ implies that for
some constant C,,

@ luly o <Ch ul,,
(3.4
) lule <C R ully.

We also assume that our test spaces Sﬁ satisfy the following approximation assump-
tions: If u € Sﬁ and I u is the interpolate of u in Sﬁ, then for some constant Cj,

() llu = TLully < C3hllull,  s>0,

(3.5)

(b)  uly o < Cslul; .
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Let k > 0 be the stepsize in time, N = T/k € Z, t" = nk, and ¢, = ¢(t"). We
shall present a Crank-Nicolson-Galerkin approximation for w, the solution of (2.1)—
(2.2). Define W: {0 =1¢,, ¢, ..., Inp = T} —>S,‘,‘l by

wn+1—wn wn+1+wn
(3.6) —— V| tal—=—— V| =FC, (n +5)k), V)

for all VES,‘:1 andn=0,1,..., N, — 1, with Wy =0, where a(", -) is defined in
Section 2. We similarly define W, to be the analogous approximation to w*(nk)
given by (2.1)—(2.2) with F replaced by F*.

The scheme defined in (3.6) is known to have a time-truncation error of the or-
der k2. We shall use another O(k?) time-stepping method with better stability proper-
ties but greater work estimates to approximate z, the solution of (2.3) with ¢ assumed

known. Define Z¥: {0 =1, ¢, ..., ty, =T} — S} by
VA —zv
n+o n
<T > oyt =0,
(3.7)
VA _Z\b
n+1 ( -(1-o
<T > taZy s 0) = a6 V),
with
(3-8) 2§, v) =, v),

for all v € S? where a = 1 —+/2/2.

We note that since each of the time-stepping schemes defined above have O(k?)
time-discretization error but different spatial orders of approximation, we shall use the
time step k to tie the two approximations together. Thus, k will be the same in each
of (3.6) and (3.7). We shall then see from Lemmas 3 and 4 below that in order to
balance the temporal and spatial discretization errors in each problem separately, we
shall let & = k in the definition of Z and h, = k'/? in the definition of W.

Let Ny = [ity/kll + 1 where [ 7], for 7 € R, is the greatest integer less than 7.
Using the above definitions, we can now define an approximate problem as follows:

Problem (P ): Find ¢, € K, such that

(3.9) J(‘Ph) = Whi%fl(hj(wh)’

where
(@) K, =19, €S} gyl <M, 9,(0) = £0), and ¢, (1) = £}(0)},

310y ® W)= max g g*(nk) - p(0> (o nk)

‘l’h

= (O 2 W30) - pO) 20" ()]
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We then take as our approximation to u(t) at ¢ = nk the function
— w* op—r" *

(3.11) n=Wa+tZ, +x7(, nk).

We now show how Problem (P,) can be solved by linear programming. Let & be
such that H = 1/h € Z and

H-1

(3.12) 11/;, = Z C,‘(I’i +f1*(0)<1>0 +f2*(0)q’]-1>
i=1
where
0, x<(@-1h,
x/h—(G{—-1), i—1)h<x<ih
(3.13) ®. = /h—G-1), (@-1)

1+i-x/h, ih<x<(i+ h
0, x=(G+ DA

Note that the constraint ¥yl <M is equivalent to ICGI<M i=1,...,H-1,and
[f*(0) <M, i =1, 2. Then, by linearity,

(3.14) 8 ¥p—r" i d f1 (0)P g +73(0)0 g o
awZn (= Z Z (0)+ ©) -3 Z (0).

Hence Problem (P,) can be written as:
Find C = (Cy, ..., Cy_,) minimizing X subject to the constraints

@ -M<C<Mi=1,...,H-1, and

®) - <g* k) - )0, nk) - p(0) L WH(0)

(3.15) a 0o .
—p(O)[Z 2,10) + LzZ]T 0 O g) 2 7 (0)]

i=1

<A, n=N0,.,.,NT.

4. Main Results. In order to derive our main result, we shall need several lemmas
about the regularity and approximation of the solutions of (2.1)—(2.2) and (2.3) and
the stability of problem (3.6). We shall now state these lemmas. The first lemma re-
lates the smoothness of the solution of (2.3) to its initial smoothness and can be found
in [2].

LEMMA 2. Let ZY be the solution of problem (2.3). Then for 0 < ty <tand
s 2 0, there exists a constant C, such that

(4.1) 1ZY (-, Dlly < Catg 2 Yllg-

LEMMA 3 (CF. WHEELER [15]). Let w be the solution of (2.1)—(2.2) and {W,} be
its approximation given by (3.6). If w € L=(0, T; W*>), ow/at € L*(0, T; H*), and
a3w/at3 € L2(0, T; H®), then there are constants C, and ko > 0 such that for all
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L2(0.T;H4):l
L2(0,T;HO)}

We remark that sufficient conditions for w to have the regularity required by
Lemma 3 are that

0 <k <k, wehave forn=20,...,Np,

L nk) = Wl < Cydnt “Qﬂ
[w(+, nk) i loo C4{hl[”W“L°°(O,T;W4’°°)+ 57

“4.2)
6 w

ar3

+ k?

(@) F,, €L*Q,T;H,

(4.3) (b) F(x,0)=0 forx=0andx=1, and

0 oF(x, 0
() a<p%>_qp(x, 0)—Ft(x, 0)=0 forx=0,1,

where F is given in (2.2). For the choice of x denoted by X above, (H3) implies
(4.3 (a)). However (4.3 (b)) and (4.3 (c)) require special relationships to hold between
various combinations of

0
—f—]() a”(O) l(l) 94 ), nd (1)
x

fori=1,2,1=0,1,2,3andj=0,1,2. If these conditions are not met by the
given p, q, and f;, i = 1, 2, then we must make another choice of x for the results to
apply. Another possible choice of x which satisfies (2.0) and fits into our analysis is
given by X, which for each ¢ in 0 < ¢ < T satisfies the boundary-value problem

(a) —i< aax > =c(x, ) =a; +ayt+ 2[b;x + b,itx],
() X0, =fi(0, x(1,9 =1,

for specific constants a,, a,, b,, and b,.
We note that X is defined by

s )= 100~ o0) [ 5~ @, ) [ 505~ 0 4 020 [ 58
with

a(t)_[f‘(’) £~ (@ + a0 f) 55 - 0, bf)fli)((sl;]/ I

and satisfies (2.0) with J; = 1,J, =2,J; =1 and easﬂy computable K *, K** a
K*** % is much more comphcated than the choice X, but if we make the ch01ces
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a, = =q(0)£,(0) - £1(0),

by = [-q(1)f,(0) - £5(0) —a,]/2,
"0 [f‘(o)_fzw) e fope ) p(s)] 5y
a, = %{[p(0)q"(0) + p'(0)q'(0)] £,(0) — q(0)£(0) - f{(0) - a,4(0)

- 2q'(0)a(0) + 2b,p'(0)},
b, =% {[p(1)q"(1) + p'(1)q'(1)] £,(0) - q(1)£,(0) - £5(0) — 2a,
—(ay +2b,)q(1) + 2b,p'(1) + 2¢'(1)[a(0) + a, + b,]},

then the compatibility assumptions (4.3) are satisfied without any special relationships
holding between the functions p, ¢, and f;, i = 1, 2. We remark that if 92q(0)/ox?
and 92q(1)/ax? do not exist as required in the definition of ¥, another x should be
chosen which would eliminate the extra smoothness assumption on ¢. In this case,
choose X to satisfy the boundary-value problem

a 0 A
_ax< P X >+qx—a1+a2t+bx+btx

X0, 0 =f,(0, X1, 0= £,

with @}, a,, 31, and 32 chosen so that (4.3) is satisfied. We note that with this
choice of x, the solution of a different boundary-value problem must be computed for
each discrete time step to determine F.

When (4.3) is satisfied, we have by standard a priori estimates that for n =
0,...,Ngp,

4.4 Iw(-, nk) = W,|., < Cs{h} + K},

where C depends only upon the data f;, f,, p, and q. Using the inverse properties
(3.4) satisfied by the subspaces S} o we easily obtain the following result by a standard
technique.

COROLLARY (3.1). There exists a constant Cg such that forn =0, ..., Ny,
C6 4 2
4.5) lw(-, nk) — W nll o h_[hl + k*].

Our next lemma allows us to obtain L*-estimates for the error in approximation
of (2.3) by (3.7) for times bounded away from 7 = 0 (i.e., 0 <z, <?).

LEMMA 4 (CF. BAKER ET AL. [1]). Let z¥ be the solution of (2.3) and {Z? }
the approximation given by (3.7). Then there exist constants C, = C,(t,) such that
forn=N,, ..., Np,

(4.6) |2Y (o, nk) = Z¥ |, < C,{h? + K2} 1Yl
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Again, using our inverse assumptions on S,2,, we obtain

COROLLARY (4.1). There exists a constant Cg such that forn =N,, ..., Np,
v Y Cs 2 2
4.7) 1z¥(, nk) = Z3 1} o < " [ + K511l -

We shall also require a special stability result for the approximation scheme (3.6).
Since the proof of the following lemma is quite technical, we shall defer it until after the
proof of our main result.

LeEmMA 5. Let {W,} be the solution of (3.6). If for some constant 74 > 0, we
restrict k and h, such that kh3 < 1, then there is a constant Cq such that

4.8 w < C,lIF .
(4.8) Waly oo S GOllF o, o)

The last lemma which we shall state gives an a priori estimate for the linear pro-

gramming problem defined in (3.15). Again the proof of this lemma will be deferred
until after the proof of our main result.

LEMMA 6. Let ¢, € K,, be the solution of the linear programming problem
(3.15). Then there exists a constant C,, such that

max  |g*b) - p©) 20, n) — p() L WEO) -0 22 (©)
(4.9) n=Ng»Nr ox ax " ax "
= J(gy,) < Cyoleg + b+ [n} + K21 /hy + [W* + K]/}
We are now in a position to state our major result and prove it using Lemmas 1-6.

THEOREM 1. Let u be the solution of Problem (P) and {U,} be the approxima-
tion defined by Problem (P ) and (3.11). Suppose that hypotheses (H1)—(H6) are
satisfied, that F (defined by (2.2)) satisfies the regularity conditions (4.3) and that ¢ =
u(x, 0) satisfies ll¢ll, < C,, for some constant Cy, > 0. If the mesh sizes k, h, and h
are chosen to satisfy k = h = h?, then there exists a constant C,, which is independer
of k such that forn =N, ..., Np,

(4.10) lu(, nk) = U, |y o < Cyyleq + K17,
where €, and 7y are the constants defined by (HS) and (2.7), respectively.
Proof. In the reformulation of Problem (P), we wrote the solution as
4.11) u=ufT"=w+z7" + x.
From (3.11) we have
(4.12) U, =Wk + 27 4 x*C k).
Using the triangle inequality, we obtain

(s, 1K) = Uy, oo < WC, 0K) = W,y o+ W, = WEI,
(4.13)

+ 12277, nk) = Z T 1w F IXCy k) = XFC )]y



1136 RICHARD E. EWING AND RICHARD S. FALK

The first term on the right of (4.13) is bounded using (4.5) as follows:
(4.14) lw(:, nk) = Wy, .. < Cglhi + K*1/h,.

From (1.2), (H5), (H7), and (2.0), we see that

4.15) Ix(:, nk) = x*(, nk)l; o < 2K%e.

Since k = h} by hypothesis, we can use Lemma 5, (1.2), (2.0 (d)), (2.2), (H5) and
possibly (H7) to bound the second term on the right side of (4.13). We obtain

(4.16) W = Wil SCIF=FM o o < Cep.

In order to treat the third term on the right of (4.13) we use the triangle inequality,
277C, nk) = Z," ),
“4.17)

—p* .k Lk
< [z¥77(-, nk) —z%h (, nk)l} o + 12" (-, nk) —Z:h g I} oo

Using (3.3 (b)), (3.10(a)), and (4.7) we have for n = Ny, ..., N,
—p* % C,
|2Wh r (:, nk) _Z:h r ll’a'° <78[h2 + k2]“80h _r*llo
(4.18)
Cs 2 2 ® 2 2
<5712 + 11,1 + 1F*1) < ClR + K2k
Combining the above estimates, we obtain

lu(:, nk) = U, |y » < Cleg + [n] + K21 /n, + [h* + K*]/R}
(4.19) .
+ 1227, nk) =2 b, .

In order to estimate the last term on the right of (4.19), we shall use the continuous
dependence result from (2.7). We obtain

(4.20) 1297(, nk) =27 (, nk)l, . < C1IZ2770, ) - 27 (0, Moy

For any function y(¢) € W?»> [to, T, we now define I, y to be the piecewise linear in-
terpolate of y on the time mesh of width k. Then we obtain (using properties of a
linear interpolate)

125770, ) =27 0 Mgy,
- - opr" onr
(4.21) < ||Z£ ", *) —Isz (0, ')“[tO,T] + ”Ikth ©, ) - th O, ')”[to,T]
+ max 122770 nk)*th_r*(O nk)|
N 1€% ’ * ’ .

n=N0,.,., T

By standard results in approximation theory, the first two terms on the right of (4.21)
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are bounded by

(4.22) O 128770, Myeg,ry + 12ty O g 7]

Next, differentiating Eq. (2.3 (a)) and using Lemma 2 and the Sobolev lemma, we ob-
tain for any ¢ € H°,

(4.23) 124,00, Mo,y SClzY(, Dllg <ClYlly for 0 <ty <t<T.

Combining the above estimates and using (3.3) and (3.10 (a)) to see that [l — 7|, and
lly, = 7*ll, are bounded, we obtain

22770, +) — 222" (o, ey, 71

< Ck* +  max Ny 1z£77(0, nk) — z:h_r (0, nk)|

n—NO,
(4.24) N
< Ck? + ’—z‘f’"’(o, nk) - —Z" (0)|
n= NO, . T 0x

+  max ‘a Zen"" 0) - a " (, nk)'.
n=Ng,..Np 0x

Using (3.3), (3.10), and (4.7), we estimate the last term on the right of (4.24) by

aw -r*
max ”

_9 eprt
=X ™ 0) P (0, nk)

(4.25)
<R+ K llg, —r¥llg <C[H? + K21 /h.

Next, using (2.4) and the triangle inequality, we see that the second term on the right
of (4.24) is bounded by

|—z¢~'(o k) - o 9 Zon~" (0)|

n= NO,
g(nk) ax 8 «ph —r* }
< 0
O 20, nky - (0, nk) - ©)

<

] w0l + 220, nio - 2
s | o) — k) + 320, i) - 2o w,0)

(4.26) | W(O)——w*(O)} ‘ax(o nk) — —(o nk)

|

d ox*
—_|p* — — W* — A
t o 014 (nk) = p(0) 3 - W, (0) — p(0) 75— (0, nk)

-pO) 220" )

= term, + term, .
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Using (4.5), (4.15) and (4.16), we can bound the first term on the right of (4.26). We
obtain

(4.27) term, < C{e, + [A} + K2]/h,}.

We note from (3.9) and (3.10) that the second term on the right of (4.26) is just
p(0) 7! times J(¢y) from our Problem (P,). We then use Lemma 6 to obtain the a
priori estimate

term, = J(y,)/p(0)
(4.28)

< Cyoleg + h+ [ + K21 /n, + [A? + K*]/h}.

Then combining (4.19), (4.20), and (4.24)—(4.28), we see that for n = N, ..., N,
(429) u(,, nk) — U, || » <C{ley + h + [h} + K21 /h, + [W* + K*]/n}".

Then choosing # = k and h, = k'/2, we obtain

(4.30) u(, nk) = U, |, o <C{ey + k}Y

forn = N,, ..., Np, which was to be proved.

Next, assume that the linear programming problem described in Section 3 is solved
to within the tolerance J(y,) < o, for some o, > 0. Replacing the estimate (4.28) by
the above inequality, we obtain the following error estimate.

COROLLARY T1. Assume the hypotheses of Theorem 1 are satisfied. If o, =
E,H:—ll Ci*(bi, the solution of the linear programming problem defined by (3.15), satisfies
J(o)) < 0y, then for n = N,,, ..., Ny we have for some constant C, 3 > 0,

lu(, nk) — Un‘l’m < C13[€0 +k+ 01]7'

We shall finally give proofs for Lemmas 5 and 6 which were stated previously.

Proof of Lemma 5. To prove this lemma we will need to make use of results
from elliptic regularity theory, spectral theory in Hilbert spaces, and the theory of in-
terpolation spaces. We shall assume the reader is familiar with these concepts, since to
provide detailed explanations would unduly lengthen the proof. In order to simplify
the exposition, we first introduce some additional notation. Let Q be the solution
operator for the two-point boundary-value problem

_o( _
(a) ax(pax>+qy—f, 0<x<1,

(b) »0)=0,
(© y(1)=o0.

4.31)

(ie.,y = Qf). Let Q, . be the solution operator for the Galerkin approximation of
(4.31). Then Yy = On,[is defined by

(4.32) a(yhl,vhl)=(f, U”l)’ U, ES;‘,I.

Now, set th = Qh_ll (i.e., the inverse of th on Szl). For normed spaces X and Y,
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let L(X, Y) denote the space of linear operators from X to ¥ and [I"llx, y) the (oper-
ator) norm in this space. We shall first establish that

(4.33) Wy, < CULLIEW, .
We note that
Walt e = 1@y Ly Woli e <1Qp, =)Ly Wyly o +10L, Wl o
(4.34) <1Qy Ly Wy = Iy QLy Wyly o + Iy OLy W, = 0Ly W, ..
+10Ly Woly s

where Ih1 is the interpolation operator mapping Hg — S,‘:l. By the inverse properties
of S,‘:l given in (3.4), we see that

|Qh1Lh1Wn —IththWnll’m
(4.35) <Ch1_3/2“Qh1thwn _IthLnlwn”()
S NIQy Ly Wy = QLy Wyllg +11QL, W, — 1, OL, W,llo}.

Using standard properties of the Galerkin approximation, we note that the first term
on the right of (4.35) can be estimated as follows:

(4.36) hl—3/2||(th - Q)LhIW"IIO < Chl—3/2hZ/4||QthW,,||7/4.
Also, using (3.5 (a)), we obtain

@37y  hPIOL, W, — 1, 0Ly Wlly < Ch>PPRIIMIQL, W1y 4.
Then, using (3.5 (b)) and the Sobolev lemma, we see that

lIththwn - Qthwnh,m < ”leLnlwn'l,m + |Qthwn|1,w
(4.38)
< (G + DIOLy, Wpli w < ClIQLy, Wyl q-

We then collect terms in the above inequalities and use a standard a priori estimate for
elliptic problems(i.e., @ € L(H™/4, H7/%) [10]) to obtain
(4.39) Wpli,o S CIQLy Wyllyja < Ly Woll_y jas

where the last norm is defined below in (4.41). Then, in order to obtain (4.33) we
need only show that

(4.40) 1Ly Wall Zy ja < CIL]IEW, I

Let P: L? — S;:l be the L? projection operator into S;,‘l. Note that th is selfad-
joint, so Lfllll 8 is also selfadjoint. Then we see that
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(th W, v) (thwn, Pv)
L, W,l_i,4 = sup = sup —/————
pmm vecy vl /4 vecy vl 4
(4.41)
(LZ/IS W, L;‘,ﬁSPv) s IIL;‘,’ISPvllo
STl <UL Wallo sup —,
vEC, 1/4 vEC, 1/4
Next, since we have that
(4.42) L2 Polly = [a(Pv, P0)]'/? < ClIPvll,
and
(4.43) L, Polly < 1IPvlo,

we can use an interpolation theorem due to Heinz [9] (compare also with [10]) to
establish that

(4.44) ||L;11/18P”"o < C”h’”1/4-

Then, since approximation properties of S;,‘ . yield

(4.45) 1Pvlly 4 < Cllvlly 4>
we can combine (4.41), (4.44) and (4.45) to obtain
(4.46) 1Ly Wl -y < C||L;f*wn||0_

Now, to establish (4.8) we solve a set of first-order difference equations arising from
(3.6) to obtain
k. 1, &, U
RN

k -1 1 .
. [1+§th] PF<,[n—§—]]k>].
Then we see that

k, 1
LA W, llg < "kLZiS [1 + Eth] PF<-, [ - 5]1«)

4.47)

0
nl k -1 k ] j
448 + 7/8 2 -=
(4.48) kazl Lyl [1+2th] [1 L,

) k -1
[1 * 2L”1] “

Lu®, 1%
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For the first term on the right of (4.48), we obtain

-1
s (-1
0
(kN8 55 k -1
\2) L+ 2L, o

(4.49) L, 1)
<278k1/® qup

o )
2”PF < [ - %]k) (for k < 2).
0

Since it is known that the eigenvalues A; of L, satisfy 0 <A; <Byhy =2 the mesh
ratio restriction kh; © < 7, contained in the statement of Lemma S implies that

(4.50) A, < Byro/k.

From [1], we know that there exist constants Cy and K, such that forj=1,2, ...,
and 0 < X < B,74/k,

< 27/8k1 /8

m([-1])

0

0

1 - k)\/2 —Co (k[2)N]
4.51 0
*31) T+ iz SKoe :
Then, since clearly e "“*x7/® is bounded for all x > 0, we use (4.51) to see that

7/8
th

rotnJ 2 2T

8 .
1-kN2) A wp o COUIDIN, g
1+ &2 1+ k7\/2 0 <A<ByTo/k

L(H®,H%)

(4.52) < su
0 <A<Byro/k

- : . 8
< w o “CotkIDN (kNj[2 7/

<Gy, (k) 7718,
0<A<ByTolk (jk[2)71® 120K/2)

Thus, combining the above estimates, we have
PFE(-, |n- l-k>
5 24 /

12 (T 1
< ||PF 2+ ——) ——dt
(453) = ” ”LN(O,T;HO) 27/8 0 [7/8 ]

n—1 C12
+ IPFI

L7 8w | <2| h “ (k1218
ny Wnllo S 0 LTTHD T S (jkf2)7 18

~

8C,,
<|\PF| o |2+ —=T8 <CIF| . o.-
L (0,T;H") 27/8 L (0,T:H")

Finally, combining (4.39), (4.46) and (4.53) proves Lemma 5.
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Proof of Lemma 6. From (H5), (3.9), (3.10), (4.5), (4.15), and (4.16) we see
that for all Y, € K,

(4.549)

J(py) <J(¥y)

= max
n=N0,...,NT

£ - p0) 20, 1) - p(O) ZW30) ~pO 2227 0)

ax* 0
< max glg*(nk) - g(nk)| + P(O)l-a)i—(O, nk) — ﬁ(O, nk)
n=N0,..., T

+ pO[ZW30) - 21,0 + PO 21,0 - 500, k)

+p(0)l 2 20n 7" (0) - 22970, k) %
<Cleg + (H* + K] +  max  p(0) aa z70) - —z“’_’(O nk)).
n=Ng,..Np X
Now
la " (0) = 2227770, nk)
(4.55) 9 yp—r* 0 W,-r* 0 Wu—ptr—r* l
< h 9., h 0, nk)|.
22 0= L 0+ [ , nk)
From (4.7), (3.3), and (3.10) we see that forn =Ny, ..., N,
9 Yprt a S 2 4 g2 _—
ws i ©,nb| <20 + K1y, -,
< C[h? + K?]/h.
Next using the Sobolev lemma, Lemma 2, and (3.3 (c)), we obtain for n = N, ..., Np,
and for any ¥, € K,
- —p ¥k — + —_—p ¥k
O VYp—ptror (0,nk)|<||2wh ptr—r I
4.57) lox

SCly, —o+r—r¥ly <Cley + 1Y, —lly].
Choose ¥, such that
(@) ,Gh) = Gh), i=1,...,H-1,
(4.58) (®) ¥,00) =10,
© ¥,(1) = £50).

Then ¢, € K}, and ¥, is almost equal to /, ¢, the piecewise linear interpolate of .
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Then from (3.5),

(4.59) 9 = vllo <19y, = Lywlly + 1,0 = dlly <I1¥y, = Telly + Chllgll, .

But we see that

0, h<x <(H-1)h,
_r.-)1 —)—‘)[fl*(O) - f,(0)], 0<x<h,
(4.60) = lne < &
- -n]mo-ron,  @-pre<x<t,
so we have
(4.61) 1), = Ielly < Ceq.

Combining (4.54)—(4.61), we obtain

(4.62) J(p,) < Cleg + h + (b + k2)/n, + (h* + K*)/n].
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