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On the SHASTé'X FCTaAlgorithm for the Equation
LU -
&+ = (olo)p) = 0
By Tsutomu Ikeda and Tomoyasu Nakagawa

Abstract. In recent years, Boris, Book and Hain have proposed a family of finite dif-
ference methods called FCT techniques for the Cauchy problem of the continuity equa-
tion. The purpose of this paper is to study the stability and convergence about the
SHASTA FCT algorithm, which is one of the basic schemes among many FCT techniques,
though not in its original form but a slightly modified one for our technical reason.
(Our numerical experiments indicate less distinction between the algorithm dealt with
here and the original SHASTA FCT one in terms of reproduction of sharp discontinu-
ities.) The main results are Theorems 1 and 2 concerning the Lw-stability and the

1 :
Lloc-convergence, respectively.

1. Introduction. There have been proposed many finite difference schemes for
the initial-value problem of the conservation law:

op 0
(D ri- -
ot * ox &) =0.

([s1, 71, (81, [11], [121, [13], [14], [18], [19], [20] among others.)

But high-order methods, Lax-Wendroff’s scheme for example, are known to
yield in some cases numerical solutions which approximate nonphysically relevant so-
lutions, that is, those which violate the entropy condition. The development of over-
shoot, undershoot, and excessive oscillation is another problem. On the other hand,
the solutions of some “positive” schemes converge to the generalized solution satisfy-
ing the entropy condition, but they are necessarily of first-order accuracy.

In recent years, Boris, Book, and Hain ([1], [2], [3], and [4]) have proposed
a family of finite difference methods called “the flux-corrected transport (FCT)” tech-
niques for the hyperbolic equation, which is one of the special cases of (1),

(2) a—p+i(v(p)'p)=0 (Ix] < o, t>0)
ot 0x
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1158 TSUTOMU IKEDA AND TOMOYASU NAKAGAWA
with the initial condition of
3) px, 0) = po(x) (Ix] < o).

For simplicity, we shall denote problem (2) with (3) by (CP).

The FCT technique consists of a finite difference scheme and a nonlinear anti-
diffusion operation. Given the numerical solution {p;’ Yi=o,+1,.., at time step ¢ =
nt, one calculates the temporary solution {7)}'“ j=0,+1,... by the specified differ-
ence scheme, then applies the antidiffusion operation to it to obtain { p;""l =0 £1,...
at time step t = (n + 1)r. The essential part of the technique is characterized
by the latter which removes excessive diffusion contained in the temporary solution
by the former, thus reproduces relatively sharp wave shapes. Thanks to this antidif-
fusion operation, solutions by the FCT technique have a distinguishing property which
cannot be expected by a sole use of finite difference schemes.

In their papers, they develop many FCT techniques and compare their methods
numerically with the two-step Lax-Wendroff scheme, the leap-frog scheme, and the
one-sided scheme in the case of square waves, and in addition they mention some ap-
plications to more complicated problems. Further, with the aid of Fourier analysis,
they investigate the amplitude and phase errors and the Gibbs phenomenon in the
special case where p(x) is a Fourier harmonic function and v(p) is a constant func-
tion. For this argument, however, they omit nonlinear characteristics of the antidif-
fusion operation.

The purpose of this paper is to study the stability and convergence about the
SHASTA FCT algorithm, one of the basic schemes among many FCT techniques, for
the full nonlinear problem (CP). (The term SHASTA stands for “SHarp And Smooth
Transport Algorithm™.) For technical purposes, we modify the original SHASTA
scheme slightly. And we reconstruct the FCT part so that it may be monotone. Nu-
merically, our version keeps the same property in the sharp reproduction of discon-
tinuities as that of the original one. Our assumptions are that v(p) is a smooth func-
tion of the single real variable p and that p,(x) is a bounded function, and we shall
further assume that p(x) is a measurable function having locally bounded variation
when we will deal with the convergence of solution. The main results are Theorems 1
and 2, which describe the stability in the L*-sense and the convergence of a subse-
quence to a generalized solution in the Lll0 c-sense, respectively.

2. SHASTA FCT Algorithm. We review here the SHAST A FCT algorithm,
which is slightly modified for our convenience. Conceptually, the FCT technique con-
sists of three operations: a iransport and a diffusion followed by an antidiffusion.
But in the present case the transport and diffusion are performed as a single finite
difference operation SHASTA. Let the half-space R x RY = {(x, £): — 00 <x < + oo,
t = 0} be covered by a grid defined by the straight lines

x=jh, t=kr,

where A and 7 are fixed real numbers, & runs over the nonnegative integers and j
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assumes all integral values. We use the following notations:
pf = by, k),  BF = B,Gh, kr),
pplx, 1) = pf  for jh<x <( + Dhand kr <t < (k + Dr.

o SHASTA. Denote 7/h by \. We introduce two real-valued functions E(&, 1)
and F(¢, n) of two real variables such that

@) Et, m) = Nu &) + vm)/(1 + W) = (@),
©) F(g, m) = Ig [(1 + B my* e — (1 —EE )l
The finite difference scheme SHASTA is defined in the form

(6) pp Tt = pf = F(o}, oy ) + F(oly, 0}).

This formula has a geometrical interpretation as in Figure 1.

(a)

n Trapezoids representing the shape

of fluid elements at t = nr.

-
X

(3j+1)h

(b) .
°3
Py P5 4 Trapezoids after "transport"
1 ] - . - +
: g Dj+l operation. The Oj+l and pj
: %l are determined so that the
: : relation
oL ; ¢
3-1 / i + - n _ n
; & i - Py + 0yp) (v vipg T v(Dj)T)
(3 1)—’! 1‘— (3+lEL| fe %
n n
v(pJ T V(OJ)T v(pfj1+1)T = oy * Dj+1)h'
ot o0 = PRI
(c) ] ] ]
pj 59*1 holds.

Trapezoids after "diffusion"
operation.

the ™1 is determined so

: o
X

that the shaded area in (c)

(3-1)h jh (3+L)h

is equal to the one in (b).

FIGURE 1
Geometrical interpretation of the SHASTA operation
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°© FCT. The right-hand side of (6) contains a diffusion term
(1/8)(pjy = 20 + pfy ) which is velocity-independent. The nonlinear antidiffusion
operation FCT to cancel this excessive diffusion is as follows:

+1 _ —n+1 _ +1 +1
(7) p]n - p]n ;'+1/2 +f}ri_1/2

Here, f]'_'ﬁ}z, which is the antidiffusion flux of our definition, must satisfy the follow-
ing conditions:
(a) There exists a positive-valued continuous function K(v,, v,, v5, v,) such
1 _ +1 “n+1 —n+l “n+ly . antl . +1 —Z7n+l _
ihat i = K@ 070 0 074 ) AR in which AZTS, = R
p}'“.
() SUP(y ) wy w3 wa)erd (K105, 03,0,)] =Ko < 1/8.
+1 . +1 +1
(©) |fir-l|-1/2| < Mm(lA}'_lnl, IA]'.'+3/2 D.
n+l | An+1 +1 _ e+l _
(d) If A7%L - ARFL <0, then £71 ], = 41, = 0.
(e) If pf ™1 <pff! (respectively ' *1 > oM, then pf' 1 < p;'++11 (respec-
tively p;"“ > p;'_,_+ll). B
Remarks. 1. Boris and Book introduced the explicit antidiffusion flux f3* 1/2

j
such that
m+1 Mi ‘An+1 1|An+l | n+1
f?+1/2 =g - Max |0, Min{( s j-1/20 g ' Si+1/2 ,S‘Aj+3/2

in which s denotes the sign of A]”: 11/2. But this does not satisfy the condition (e).
2. The restriction that K, < 1/8 is very important numerically, but we need
only that K, <1 in the following sections:

LEMMA 1. We have

n+l1l _ —n+1 e—n+1 n+1 —n+1 :
P = p; lfp]' = Max Pi—1 > Py ) or if

(®) _ _
prtt < Min(el 1, i,
n+l _—n+1 : +1 +1
) |} prrI< Mln(IA}’_l/2 [, |A;’+1/2|),
and
(10) Min(oh !, ot o) < pf P < Max(eP Y, Bf Y, o).

(The estimation (10) means that the operation (7) generates no new maxima or mini-
ma.)

Proof. Omitted.
Examples of the Antidiffusion Flux.
Example 1.

5 1 5
+1 .. ol Z oo +1  _ .
(11) f;"“/z = § - Max [0, Min <8 s A;'—l/z '3 |A7++11/2 [, 5 s A]'.l++31/2>:, ,

where s denotes the sign of A}’:llﬂ.
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Example 2.
1 _
(12) [ =1 1/2 - Min(1, o1, 1/2’ oy 3/2)’
where f'fl }2 is the explicit antidiffusion flux introduced by Boris and Book, and
+1 1 _
Wi+l 1 1ff’il/2 +f13/2‘0
Yy =

+1 +1 +1 +1 .
|A;1+1/2 + 2]}’:_1/2 |/|frill2 +f}’_'|_3/2| O'[hel‘WISe.

3. Stability. In what follows, we shall always assume that v(p) is a continuously
differentiable real-valued function of the single real variable p and that p,(x) is a
bounded function. We denote the infimum (respectively supremum) of p,(x) by s
(respectively S). Let V, s be the absolute maximum of dv(p)/dp in s < p < S.

LEMMA 2. Suppose that s < § < Sand s <n < S. Then we have the estimates

1 1 0oF
(13) — (&, ——<—(£,1n) <0
ag(é n) < z\an(é n) <
provided that
14) AV g(S —s + 4 Max(lsl, IS1)) + 2lu((s + S)/2)I1< 1.
(In the case of v(p) = v = constant, this inequality is written as X < 1/2v.)

Proof. For simplicity, we put p = V o(S —$)/2, ¢ = V; g Max(lsl, 1S1), and
r = lu((s + S)/2)|. Then the condition (14) is equivalent to

(14h 2Ap +2g +r] <1
We have
oF ) )
= +E) MO % W
0§ 1 + Av(m) — Av(§) on 1+ Av(n) — Aw(g)

Therefore, the partial derivatives 0F/9¢ and 0F/dn are written in the form

(15) aF 1+E [(1 +E) + 20(E) {Q+EE+Q —E)n}T

o 8 1+ W) — \(E)
F 1-E 206(n) §
6 e a-p-—0 ol
(16) o S [(1 E) L+ o) - )\v(g){( TEE+(1- E)n}-

Put X =% — (), Y =% + du(n), 4 = A8, B = A0(Em, C = Nn)§, and D =
\o(n)n, respectively. By virtue of the fact that 1 + £ =2Y/(X + Y)and 1 —E =
2X/(X + Y), (15) and (16) are rewritten as

oF

17) £=2_(X+ vy [(Y + 2B)X + (Y + 24)Y],
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(18) oo X [(X - 2D)X + (X - 20)Y].
m 2x+71)3

Hence, the family of inequalities
0<L-NW-NM<X<KL+NW+tN,
SU-N-NSY<L+NW+N,
0<1-2w<X+7Y,
lA1<N, IBI<)N, ICI<)N, IDI<)q,

implies that 3F/d¢ = 0 and 9F/dn < 0 under the condition of (14"). If we regard X,
Y, A, B, C, and D as independent variables, the right-hand side of (17) (respectively
(18)) is monotone nondecreasing in 4 and B (respectively C and D). Therefore, we
have, under the restriction of (14"),

oF 1 Y+ <+)\p+)\r><l+ + 2\ +7\r>
082 wayvy 2\2 WM

F_ 1 XX +2ag) _ 141 1 1
—>--. s ()t wt g tN) >,
n 2 X+Y)P 2 2 2

l\)I'—‘

as Y(Y + 20q)/(X + Y)? (respectively X(X + 2)\q)/(X + Y)?) is monotone decreas-
ing in X (respectively Y) and monotone nondecreasing in Y (respectively X). This
completes the proof. Q.E.D.

On account of the above lemma, the SHASTA is a positive finite difference
scheme if (14) is observed. Moreover, the antidiffusion operation generates no new
maxima or minima, so we obtain the following theorem.

THEOREM 1. Under the condition of (14) the SHASTA FCT algorithm is L™-
stable, and it holds that

(19) inf po(x) < pf < sup py(x)
for any j and nonnegative k.

4. Convergence of a Subsequence of {p,(x, £)}. The purpose of this section is
to show that there exists a subsequence of {p,(x, )} tending to one of the general-
ized solutions to (CP) in the L] _
always assume that p, is a measurable function having locally bounded variation. We
fix X to satisfy (14). Let us use the notation Vari(X; v) to denote the total variation
in [-X, X] of v = v(x) which is defined in R having locally bounded variation.

Now, the following fact is well known.

-sense under some assumptions. Hereafter, we shall

LeEMMA 3 (OLEINIK [15]). Let {h, } be a sequence such that

h,>0 forn=1,2,...,1lim h, =0.

n—oo
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Suppose that the sequence of real-valued functions {uhn(x, N},=1 2. defined in
R x R™ satisfies the following conditions:

() Each of {up,(x, D}y=1 5. is a bounded measurable function, and the ab-
solute values of uhn(x, t) are uniformly bounded in h,,.

(ii) Each of {u,,n(x, z‘)}n=1,2 .. isof locally bounded variation as a function
of x, and for any fixed T > 0 and X > 0 the total variations Vari(X; uhn(', 1)) are
uniformly bounded in h,, and 0 <t < T.

(iii) For arbitrary fixed T >0 and X > 0, there exists a constant C independent
of h,, so that the estimation

X . ’
f_X lp, (x, £) = up,, (x, NHldx <C-(t-t'l +h,)

holds forany 0 <t <Tand 0 <t <T.

Then, there exists a pair of a subsequence { uh;n(x, Dlm=12,.. of
{uhn(x, 1) th=1,,. and a bounded measurable function u(x, t), which satisfies the
following properties:

G(v) luex, Bl < supm’x:’t'luh;n(x', .

) lim,,, o (X 1pn @& ) —p(x, Hldx =0 if O<t<T forany fixed T>
0and X > 0.

(Vi) lim,, .. i (% \pn (x, 1) = p(x, Ol dxdt =0 for any fixed T > 0 and
X >0.

Proof. Omitted.

In the present case we see, as a result of Theorem 1, that the sequence {p,(x, £)}
satisfies the condition (i) in Lemma 3. Let us establish the conditions (ii) and (iii) to
{ph(x, H}

LEmMA 4. For fixed T > 0 and X > 0, we have the estimate

(20) g k
S ok, — pfl < Vari(X + 2T/X; py),
=,

where Jh < X and 0 < kr <T.
Proof. From (d) and (e) it follows that

J—1

k _ .k k —k k _ Tk
.Zjlpj+1 pj|<|p_1 |+ Z Ip]+l p].|+|pJ oFl.
= ]—‘—

Hence, we obtain E]__J |p]’-‘+l - p]’.‘l < E].J=_J_1 I,T)]'.‘+1 - /3]’.‘| by (9). We put w]’-‘ =
pj 1 — o and wf = p] A p]’.c . From (6) we obtain, by applying the mean value

theorem,

oF
—k _ k—1 k—
Wi _[ (1+1/2’p1+1 (p] 1’\1’1+1/2)]

oF 1
(¢_1/2,p] ) TWiig + __(p]+1, ]+3/2)

@n
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where ¢¥~ +1 /2 and Vi i ! /2 are two intermediate values between p}‘ ! and /ol"ﬂ1 The

three coefficients of the w]k ! are nonnegative due to Lemma 2. Therefore, it holds

that
J J+1 1
. Z Iw I < Z Iw]. |
j=-J-1 j==J=2
which results in
J-1 i . J+1
> ij+1—pj|< > |p]+l—-p] 1y,
j=—J j=—J—2

By continuing in this way &k times, we obtain the desired estimate

s JH2k-1
> ok -0} LR 1071 = pp | < Vari(X +2T/; p,). QE.D.
j==J i=—J—2k
LEMMA 5. Fix T > 0 and X > 0 arbitrary. Then, if 0 <Ilr < kr < T and Jh
< X, we have
J-1

(22) > lpF—plln<C- (k~-Dh,
j==J

where the constant C is defined by C = (1 + 2K,)) - Vari(X + 2T/X; p).

Proof. By making use of the triangle inequality we have

= +1 = +1 +1 +1 _ n
Z |p” o7l < > Ip” —p” | + Z Ip” -0 l.
j==J j==J ==J

The first term of the right-hand side is estimated as

I TR +1 +1 = +1
A n n

X o] ; |<.Z AN f._1/2|<2'z 7]

j=—J j=—J j=—J-1

J
—n+1 +1 n _ .n
<2K, Z Ip]+1 " I < 2K, > ij+1 p].I
j=—J-1 j==J-2

in the same way as in the proof of Lemma 4. On the other hand, from (6) we obtain,
by applying the mean value theorem and Lemma 2,

l
it —p?l< 5 1oty el + = lp, -yl
and this results in
J-1 J-1
> Ip"+l < ¥ Ip;’+l-p]’~’|.
j=—J j=—J—1
Therefore, we have
= n+1 n J n n
>t =pflh< (1 +2Kg) X lefi, —pflh
j==J j==J-2

< (1 + 2K,) Vari(X + 2T/x; pg)h



ON THE SHASTA FCT ALGORITHM 1165

by Lemma 4 forn =11+ 1,...,k— 1. This completes the proof. Q.E.D.

Lemma 4 (respectively Lemma 5) assures that { p,(x, #)} satisfies the condition
(ii) (respectively (iii)) in Lemma 3. Hence, by virtue of Lemma 3, there exists a pair
of a subsequence {p,(x, £)} and the limit function p*(x, ) satisfying the properties
(iv), (v), and (vi). Moreover, it is concluded that this limit function is one of the
generalized solutions to (CP), that is, it holds that

ff [o*¢, + v(p*)p*{, ] dxdt + L_o potdx =0

>0 -

for all smooth functions ¢ = ¢(x, ) having compact support. (See Lax-Wendroff’s Theo-
rem [12]. This theorem is applicable to the present case since the SHASTA FCT al-

gorithm is in conservation form and consistent with (CP).) Thus, we obtain the main
theorem.

THEOREM 2. One can choose from {p,(x, )} a subsequence { pp(x, t)} which
converges to a generalized solution to (CP) in Lll0 R x R"1). Hence, the SHASTA
FCT solution is convergent provided that the generalized solution to (CP) exists

uniquely.

Proof. The first part has been verified already. The second part is shown by
means of reduction to absurdity. Q.E.D.

It is shown that the solution satisfying the entropy condition in Kruzkov’s sense
exists uniquely. (See KruZzkov [10].) Since the physically relevant solution must
satisfy the entropy condition, it is important not only theoretically but also physically
and practically whether or not the limit function of the SHASTA FCT algorithm satis-
fies the entropy condition. In some numerical experiments, the SHASTA FCT seems
to converge to the solution to (CP) satisfying the entropy condition, but we cannot
yet prove whether or not it is true. However, if the calculation would be done without
the FCT operation, the limit of the numerical solutions with the SHASTA only is the
physically relevant solution. This is easily shown by a similar argument as in the case
of the SHASTA FCT on the ground that the SHASTA is a positive scheme. (See [9].)
By observing this fact, we may introduce the following technical modification into the
FCT operation.

Let (%) be a function of 4 satisfying the condition that

0<~vyh)<1 and Ilim y() =0,
h—> oo
and let NIT'I }2 be

T+l +1
i 11/2 =MW1

Then, the modified antidiffusion is

' n+l _ =n+l1 _ pn+l n+1
(7) p] _p] fl+1/2+ ]',_1/2.

Then, we have

~

THEOREM 3. The solution with the SHASTA FCT algorithm with f]'fl 1/2 in
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place of ]'fl }2 is convergent and the limit function is the physically relevant solution

to (CP). O

Remark. The convergence rate of (%) as 2 4 0 may be arbitrarily slow.

Proof of Theorem 3. Let {p,(x, t)} be the sequence of finite difference solu-
tions with the SHASTA only. By Lemma 6 which follows, it holds that, for any fixed
T>0and X >0,

J—1 J—1 J—1
bl _ ontl fentl _—nl “n+1 _ n+1
Z |57 P lh < Z i pi T h + Z ij pi A
j==J j==J j==J
J A
< ) Ip]'.' - p;'ih + 2y(h)K, Vari(X + 2T/\; po)h
=—J—1

if Jh <X and (n + 1)r <T. The above estimation implies that p, tends to p, as i
tends to 0, that is,

X ~
ii?:) f—x lp,(x, £) = p,(x, Hldx =0 ift<T,

tim 1% — 5ux, Ol dxdt = 0
hlln; 0 Jd_x pp(x, 1) = pp(x, Ol dxdt =

for arbitrary fixed 7 > 0 and X > 0. And so, we obtain the proof. Q.E.D.
LeEmMMA 6 (B. KEYFITZ [9]). If the finite difference scheme

u}’“ = H@W} o, . .. Ul y)

is positive and in conservation form, then it holds that

J—1 J+k—1

> Iu}’“—w}'“l< > Iu]'.'—w]’.’l
j=—T j=—J—k

for any {u]’-’} and any {w}’ }.
Proof. Omitted.

5. Numerical Examples. We compare numerically the algorithm defined by (6),
(7), and (11), which will be denoted by SHASTA-FCT,, with original SHASTA FCT
algorithm. Test problems are the linear equation dp/ot + 9p/ox = 0 and the Burgers
equation dp/dt + 3(p2/2)/dx = 0. Figures 2 to 5 show the profiles of the computed
solutions. We remark that

(1) There is less distinction between the numerical solution by SHASTA-FCT, and
the solution by the original SHASTA FCT algorithm.

(2) The numerical solutions by both FCT algorithms are better than the ones by
Lax-Wendroff’s scheme.

(3) If the condition of (14) is not satisfied, the SHASTA FCT algorithms yield
in some cases numerical solutions which are far off the exact solutions. (See Figure

3(b).)
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A=0.45

t = 270

)

280

(¢
10

20 40 60 260
FIGURE 2

Profiles of numerical solutions for the linear problem:
op O0p 2.0 for lx —20.51 <10,
po(x) =

—+—=0,
o ax 0.5 otherwise.

The fine lines are the exact solution and the thick lines consisting of piecewise

linear segments are the interpolated solution by SHASTA-FCT,. The dots are

the values computed by the original SHASTA FCT algorithm.

300 320

18 t 270

JA\

~

N

—

»
320

__~L§v7

280

—{t
] X
20 40 300

60 260

FIGURE 3
Profiles of numerical solutions by Lax-Wendroff’s scheme for the same problem
as in Figure 2. The fine lines are the exact solution and the thick lines are the
solution computed by Lax-Wendroff’s scheme.

0 A A=0.15

2 A———T t =9 t =72 »—A-: t = 135

| L_q L

0 T T T T T T it T v »

20 24 96 100 104 176 180 x
FIGURE 4
Profiles of numerical solutions for the nonlinear problem:

op 9 [p? 2.0 for x < 10.5,
—_— — — ) = 0, po(x) = {
or ox \ 2 0.5 forx > 10.5.

See Figure 2 for explanation of these curves.

1167
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o A (a) A =0.15
t = 90
2 t =18
1
o] . v 35 -+ . »
40 80 40 80 120 160 200 X
o A
o =
(b) A 0.45 ¢ = 90
2 t =18
1
o - v T v —4f v - T v T v T v >
40 80 40 80 120 160 200 x

FIGURE 5
Profiles of numerical solutions for the nonlinear problem:

p 0 [/p? 0.5 for x < 20.5,
- + N - = 09 po(x) ={
ar ox \2 2.0 forx >20.5,

under the two different values of the mesh ratio A = 7/h. See Figure 2 for expla-
nation of these curves. The condition of (14) is written as A < 1/6 in this case.
Figure 5(b) shows that the SHASTA FCT algorithm yields the solution far off the
exact one if (14) is violated.
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