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Stability of Two-Dimensional Initial
Boundary Value Problems Using
Leap-Frog Type Schemes

By Saul Abarbanel* and David Gottlieb**

Abstract. The paper discusses stable boundary conditions for the two-dimensional
Leap-Frog scheme and the Modified Leap-Frog scheme introduced by the authors

in a former work.

1. Introduction. There are several ways of extending the second-order Leap-
Frog finite-difference scheme to two space dimensions. Consider the hyperbolic set
ou oF oG
(1.1) =,
ot ox 0y
where u, F(u) and G(u) are m-component vectors. The standard way of applying the
Leap-Frog scheme to (1.1) is as follows:

P N Jai At Gn _n
(1.2) Ui =t t A_x( e~ Fiii) T Ay( Tier1 ~ Glk—1)-
The linear initial-value problem stability condition for this algorithm is

1
<———,
(13) at [p(A) i p(B)]
Ax Ay

where p(4) and p(B) are, respectively, the spectral radii of the Jacobians 4 = 0F/du
and B = 9G/du, and it has been assumed that 4 and B are simultaneously symmetriz-
able.

In [1] it has been shown that the stability condition (1.3) can be substantially
improved by using a Modified Leap-Frog (M.L.-F.) scheme

_ At ~ ~ At ~ ~
14 Wit =ul = Fh  —Fly )+ =Gl = Glir)s
Ax Ay
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where

(1.5) File = FCAU; oy g + 4 5—1))
and , .
(1.6) Gjtlk = G(l/z(uj+1,k + Uiy ,k))‘

Not only does (1.4) have the better stability condition

Ax A
(1.7) At < min; 2

p(4) " p(B)
but it also has a smaller phase error than the standard L.-F. scheme, (1.2).

In this work we intend to present several stable ways of treating the boundary
conditions for the Modified Leap-Frog (M.L.-F.) scheme. In deriving these boundary

conditions it was found that there is also a need to explore what kind of boundary
treatments are stable for the standard two-dimensional L.-F. scheme (1.2).

2. Stability Results. In this section we consider the equation
2.1 up=u, tu, 0<x<oo -0y Joo
This equation, with suitable stretching of space coordinates, models the system
2.2) u, = Au, + Bu, =F, +G,,

when A4 and B can be diagonalized by the same similarity transformation. It has been
shown by Kreiss that the initial boundary value problem for (2.2) (even if 4 and B
do not commute) can be analyzed by means of Fourier transforming in one direction.
We will follow this method of analysis in order to determine stable treatment at the
boundaries.

Gustafsson, Kreiss and Sundstrém [2] considered the one-dimensional case,
namely

u,=Au, =F,, 0<x <o,

where A4 is a positive diagonal matrix. They have shown that determination of the
boundary values by space extrapolation on the same time level is an unstable proce-
dure. They did present three stable “boundary treatment™ schemes (at x = 0):

@) upg* =2 -uft,

(i) ugt! = ug + (At/A)AWUT - ul),

(iii) wg*' +uft! = (A/A)AWTTT Ul = uf + Ut — (A ADAWT - ul).
All three leave the pure initial-value stability condition unaltered,

At < Ax/p(A).

In this paper we will discuss extensions of (i) and (ii) to the two-dimensional
case. It is readily seen that such extensions (and generalizations) of the boundary con-
ditions (i) and (ii) are not unique. For example, condition (i) may be extended as

2.3) ntl _ 5 n n—1
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On the other hand, one may view (i) as an extrapolation in the characteristic direction

in the x — ¢ plane, and then it is reasonable to extend (i) as an extrapolation along the
characteristic in the x — y — t space. This will result in the boundary condition

n+l _ »,n _ h1
24 Ug e = 2U5 k41 " U kr2

Similarly, the one-dimensional boundary condition (ii) may be generalized to

At At
2.5 Wttt =yt —F  —Fg )+ ——(Gg 1 ~ Go -
( ) 0,k 0,k A ( 1,k o,k) 2Ay( 0,k+1 0,k 1)

or, it may be extended to

At ~ ~ At ~ ~
(2.6) uphl =g+ T F) + Z;(Gg,k+1 ~ Gg 1)

i

where the E ’s and the 5 ’s are defined by

=

@7 F g = FCAuy goyq t+ Uy 1) 50,k+1 = GCAUy jqy T+ Ug k+1))

As far as condition (iii) is concerned, we feel that it is much harder to apply it in the
two-dimensional case since it involves the inversion of a matrix in the linear case and the
solution of nonlinear algebraic equations, otherwise. Therefore, we shall not consider
the extension of (iii) to the two-dimensional case.

At this stage we would like to discuss briefly the way of checking stability. The
analysis is based on assuming that the finite-difference equations (1.2) and (1.4) have
solution of the type

2.8) uly = "ketkm,

where the indices n, j, k are those appearing in the finite-difference schemes and i =
v/~ 1. We will look for solutions such that Iz > 1, k| <1 in order to establish in-
stability. If we get a solution such that |z| =1, lk| = 1, we will check the origin
of this solution, i.e., how does a perturbation in z affect k. Substituting (2.8) into
(1.2) and (1.4) gives, respectively, the following characteristic equations:

(29) k(z2 = 1) = z[Ax? — 1) + 2i\ sin 1]
and
(2.10) k(z? — 1) = \z[k2eim — 7],

We assumed that F = G = u and A = At/Ax = At/Ay. Within the limitation of linear
stability analysis this assumption is not severe since by “stretching” the x, y and ¢
coordinates one may account for different (constant) coefficients in the partial differ-
ential equations.

The results of the stability analysis are summarized in the following lemmas:

LeEMMA 1. The L.-F. scheme (1.2) with the boundary condition (2.3) is stable
under the initial-value stability condition, (1.3).



1148 SAUL ABARBANEL AND DAVID GOTTLIEB
Proof. Boundary condition (2.3) leads to the resolvent equation
(2.11) (z-«x)?=0.

Equation (2.9) together with (2.11) yields

A
(2.12) z% - 21'( sin n)z -1=0,

where —1 <sin n < 1 and, from (1.3), 0 <X < %. Solving for z, we get

(2.13) z=iyt1-7%
where
A .
(2.14) 7=1_>\s1nn, ie. -1 <y<I.

Thus Iz| = 1, and there is no eigenvalue |zl > 1 for this problem. There remains to
check for the possible existence of a generalized eigenvalue. Let 6 be defined by vy =
sin 0, and therefore z = ¢/®. Assume that (2.11) implies that for some 6 we have Ko
= z,, and let us now check what happens if we perturb z by a small real number, €.

Take z =z, + ¢;then k =k, + 8 =z, + &. Substituting these expressions into
(2.9) and neglecting terms which are O(e?), O(6%), O(e§) and higher, one gets

§ izg—N—(Q2- Nz
(2.15) -

C—ipzy 1+ (12022

where § = 2X sin . Using the fact (see Eq. (2.12)) that ifz, = (1 - k)(zg - 1), we
get from (2.15)

(2.16) § 1

Thus, for a z-value approaching z,, from outside the unit circle there corresponds a k
approaching k also from outside the unit circle. We conclude, therefore, that there
are no generalized eigenvalues and the scheme is stable.

LEMMA 2. The M.L.-F. scheme (1.4) with the boundary condition (2.3) is un-
conditionally unstable.

Proof. We have the same resolvent as in Lemma 1, namely
(k —2)? =0,
which upon substitution into (2.10) yields, upon rearranging
_1-e
1 -ein

Again we have |z| = 1, and we have to determine the behavior of x as z approaches
the unit disc from the outside. We set z =z, + € where

(2.17) 22
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< 1 - 2ein\1/2

zg =| ———— | ,

O N1 4l )

and then k =k, + 8 =z, + 6. We substitute these values of z and k into (2.10) and
collect terms in powers of € and & to get

z2ol(z5 = 1) = NzZe™ + Ne ™M) + 8(z3 — 1 — 2\z2e™) + (222 — Nzge + NeT)
+ 0(e?, 82, €8) = 0.

The expression in the square brackets vanishes by virtue of (2.17); and to first order
in € and & we have

é B 22(2, - )\z%ei" + Ae7in
€ 1 - 22 + 225

which, upon using (2.17) and rearranging, reduces to

(2.18) ) 1—-Acosn
€

Y (cos n — N

Recall that (with F = G = u) for the M.L.-F. the initial-value stability condition is

A < 1 rather than A < % as for the standard L.-F. For 0 <A <1and -1 <cosn <
1 we can for each X find n such that §/e < 0. In particular, for n = n/2 we have §/e

= —1/A%; and thus z = — 1 is a generalized eigenvalue of (2.11) and the boundary con-
dition (2.3) renders the scheme unconditionally unstable.

LEMMA 3. The L.-F. scheme (1.2) with the boundary condition (2.4) is uncon-
ditionally unstable.

Proof. Using (2.8) the resolvent equation corresponding to (2.4) is

22671 = 2z — k2N

or

(2.19) z = ke,

We will demonstrate instability by finding a particular generalized eigenvalue. For n
= 7, (2.19) leads to z = —«. For this case, the characteristic equation (2.9) becomes
(2.20) —2(z% = 1) = Az(z® - 1).

The value z = —1 (k = 1) is a root of (2.20). Perturbing (2.9) with z = —1 —€ (¢ >
0)and k = 1 + 8, one gets § = —¢/A and, therefore, [k| <1. Thus, we have just
shown that k = 1, z = —1 is a generalized eigenvalue.

LEMMA 4. The M.L.-F. scheme (1.4) with the boundary condition (2.4) is stable
under the initial value stability condition (1.7).

Proof. The resolvent equation is the same as the one obtained in Lemma 3.
Substituting (2.19) into the modified characteristic equation, (2.10), yields 22-1=
N(z? — 1) and, therefore, z =z, = +1 and Kk = zoe—i". To check for the possible
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existence of a generalized eigenvalue set z = zy t €, ereal,and k = kKo +8 =

zoe'i" + 6, 6 not necessarily real. Perturbing (2.10) with these quantities and retain-
ing first order terms only in € and § yields the result § = ee™*" from which, if z =
zy + ¢, e real, then k = (z, + €)e"; and hence if 1z| > 1, then Ik > 1, and there
is no generalized eigenvalue.

LEmMMA 5. The L.-F. scheme (1.2) with the boundary condition (2.5) is stable
under the condition

(221) N (4) < 4 = (B)< 4

For 4 <\ < .5 there is a generalized eigenvalue.

Proof. Associated with the boundary condition (2.5) is the resolvent equation
(with u, ~ Z"kletk M)
(2.22) z=1+ Xk — 1) + i\ sin 7.

Eliminating z between (2.22) and the characteristic equation (2.9), we get a quadratic
equation in k

(223) A1 =N —iN*sin n]k? + [2AA — 1) + A%sin n]k + A(1 = \) + iA%sinn = 0
with the notation
(2.24) a=N1-XN); B=2Asinn, 7 =2A\-1)+A%sin? n.
The solution of (2.23) is
I AL . D)
2(a = iB)
The radical in (2.25) is evaluated using (2.24),

(2.25)

v? = 4(e® + B2) = 4N2(A — 1)? + 423\ — 1)sin?n + A*siny
—4N2(1 = N)? - 4*siny
= A3sin?n(\ sin?n — 4) <0;
and therefore,
e R T

(2.26) e 1B) =X +1Y,
where

1 sy
(2.27) X=————(—ay ¥ (V4 + ) - 7v°),

2(a? + 62
1 AZ 3 /i 2
. =——F(-fy t 4 + - .

(2.28) V= eV B )

From (2.26) it is clear that Ikl = (X? + Y?)!/2 = 1. Substituting k from (2.26) into
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the resolvent equation (2.22), we get for z
(2.29) z=1-X+NX +iNY + sin 7).

Using (2.24), it is easy to show that also |zl = 1. We now have to check out the pos-
sible existence of a generalized eigenvalue. Let z, = 'Y be given by (2.29) and Ko =
¢'® be given by (2.26). Perturb zy and K, by setting z = (1 + €)'V, e>0and k =
(1 + 8)e™®. Substitution of these perturbed values into the characteristic equation
(2.9) yields, to first order in € and 8,

VA +e)-eW(A-e) =NV +8)—e V(1 —8)] + 2i\sinn
from which we get

_Acos ¢ A(Real ko)

€
6 cosy Real z,

We will have stability (i.e., no generalized eigenvalue) if

_)\cosgb

(2.30) €
) cos Y

From (2.29) we have
cos Y = Real z; =1 —A + A (Real k) >0

since 0 <X <.5 and |Real k| < 1. Thus the question reduces to deciding under
what conditions Real k, > 0. The requirement of Real k, > 0 is, from (2.27), equiv-
alent to (since y < 0; see (2.24))
oy >[4+ -y or P >4p
and, since v <0,
(2.31) [yl > 2181
Using from (2.24) the expressions for § and v, Eq. (2.31) becomes
(2.32) 2A(1 = A) — A%sin?n > 2Alsin nl.
The most severe requirement on X in (2.32) takes place when Isin nl = 1, and thus
we have 2\ > S\? or
(2.33) A<04.

This is sufficient for stability. To show that (2.33) is also a necessary condition we
show that for X > .4 we can find a generalized eigenvalue. Take n = 7/2, and we find
that for A > 4, X = Real k, < 0; and hence (2.30) is violated. This completes the
proof.

As far as we are aware, this is the first known example that the boundary treat-
ment modifies the stability condition rather than negating or leaving it unaltered.
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LEMMA 6. The M.L.-F. scheme (1.4) with the boundary condition (2.5) is un-
conditionally unstable.

Proof. We give a counterexample to stability. Take n = w and the appropriate
characteristic and resolvent equations, respectively, (2.10) and (2.22) take the form

(2.34) kK(z2 - 1) =—-Az(k? - 1)
and
(2.35) z=1=Nk - 1).

A solution of (2.34) and (2.35) is z, = k, = 1. Perturb by taking z = 1 + € and
k =1+ 8. To first order in € and 6 Eq. (2.34) becomes

(2.36) €=—23,
i.e.,z=k =1 is a generalized eigenvalue and we have instability.

LEMMA 7. The L.-F. scheme (1.2) with boundary condition (2.6) is uncondi-
tionally unstable.

Proof. The proof is similar to that of Lemma 6. The resolvent equation asso-
ciated with (2.6) is

(2.37) z =1+ Nre™ - 1).

Substitute n = 7 into the characteristic equation (2.9) and (2.37) to get

(2.38) k(z2 = 1) =Nz (k? - 1)
and
(2.39) z—1==Nk + 1),

which are solved by z, = 1 and k, = —1. Perturb by settingz =1 + eand k =
—(1 + §). To first order in € and § Eq. (2.38) becomes e = —A§,i.e.,z=1,k =-1
is a generalized eigenvalue and we have instability.

LEMMA 8. The M.L.-F. scheme (1.4) with boundary condition (2.6) is stable
under the same stability condition as the initial-value problem.

Proof. Substituting k, = ke’ in the appropriate characteristic equations and
resolvent (2.10) and (2.37), we get, respectively:

(240 k(%2 —1) =22 - 1)
1 1

and

(241) z=14+ Nk, — 1)

The set (2.40), (2.41) models the case of one-dimensional L.-F. with one-sided differ-
encing at the boundary (see boundary condition (ii) on p. 1146). This case was discussed
by Gustafsson et al. [2] and shown to be stable. This completes the proof.
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3. Numerical Results. In order to verify the analyses of Section 1 we solved
numerically the test problem

(3.1)
(3.2)

ut=ux+uy, 0<x <o, <y <oo,
u(x, y, 0) = sin 2mx sin 2my,

the solution to which is

(3.3)

The numerical solution was carried on the square 0 < x < 1,0 <y < 1.

u(x, y, t) = sin 2m(x + f)sin 2a(y + ¢).

Since the

initial condition is periodic in y with period 1, and since the analysis assumed Fourier
transformation in the y direction, we have to give periodic conditions on the y = con-
stant boundaries. The characteristics of the transformed equation have negative slope

in the x — ¢ plane; and hence, we must specify a solution on x = 1 and a boundary
condition at x = 0. The various conditions were, then, chosen as follows:

(3.4)

u(l, y, ) = sin 2at sin 2n(y + 1).

We used both the Leap-Frog and the Modified Leap-Frog schemes, using at x = O the
various boundary conditions considered in the previous section. The runs were of

1000 time steps. The results are summarized in the following table:

Boundary condition Boundary condition Boundary condition Boundary condition
Eq. (233) Eq. (24) Eq. (2.5) Eq. (2.6)
Method Max  Relative Max  Relative Max Relative Max Relative
o
error L, Il error error 1L, Il error error 1L, 1l error error 1L, I error
L-F Xx=.39 | 019 .0088 unstable 017 .0099 unstable
L-F X=41 0165 .0080 unstable 015 0093 unstable
L-F A= .47 | .0089 .0060 unstable unstable unstable
L-F = .49 | .0058 .0078 unstable unstable unstable
ML-FA=09 unstable 0205 0171 unstable 0222 0173
ML-FA=.99 unstable 0021 .0017 unstable .0023 .0017

The tabulated values amply verify the theoretical results.
We used for the L.-F. calculation the known solution that is

(3.5)

u(x, 0, 1) = u(x, 1, t) = sin 2(x + f)sin 2z

The results for the M.L.-F. are for the periodic condition u(x, 0, ) = u(x, 1, 7).

It is interesting to note that if, instead of (3.5), we used the periodicity condi-
tion u(x, 0, £) = u(x, 1, t), then the aumerical computations failed to show the in-
stability for A > .4 in the case cf the L.-F. with boundary condition (2.5). This is
due, we think, to the fact that the dissipation introduced by the extrapolation over-
comes the weak instability due to the existence of a generalized eigenvalue for A > 4.
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4. Analysis of a Two-Dimensional System. In this section, we would like to
explore the stability of the Leap-Frog scheme applied to the two-dimensional hyper-
bolic system

0 /u 1 0\ 9 /u 0 1\ 0 /u
en 5(0) () w0 ()5 ()
ot \v 0 -1/ ax\v 1 0/oy\v
in the half-plane 0 < x < oo, —o0o <y < oo (¢ > 0) with the boundary condition

(4.2) v(0, y, ©) = 0.

Since only one characteristic is positive, # cannot be specified at x = 0 (see [3]) and
will be determined by the extrapolation (2.3).
We set in (4.1)

4.3) Uiy = oz"kletkn Vi = Bz"kletkn

to get

(4.4) [k(z* = 1) = Az(k* = )] + [2iMkz sin 0] = 0,
4.5) [2ikz sin nla + [k(z?2 — 1) + Az(k® — 1)]8 = 0.

A solution for a and B exists if the coefficient matrix vanishes. This requirement leads
to the following characteristic equation:

4.6) A2z2k% = [(2% — 1)® + 22222 + 4\%z%sinn)k? + %22 = 0.
Let k% = p. It is clear that there are two solutions M; and u, such that

(4.7) My, =1,

say lu; I <1and lu,|>1.

For every |z > 1 we are interested only in the two solutions k, = \/;: and
K, = —\/;Tl- since with k3 4 = i\//.1_2 the solution will not be in L,. Note that k, =
—Kk, and that |k | = Ik, [ <1.

Having found that we need only two of the four «’s, the solution must be of
the form

(4.8) Uiy = 2" N (! + b)),

4.9) Vi = z"e"k"(ﬁk"1 + 8ihy).

With these u}fk and v]'.fk Eqs. (4.4) and (4.5) are valid for k = «, and also for k =k,
if we replace « and 8 by 7y and 8, respectively. We then can write, using (4.4),

a 2ilzk  sin
(4.10) f;z _(22 - Dk, — Az(k? - 1)’
¥ 2idzk,sin 2iAzk  sin 1
(4.11) 5 -k —M0E -1 (@ - Dy e - 1)
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In view of (4.9) the boundary condition (4.2) becomes § + 6 = 0, or
“4.12) g =-6,
while the extrapolation (2.3) yields
ak, —z)* + vk, —2)* =0,
which is equivalent to (since k;, = —«,)
(4.13) a(k, —2)* +y(k, +2)* =0.
Eliminating «, 8, v and 8§ from (4.10) to (4.13), we get
(4.14) )\2221<‘1l + M\ - 2)(2? - 1)22K% -A2z% = 0.

If we now rewrite (4.6) with k = k, and eliminate k; between (4.14) and (4.6), we
get the following eighth-order algebraic equation for z:

4.15) agz® —a,z% +a,z* - a,2* +a, =0,
where

ag =a, =(1 —)\)2,

ag =a, =41 - 220) + 222 -0 +2* + 200 - 2)(2 - A%0),
@, =6-8\%0 + %02 + 2222 - )% - 2A* + N\ — 2)(6 — 4\%0),
6 =1+ 2sin’n.

We made a (numerical) parametric study of (4.15) with 0 <A <%, 1 <6 <3 and
for each z, IzI > 1, so found we computed k, from (4.14). We found no solution of
(4.15) with |zl > 1 such that the corresponding k, computed from (4.14) was smaller
than 1 in magnitude. This shows stability. A similar analysis shows that the M.L.-F.
for (4.1) with boundary scheme (2.4) is stable.
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