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A Finite Difference Scheme for a System of
Two Conservation Laws with Artificial Viscosity*

By David Hoff

Abstract. In this paper we analyze an implicit finite difference scheme for the mixed
initial-value Dirichlet problem for a system of two conservation laws with artificial vis-
cosity. The system we consider is a model for\\isentropic flow in one space dimension.
First, we show that, under certain conditions on the mesh, the scheme is stable in the
sense that it possesses an invariant set (defined by the so-called Riemann invariants).
We obtain this result as an extension of the same stability theorem for the Lax-
Friedrichs scheme in the inviscid case. Second, we show that the approximants re-
main bounded and, in fact, decay to the boundary values as t —> . Finally, we ob-
tain two O(sz) error bounds; the first grows exponentially in time while the second,
which requires that the data have small oscillation, is independent of time.

1. Introduction. In this paper we analyze certain finite difference schemes for
the system of equations

u, +pQ@), = du,,

(1.1)

v, —u, = dv,, for(x, )€ (0, L) x (0, *)
with data
1.2) u(x, 0) = ug(x),  vx, 0) = vy(x)

and boundary conditions

u(x, 1) =0,

(1.3)
u(x, ) =v, >0 forx=0,L.

If d = 0, then (1.1) describes one-dimensional isentropic gas motion in which u
is the velocity, 1/v is the density, and p(v) is the pressure. Putting d > 0 has the
effect of artificially smoothing out discontinuities. Except for the first result of
Section 2, we shall require that d > 0.

p(v) is to be C? and positive for v positive and is assumed to satisfy

(1.4) p'<0, p">0 and lim V’Ip'()l=
v—)“
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1172 DAVID HOFF

For example, we could take p(v) = kv~7, where £ > 0 and vy < 2.
Denote the so-called Riemann invariants by

ro(u,v) =u +f: V-p'(s) ds and

(1.5)
s, v) =u —fv V-p'(s)ds.
Then the set
(1.6) S, ={(u, v): 5w, v) <O< r.(u, v)}

is invariant for (1.1)—(1.3). This means that if the data and boundary values are in
S, for all x, then any smooth solution is also in S, for all x and 7, as long as it is de-
fined. For a proof see [1, p. 385].

Notice that, by (1.4), S, is convex. Also, if ¢’ <c¢, then S, C interior (S,).
See Figure 1.

FIGURE 1

So for appropriate data and boundary values, v(x, ) will be bounded below and
the nonlinear term p(v) will be under control. If we assume in addition that d > 0,
then the necessary a priori bounds on the solution can be derived which can be used
to show that a smooth solution of (1.1)—(1.3) exists for all time. See [2].

We therefore take u,, and v, to be smooth functions satisfying the boundary

conditions (1.3) such that
“o(x)
€S,
V()

for all x and for some ¢ > 0, which will be fixed throughout. It follows then that
[vo ] €5, also.
Now let

u p(v) — p(vy) 0 4o
(1.7) U=[ ], F(U)=[ ], Ub=[ and Uo=[ ]
v —u v, Vo

Then (1.1)—(1.3) can be rewritten in the form
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U, =dU,, —F(U)x,
U(x, 0) = Uy(x),
(1.8) o
Ux, )= U, = [ ] forx =0, L.
Up

We construct a finite difference scheme as follows. Let x, = kAx for k = 0,
...,N+ 1, where

1.9) WV + 1)Ax = L.
And let t, = nAt forn =0, 1,.... We shall approximate the solution
Ulxy, 1,) Uy
. by the vector U " = € RN,
Ulxy, t,) Uy

where, in analogy with (1.8), U” is computed from the finite difference scheme

ur - un—'l
(1.10 ur=-ut o
) ~ L™

with [ (U) being defined by

d
111 L), = Z}?(U"“ —2U, +U,_,) +§—}§;[F(Uk_1)—F(Uk+l)].

We make the convention that U, = Uy, ; = U, so that F(Uy) = F(Uy,,) = 0.
Notice that | (U) is defined only if each v-component of U is positive. For our pur-
poses it is sufficient to regard | as mapping S&N into R2Y.

In Section 2 we prove that, under appropriate mesh conditions, (1.10) has a
unique solution " € Sév provided that "~ 1 € Sév . Thus, the approximants exist
for all n. In the course of doing this, we also establish the invariance of Siv for the
following auxiliary schemes (in reverse order):

(1.12) :%U(t) = L(U) (semidiscrete);
—(n-1
(1.13) u-ur AL: = LU 1Y) (explicit);

and for the conservation-law case d = 0,

ur - wurs! + un-l FUR—Y) - F(URL|

(1.14) At = L™ 2Ax

Also in Section 2 we discuss briefly a practical method for computing the solution of
(1.10).
In Section 3 we imitate the energy estimates of [2] and show that the solution
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of (1.10) decays to U, uniformly in x, exponentially in time. In Section 4 we derive
two O(Ax?) error estimates in the L2-norm: the first grows exponentially in time
and the second, proved under the hypothesis that the set {vy(x): x € [0, L]} has
small diameter, is independent of time. The result of Section 3 then shows that the
second error estimate eventually becomes applicable.

2. The Invariance of Sév . In this section we prove that, under appropriate con-
ditions on the mesh, Sév is invariant for each of the schemes (1.10), (1.12)—(1.14).
This result is most easily established for the explicit scheme (1.14), in which the compu-
tation of U involves the values of "' at only two nodes. Fortunately, the in-
variance of Sév for (1.14) will lead in a natural way to the same invariance for the
other schemes.

We denote the mesh ratios by

At At
= — d = —_—
2.1) « Ax and § Ax?

THEOREM 2.1. Ifa < l/\/——p—'(_c—), then Sév is invariant for (1.14).
Proof. We introduce the function U: S2 — R? by
U(U,, Uy) = £ (U, + U,) + £ [RU,) - FU,)].
More specifically, letting U; = [‘;i ] and U = [g 1,

WUy, Uy) = 3@y +u) + % [p(,) ~ p,)].
2)

WU, Up) = 20y +0) + $ Gy —uy).
The scheme (1.14) may therefore be written
Up = OURZ1, Uy,
and the assertion of the theorem is that U,, U, € S, implies U(U,, U,) € S,
By way of preliminaries, we have from (1.4) and our hypothesis on « that

2.3) av/—-p'() <1 forc<v,
with equality only if v = ¢. Also by (1.4),

(24) v, <v, implies v~-p'(v,) >vV-P'©,)

Finally, we define

@.5) s =[ : V=-p'(s) ds

so that
S, = 3 [u]: —gW)<u <g(v)$
v

(see (1.5)—(1.6)).
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The general case of the theorem will follow easily from the special case that U,
U, € 3S,. This special case is proved in Steps I-IV below, and is extended to the
general case in Steps V and VI.

Step 1. The theorem is true ifu; = gv),i=1, 2.

To prove this, fix U, = [ 1 ] and allow U, = [g(”)] to vary as v increases

from ¢. Then U(U 1> Uy) is the curve U(v) in R? given by

a40) = 1 [50,) +e@)] +2 [pe,) - o),
(2.6) 1 .
v(v) = 5 (v, +v) + 5 [s() — &(v,)].

We need to show that ¢ < v implies U(v) € S,. This will follow from the follow-
ing four facts: (See Figure 2.)

u

FIGURE 2

@@ UoES,

(b) ¢<wv <wv, implies that U(v) is rising more rapidly than the curve u = g)
at the same value of v;

(© Uw)=U ~

(d) v, <v implies that U(v) is rising less rapidly than the curve u = g(v) at the
same value of v.

Proof of (b). Compute from (2.5) and (2.6)

L1 0~ 290 =V D (L +3VT®)

dv
dv_ 1, o /-
so that
@7 % (T) = V=70

(b) is proved by comparing the number in (2.7) with the slope of the curve u =

8(v) at U, which by (2.5) is v/—p'(v). (b) thus asserts that v/=p'(v) = /= p'(v), and
this will follow from (2.4) if we can show that

2.8) v<v().
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From (2.6) we have
- _1 a v ;
v() = >, +v) + §fv V=7 () ds
1

=%(vl + v) +%\/—_?(E)(v—vl) >%(vl + v) +%—(v—vl) =v

by (2.3) and the hypothesis of (b) that v — v, < 0. This establishes (2.8) and proves (b).
Proof of (a). Knowing that (b) is true, we need only show that U(c) is not
below the curve u = — g(v). Compute from (2.6)

i) = 550 +5 [ ds

=320 -5 VPO VIR ds

(2 2‘/_”—(—)>f ~P()ds >0

by (2.3). And from (2.8), ¢ < v(c). Thus, U(c) € S, (see Figure 2).

(c) is obvious, and (d) is proved just like (b) but with certain inequalities re-
versed.

Step II. The theorem is true if u; = g(v,) and u, = —g(v,).

Again we fix U, [g( l)] and vary U, = [“8(] for ¢ <v to obtain a curve
U(U,, U,) = U(v) given by

) = 5 ) +v) ~ 5 [¢@) + &),

2.9 3 1
@) = 5 [s0,) ~ g®)] +3 [p@,) ~ PO
Notice that U(c) in this case coincides with the U(c) of Step I and is, therefore,
in §,. Step II will follow by establishing the existence of v* > ¢ such that
(@) ¢ <v<v* implies du(Uv))/dv <-g'(v(v));
() U*)ES,;
(¢) v* <v implies —g'(v(v)) < du(U(v))/dv <O0. (See Figure 3.)

u

u = g(v)
U (c)
v
/
g (v*)
fJ(v)
u = -g(v)
FIGURE 3

Let f(v) = v + ag(v). Then v* is defined as the unique solution of
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(2.10) f@*) = v, —ag(,).

To see that there is such a v* notice that f'(v) > 0, f(c) = ¢, f (°°) = oo, and from
(2.5) and (2.3)

v, —ag) =v; —avV-p'E @, )=, -, —)=c
Just as in Step I we compute
@11) 2 Gw) = - V.

Proof of (a). (a) therefore asserts that /= p'(v) = v/~ p'(v(v)) for v < v*. This
inequality will follow from (2.4) if we can show that

(2.12) v < V().

To do this notice that v < v* implies f(v) < f(v*) so that v + ag(v) < v, —og(v,).
Halve this inequality and add v to obtain

v <20 +,) -2 g0, +20)] = V0.

This establishes (2.12) and proves (a). The proof of (c) is similar.

Proof of (b). Since (a) is true and since U(c) € S .» we need only show that
U(v*) is above the curve u = — g(u). That is, we need to prove that u (v*) >
—&g(v(v*)). It follows easily from (2.9) and (2.10) that v(v*) = v*. The require-
ment then is that

(2.13) u(v*) = —gv*).

To prove this, substitute

(2.14) g0) = —g@*) + L@, -v*)

(this is (2.10)) into (2.9) to obtain

TL*) = —20*) + 2= [0 —v*) + 2(p,) - PE)]

= —g0*) +3= [1 + 20 ©, —v*) > -z0%)

by (2.3) and the fact that v, > v*, which is obvious from (2.14). Thus, (2.13) holds,
(b) is proved, and Step II is completed.

Steps 1l and IV. These are the same as Steps I and II but with g replaced by
— g in the hypotheses. The proofs are similar and so are omitted.

Step V. The theorem is true if U, € 35S,.

To prove this, fix U; € 8S, and let U, = [v“2] with u varying between —g(v,)
and g(v,) to obtain a curve U(U,, U,) = U(u). From (2.2) this curve is a line whose
endpoints, by Steps I-1V, are in S,. The whole line is in S, because S, is convex.

Step V1. The general case. Fix U, €S, and let U 1 = [v“l] with u varying
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between —g(v,) and g(v,). Again the resulting curve U(u) = U(U,, U,) is a line whose
endpoints, by Step V, are in S,. Hence, so is the whole line. O

Analogous one-sided estimates for the scheme (1.14) for more general conserva-
tion systems are derived in [3]. There the condition on « is more stringent than that
of Theorem 2.1, which is the usual Courant-Friedrichs-Lewy condition.

We turn now to the other schemes discussed in Section 1, assuming that d > 0.

COROLLARY 1. If B <1/2d and Ax <2d//—p'(c), then SY is invariant for
the explicit scheme (1.13).

Proof. Using the definition of L, (1.11), (1.13) can be written

Up = Up~" +Bd(Ups — 20771 + Upm D + S FRT) - R

_ 1 _ _ Ax -
— (- 2pa)U " + 2Bd[§ st +Upth + st - Fr ] .
If we assume by induction that U;“l € S, for all k, then the brackets is in S, by the
theorem and our hypothesis on Ax. The assumption about § then shows that U} is
a convex combination of points of S,. O

COROLLARY 2. If Ax < 2d/\/-p'(c), then Sév is invariant for the semidiscrete
scheme (1.12).

Proof. (1.13) is Euler’s method for the o.d.e. (1.12). O
Before extending this result to the scheme of interest, (1.10), we introduce the
following notation. For U € Siv define

P = (U = g + [, NP ds, and

(2.15) ¢
$EU) = 5, =, = [ VP9 as.

Then

(2.16) SN ={u: sfy<o<rkU)fork=1,...,N}

see (1.6).

We shall require the following technical lemma.

LEMMA. Assume that Ax < 2d/r/—p'(c). Let U € S and suppose that r(U)
=0 (or s¥(U) = 0) for some k. Then

(VrkU), LUP =0 (or <vskU), LU <0).
(Here V is the gradient with respect to U, and {, ) is the usual inner product on R?*N)

Proof. Let U(f) be the solution of the semidiscrete scheme (1.12) with (0) =
U. Then for small positive ¢, U(¢) € Siv by Corollary 2 above, so that 0 < rf(U(t))
for such t. From Taylor’s theorem, then,

0 <rkU@) = rk) + t<vrk), LUy +o0@?).



A FINITE DIFFERENCE SCHEME 1179

Since r¥(U) = 0, the result follows. The proof is similar in the case that sk =0. 0O
If f is a real-valued function of a vector U, denote by Hf the Hessian matrix of

f with respect to . A simple computation then shows that

(2.17) Hrc" <0 <Hs§.

The following theorem is the main result of this section.

THEOREM 2.2. Assume that Ax < 2d\/— p'(c) and that o < [max(1, —p'(c))] ~*
Then given I"~! € Sév , there is a unique U™ € Sév solving the implicit scheme (1.10)

Proof. We attempt to solve
(2.18) Um=u""'+rLU®M)
for r € [0, At] by integrating the o.d.e.
@19) [ U] G U@ = LUE), O = un

(/| is the Jacobian matrix of [ with respect to U).

It is obvious that (2.19) has a solution for 7 near 0. If the solution fails to exist
up to 7 = At, then one of the following must occur:

(a) U(7) exits the set on which L is defined and Lipschitz (some v-component
of U(r) approaches 0);

(b) 17— 7J fails to be invertible;

(¢) [U(7)| becomes infinite.

(a) is precluded by showing that, in fact, U(7) € Sf,v , which we now do. Tempo
rarily assume that

(2.20) Ax < 2d/\/-D'(c) -

If U(7) does not remain in S%, then for some 7, > 0 and for some &, r¥(U(,))
=0 (or s¥(U(74)) = 0) with r¥(U (7, + €)) <O (or s¥(U (7, + €)) > 0) for small
positive e. We shall consider only the first case. It is then an easy matter to show
that there is a ¢; <c¢ with

2.21) Ax <2d/J-p'(c;)

(possible by (2.20)) and a 7, > 0 with rfl(u (7,)) = 0; see Figure 4.

FIGURE 4
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We would then have from (2.17) and (2.18) that

'cl(U"'1)=r UO) <rf (Ur) = 7y (Vrg (U(r), LU

But r (U(TI)) 0, and the lemma applied to U(7,) with ¢ replaced by ¢, (this is where
we use (2 21)) shows that 7 (U”' 1y < 0. This is false because since U" le SN
r¥(U™=1) > 0; and this 1mp11es that r, (U"’l) > 0; see Figure 4.
Thus, U(7) € SN as long as it is defmed The strict inequality (2.20) can be re-
moved by continuity.
For (b) define the linear operators 8 and 62 on R2" by

(5U)k= Uk_l—uk_H al‘ld (8 U)k uk+1 2uk+uk_1.
Then from its definition, (1.11), L can be written
= 424 L
L) pwe: 8°u TAx SF(U),
where F(U), = F(U,). Thus,

Jo(= —i 82 + 575 87 (U)

and
I—TJL(U)=<1—dZ;—2 a2>[ —2—A-<1 d-——6 >—1(8JF(U))].

From [4, p. 202] it follows that the symmetric operator / — d(7/Ax?)82 is not only
invertible, but also that the norm of its inverse is strictly less than 1 for 7 > 0. It will
follow then that I — 7J,(U) is invertible with the norm of its inverse bounded inde-
pendently of U € Sf,v , if we can show that

(2:22) —2Z—x 187 (DI < 1

forr< Atand U € SN. Now, |J; (U)I? is the spectral radius of Je (U (U). Com-
puting from (1.7), the latter matrix turns out to be a block diagonal matrix whose

typical diagonal entry is
p '(vk)2 0
I (U e (U k)t = 0 .

1

Thus, [Jp(U)l = max(1, — p'(v,)) < max(1, —p'(c)), if U € SN (2.22) then follows
by our hypothesis on @ = A#/Ax and the fact that |§| < 2, which is obvious from
Gerschgorin’s theorem.

Finally, (c) is precluded by observing that [(U/) is of the order of U; and since
[ — 7J,(U)] ! is uniformly bounded in S év , it follows from (2.19) that U (7) could
grow at most exponentially.

Thus, (2.19) is integrable for 7 up to At, and U" = U(A?) provides a solution
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of the implicit equation (1.10). If {/” is another solution in S CI,V , then subtracting, we
obtain

0= (U" - U™y — At[L(U™) = L(U™)]
o n_ (n
=[1—5d52—581](u V™
o — n _ (yn
—a- 5d52)[1—5(1—3d52) laJ](u vm),

where J = J; (U") for some U' € S¥ (note that F is nonlinear only in v so that the
mean-value theorem applies). Above we argued that the matrix multiplying (U" — /™)
is invertible, so that U” — V" =0. O

We now consider the problem of implementing (1.10). That is, given " ~! €
Sév , how do we compute the solution U” of

(2.23) um = U= + ArL(U™?

The simplest method would be the following fixed point iteration. Write Af[ =
Bds? + a8F2 and compute

u(m) — un—l + BdaZu(m) + % 8F(u(m—l)),

or
(2.24) - ﬁd82)u(m) =yr-! + 92‘.8F(u(m—1))’

where presumably U(®) = (/”~1. Notice that the computation of U™ involves only
the solution of linear equations and that the relevant matrix is fixed. Furthermore,
if « is sufficiently small, the iteration function of (2.24) will be a contraction. In fact,
the required condition on « is precisely the hypothesis of Theroem 2.2, as a simple
computation will show. We would, therefore, expect the U ™) to converge to a vector
U™ which by continuity solves (2.23).

There is a difficulty with all of this, however. The condition & < [max(1,—p'(c))] !
does guarantee that the iteration function of (2.24) has Lipschitz constant less than 1,
but only for arguments U which are in Sév . And we do not know that the iterants
U remain in SN,

One way of circumventing this difficulty is the following. Define
p(v), c<v,

Pl = p(c) +p'(0)(v—0), v<c

b

FIGURE 5
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Now let E f, and TS‘ZV be just as in (1.7), (1.6), and (1.11), but with p replaced by 7.
If o < [max(1, —p'(c))] ~!, then a < [max(1, — p '(v))] ~*! for all v, so that the iter-
ation function of (2.24), with L replaced by ~L, is a contraction for all arguments. If
we compute the U with 7: instead of [, then, we are guaranteed that uem —

u", where U" = 4"~ + AtI(U"). Now apply Theorem 2.2 to conclude that (I” €
:S:;N (the requirement that p € C? in Theorem 2.2 can be removed by a limiting process).
But p and P agree for ¢ < v so that Sf,v = :S\"CN and, in fact, " € Sév. But then

L™ = I(U”) so that (" satisfies the desired equation U™ = U"~! + ArL(U™).

3. Energy Estimates. In this section we show that, under the stability conditions

2d
V-r'(e)
the solution of the scheme (1.10) remains bounded and, in fact, decays to the bound-
ary values exponentially as ¢ — o. This knowledge will be important for the applica-

3.1 a < [max(l, —=p'(c)] 7}, Ax<

tion of the error estimates of Section 4. Our method of proof is essentially the dis-
crete version of the technique employed in [2].
It will be convenient to rewrite the difference equation (1.10) in the following

way. Let
n n
uy Y
u" =\ and v" =
n
Uy Uy

so that the " of Section 1 and Section 2 can be written

ur = [, v, ..., uy, yl%
(1.10) then becomes
(3.2) W =u" !+ BdAU™ + %D(pb -p"),
(3.3) V' ="+ BAAQ” — vy) + %Du".

Here A and D are the N x /N matrices

-2 1 0 0 1 0
A= 1 . . ' 1 and D = -1 . . e 1
0 1 =2 0 -1 0

and v,, p, and p" are the N-vectors
Uy p(vb) p(v?)
v, = s Py = : , and p" = : ,

v, p(vy) PR

(It will be clear from the context whether v, is in R or RM)
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Notice that A4 and D are O(Ax?) approximations to d?/dx? and d/dx, re-
spectively, only for functions satisfying zero Dirichlet boundary conditions. This
accounts for the presence of v, and p, in (3.2) and (3.3).

Henceforth, (-, *) and || will denote the usual inner product and 12-norm on
RN, respectively. Also, the letter K with or without a subscript will denote a positive
constant which depends only on the parameters and data appearing in (1.1)—(1.3),
but not on X, ¢, or the mesh parameters.

We shall require the following technical facts.

LEMMA. Let wand z be in RY with w; = z; = 0 fori = 0and N + 1. Then

N
(34 (Aw, 2) == 3 W1 = Wi Gy ~ 20),
k=0
N
(3.5) IDwi? <4 3 (Wi —w)? = —&Kdw, w),
k=0
N (Wi _Wk>2 1/2
(3.6) (wl <L[; ('T ’
k=0
3.7 (Aw, wy < - L Iwl?Ax?,
L2
(3.8) —Aw, w)y Ax? < L2|Aw|?.
N 12 N w - w 2 1/2
(3.9) w2 < 2[2 w,iAx] [Z <_’°_+1A_1‘> Ax] .
k=1 k=0 X i

The proofs are elementary and so are omitted.
Define the discrete energies

E" =L unpax + f U(") Ax
2 k=1 4 ,
where
v = [ [p,) - p(9)] ds >0;
Yp

and

s> [(ﬁ«j_z;“ﬁ)z +<ﬁ_tlA:i>2] Ax
k=0 X X

(We tacitly assume that ug = uR,,; = 0 and v = v}, ; = v,.)
Our immediate goal is to estimate E™ and F”.

LEMMA 1. Assume that the stability conditions (3.1) are satisfied. Let M =
max, vy and (M) = min(1, — p'(M)). Then there is a K such that
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E" <E""! — Kq(M)AtF™",

Proof. Since p(v,) — p(v) is monotone, we have for some s € (0, 1) that

vk
VR =V = [ T [p() P ds
Uk

= [p,) = sop ™" = (1 = 9P}] & — v ~1)
= [p(y) =gl (W =i ™) +s(pf —pp~H @ - vi ™Y,
< [p(vy) — g1 O —vf ™Y,
since p' < 0. Summing over k and using (3.3), we obtain
2 Vi< AR H BAUAW" = 8y), (P, ~P"D

(3.10)
+ % (Du™, (p, — P").

If we inner product (3.2) with «” and bound (u", u” ~!) by %(|u"> + lu"~1|?)
we obtain

>

(3.11) % P <% "~ 1% + Bd{Au™, un)_%(Dun,pb -p™.

Add (3.10) and (3.11) and multiply by Ax. The result is E” < E"~! +
Bd[{Au", u") + (A" = v,), (P, = P")]Ax. The brackets may be estimated by
(3.4) to give

N un _un 2 vn _,vn~ pn_pn
n< pn—1_ [( k+1 k> +< k+1 k>< k _Pr+1
E"<FE dAt k;o Ax Ax Ax Ax.

Since

(3.12) (v2+1 - v;)(pz - p2+ 1) =~ P'(E) (UZ.H - v;)Z == pI(M) (U?c+1 - U?c)z,
we obtain finally
E" <E"~! = 2dAt min(1, - p'(M))F". O
LEMMA 2. Assume (3.1). Then there is a constant K such that
F" <F"~! + KAtF",

Proof. From (3.4) and the difference equation (3.2) we have

N
> Wi, —uh?r=—(Au", u™
k=0
(3.13)
=—(Au", u" 1) — Bd|Au" ? + % (D(p, — p™), Au™.
Again by (3.4),
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N
—(Au Wt =3 Wy —u) (R~ ugTh)
0

Al 1 N 132
g(“ZH _“2)2 +§ g(uﬁli —ug™)

nHH

so that (3.13) becomes

YN
oMz

N
Wiy —up)? <% @ —ur1)? - gdlAuP
0
a1 _.m2 4 € n2
+3 [26 ID(p, — P+ 14u |].

Choose ae/4 = pd so that the | Au”|* terms cancel. Then bounding |D(p, — p™)I?
by p'(c)*| D" - vb)l2, we obtain

o[\/]'z

1 & 1 _
(3.149) 5 Sy, —ul)? <3 @i —ul 2 + 16dp(c)2 D" = vy)I2.
0

Similarly,

N N
(3.15) TN AR AL DI ot +16—dID ne,
0 0
2
Ax

THEOREM 3.1. Assume (3.1). Then there is a constant M depending only on the
parameters in (1.1)—(1.3) such that v;; <M for all n and k.

Add (3.14) and (3.15) and divide by Ax to obtain

lod

_ At
Fr<FP1 + 2 max(1, p'(c)?
—max(1, p'(c)*) A ~

Dun 2 + ' D(Un - vb)
I

The result then follows from (3.5). O

Proof. Fix n and let M = max, . ., v’. From Lemmas 1 and 2 we have

K K
Fn< n—1 n—1 n <...<F0+___E0_En <___,
(3.16) F +q( 5 E —-E™) 200 ¢ ) S qon

where K is a constant depending on the data. The idea is that M can be estimated by
" and, as above, F by M. The result will then follow from the assumption (1.4).
. 3.0 _
(.17) })121& V()| = oo,

Let f() = fy, VU(s) ds. Then
j—1 j—1
f(v]") = OZ [f(vz+1) —f(UZ)] = OZ V lﬁ(Ek) (vz+1 - UZ),

where, since /y is monotone, Y(%,) is a convex combination of Y(v}, ) and Y(vy)-
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Hence

N N
fOH? < zo\: V(&) § Wks1 —00)?

N N - \2
L% k 0 Ax
<2E"F" <2EOF" = KF™,
Combining (3.16) and (3.18), we have

(3.18)

2
(3-19) fM)* <—= (M)

Now if v = 3v,,

1) > f 2v, [f:l’b (p(vb) - p(y))dy:|1/2 @

v S 1/2
> Lo [, 00 - p(zvb))dy] ds =K (v - v,)*?
2vb 20b
and by changing K,

(3-20) f) > Kv3/2,

From (1.4) it is easy to check that either —p'(v) < 1 or there is a unique M,
with — p(My) = 1. If M is smaller than neither M,, nor 3v,, then —p'(M) < 1 so
that g(M) = — p'(M). And from (3.20) and (3.19), M® <K/—p'(M). It then follows
from (3.17) that M cannot be arbitrarily large. [

COROLLARY 1. F" <K forall n.
Proof. This is (3.16) with M = sup, v7. O
COROLLARY 2. There is a K such that
"< -KAHE®,
Proof. From (3.6),
(3.21) TP ax <K ﬁ:;(——"l—li)z Ax.
Also from Taylor’s theorem,
V) = U (vp) + V') W —vp) + BY )} ~ v,)?
=~ %p'(5) (V) — v,)? < KO} — v,)2.

Hence, using (3.6) again, we have

(3.22)

N N L Ver1 ~ N
(323) 2 VEPAXx <K Y (., —v,)*Ax <K ;( x > Ax.
1 0
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Adding (3.21) and (3.23), we see that £ < KF". Combining this with Lemma 1,
we therefore have

(1 +KADE" <E""' or E"<(1- KAHE"™ L.
The result then follows by induction. [

THEOREM 3.2. Assume (3.1). Then there are constants K and K | such that

lufl + [V} —v | <K 1—& ¥
k k ~ Up 1 n )
Proof. From (3.9),
(3.24) (uZ)2 < K(E"F")I/z,
Also, from (3.22) and the fact that v} is bounded,
Ivz T Uy |2 <K¢(UZ)
so that
[v"* — v, PAx < KE™
Applying (3.9), we therefore have
(3.25) [Vf — v, 12 <KE"F™)'/2,

The result then follows from (3.24), (3.25), and Corollaries 1 and 2. [J

4. Error Estimates. Let e” be the difference between u” and

[uGx,, t,), . . . u(xy, t,)] 7 and £ between v” and [v(x,, 2,), - . ., V(Xp, E)]"
From (3.2) and (3.3) we have

(4.1) e" =" "1 +pdAe” —SDQ " +1",

(4.2) f"=f"_1+BdAfn+%De"+0",
where Q" is the diagonal matrix
P'ED 0
4.3) o = -

0o PEY
with

pR) = (x> 1,))

Vg — u(xy, t,)
and 7" and ¢” are the local truncation errors. Since u(x, ¢) and v(x, t) are smooth
with derivatives bounded independently of ¢, (see [2]), and because we used sym-

metric centered space differences, 77 and o} are of the order Ath, where h = At +
Ax?. Hence

(4.4) P'(ER) =
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(4.5) l7712 Ax, [o"?Ax <K APh2.
We shall estimate the L2 errors
E" = %(le"? + ") Ax
and
Fn = h(le"® - pyl " 1*)Ax,
where p, = p'(v,) < 0.

THEOREM 4.1. Assume the stability conditions (3.1), let h = At + Ax?, and
let £" and F" be as above.
(a) Then

VB <fGED + K h).
(b) If in addition d/L > (1 — p'(c))/2, then
K n
VE' < <1 —%’—) WE® +K,h).

(c) Suppose that a < vy, v(xy, t,) <b for all n and k. Define

Y=  max Ip'(v1) - pl(vz)l-

a<v1,v2<
If d/L > y[2/~Dp,,, then
- Kt \n
VF" (1 - —n—”> «F° +K,h).

In each case K and K are positive constants independent of x, #, Ax and At

N

Proof. Inner product (4.1) with e” to obtain

€2 < (e, "1y + Bdid e, &) + %(Q"f", De™ + |7 |e"|
so that

1 1, n— a Ninpz o1 2

4.6 L2 < 2|12 n ,n &/ Hnrn n Wy n A .n

(46)  Sle* <7 1e"T1P + pdlde”, €' + TKQ"f", DM + 1t + 50 17",

where 7 > 0 will be chosen. Similarly,

47y Llimz <l m-1p2 n eny 4 Qyrn n n n2+L ni2.

(4.7) SIS A+ pACAS™, 1™ + 54", D+ SIS+ 5 10"
Add (4.6) and (4.7) and multiply by Ax to obtain

E" < E'T! 4 Bd[(4e”, ") +(Af", fM] Ax
&1 -p' € mp 4L 2
@49) 50 -p@)[SUmF + 5, 0P ] ax

B 45 (PR + 10" ] Ax
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Proof of (a). Since [De”|? < — 4(4e", ¢") by (3.5), the terms [De”|* and
(Ae", €™y will cancel if we choose € = O(Ax) (recall the definitions of « and B, (2.1)).
Also, (Af™, f™ <0 and aelf">Ax <KAtE”. Thus, if we choose n = O(A?), it
follows that

E" <E"! + KAtE" + K, Ath?,
where we used (4.5) to estimate the 7 and o terms. Thus, for different X and K 1

E"<(1 +KADE""! + K, Ath?,

and (a) follows by induction.

Proof of (b). Alternatively, the second brackets on the right of (4.8) is bounded
by

2
—EGAL;(Af",f”)—%(Ae”,e'%
X

by (3.7) and (3.5). Thus, (4.8) becomes

En < En—l + [Bd—a_(l"_?&))] (Aen’ en>Ax
I 2
(4.9) + [Bd ——Oﬂl—ﬁ@i]m 17, f™ Ax

+nE" + o (17 + 10" ) Ax.
If we choose € = 2Ax/L, then both brackets equal

aL(1 = p'(c) L(1 = p'(c))
Bd -8 =P [d - ""T—_] = K8,

where by hypothesis K is positive. Now, from (3.7),
KB[KAe™, e + (Af", ™) Ax <—KAt(|** + |f"*)Ax = —KAtE"
so that (4.9) becomes

(4.10) Er < EPl — (KAt —-m)E" + %(W'P + 10" ) Ax.
Choosing n = O(At) and using (4.5), we finally have, for some positive K and K,

E"<( —KADE"™! + K, Ath?.

(b) then follows by induction.
Proof of (c). Add (4.6) to —p, times (4.7) and multiply by Ax to obtain

F" <Fr=1 + Bd[(Ae", e™ — pj(Af", f™]Ax

4.11
*11) +%((Q” = Q,)f", De™) Ax + qf" + ﬁ(wr" - pylo™?)Ax,
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where Q, = p;,I. From the definition of Q", (4.3)—(4.4), the inner product on the
right of (4.11) is bounded by

suplp'(E) — | (£177P + 55 1Den 2 ) Ax
2 2e
2
<-7|% L Af*" ™+ 2(Ae", e")] Ax,
2 Ax? €
where again we used (3.7) and (3.5). Substituting into (4.11), we obtain

FP<FR1 4+ [Bd - O-Lel] (Ae™, e™

oyeL
+|8d +
4p; A

Dy x?

(4.12) )

](-p;,) CAF™, 1+ mF" + 50 (7P =y lo" ) A

If we choose € = 2+/— p; Ax/L, then both brackets equal

L L

pi-—— =g [d—-l:_—-] - K,
24/-py, Ax 2v-p,

where by hypothesis K is positive. Just as in the proof of (b),

KB[Ae™, e" —p,(Af", fM]Ax < — KAtF",
so that (4.12) becomes

B < Frl - (KA —m)F" + 2—16(|7"|2 ~pylo"?)Ax.

This is identical in form to (4.10). The proof then proceeds just like the proof of (b). [

These results may be interpreted as follows. In all cases the approximants con-
verge like O(h) in finite time as # — 0 (part (a) of the theorem). On the other hand,
for h fixed, the error at first grows exponentially as ¢ increases (unless the diffusion
term d is large, by part (b)). But eventually, as soon as v} and v(x, t) get close
enough to v, (which is exponentially soon by Theorem 3.2 and the corollary below),
part (c) may be applied at a new initial time to show that the error remains O(h) for
all subsequent times.

COROLLARY. There are positive constants K and K | so that the solution
[u(x, 1), v(x, O] of (1.1)—(1.3) satisfies

max (lu(x, Dl + lv(x, 1) —v,|) <K, e X%
0<x<L

Proof. Fix t and solve the difference equations (3.2)—(3.3) with At = 4 /¢ and
Ax = 27/L, committing no initial error. Then for j sufficiently large the stability con-
ditions (3.1) are satisfied sothat, if n = 4, we obtain from Theorem 3.2

n
(4.13) | <K, <1 -£n£> .
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On the other hand, from Theorem 4.1(a).

h2

(4.14) et <Lem <k, 2=

=K,Ax3,
where K, may depend on ¢. Combining (4.13) and (4.14), we have
lu(x, 1)l <K, (1 —K’f) + K, Ax3/?

for any x of the form K27 /L. Now let j — oo and n — o with nAt = ¢ fixed. The
result is that |u(x, #)| < Kle_K’ holds for a dense set of x, hence for all x. The esti-
mate for v — v, is similar. O]

As the above proof shows, the O(Ax?) error estimates in L? of Theorem 3.1
easily translate into O(Ax3/ 2) estimates in sup norm. Actually, 0O(Ax?) estimates are
valid in sup norm. We prove this below for case (c) of Theorem 4.1 by way of the
inequality (3.9).

THEOREM 4.2. In addition to ihe hypotheses of Theorem 4.1(c), assume that
F® < Kh and that

N
Z [(eg+1 "’62)2 +(f]?+1 _f]?)2] <Kh2Ax
k=0

Then, ezl + | fi}| < Kh for some K independent of n and k.

Proof. By Theorem 3.1(c), / F" < Kh for all n so that from (3.9),

leZl + I fFI <KR'2(G™)4,

[ ) e

The result then will follow from the estimate

where

(4.15) G" < Kh?.

To prove (4.15), inner product (4.1) with — 4e”, (4.2) with —Af™, add, and
divide by Ax to obtain

Gn <Gn—1 _f\_i(lAenP + |Afn|2)

+ % KDQ™™, Ae™ —(De", Af™)]

n n2 n2 1 2 2
+—2K;C—(|Ae| + |Af I)+2nAx(|7"I + [6"%).

Choose n = Bd so that the last term, via (4.5), is bounded by K, Ath?. Then
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1
f-\—/\__"\
Gn _ Gn—l <-K A_B(lAen|2 + |Afn|2)

(4.16) x

+ % KDQ"f", Ae™ — (De", A f™]+ K, Ath?.

II

We shall show that, by altering K and K, the middle term on the right of (4.16)
can be absorbed into the other two terms.
The second component of the middle term is

B(De", —Af™ < B(% IDe" > + flg IAf"|2>.
If we choose € = O(Ax), then (B/2€) | Af"I? is absorbed into I. What remains is

(4.17)  KBAx|De™|> < KpAxKAe™, )| <K6Ax<2l—e|Ae"|2 + % Ie”|2>,

where we used (3.5). Now choose € = O(Ax?) so that

Ax B
— ni2 _ . ni2
c [4e™| 0<Ax> [Ae”|
is absorbed into I. What remains is then
O(Atle" |2 Ax) = O(Ath?)

by Theorem 4.1. This term then is absorbed into II.
The first term in the brackets on the right side of (4.16) is bounded by

1 ni2 4 € nen |2
KB (35 14¢"F +§ 1DQ"s |>.
Again, the | Ae"|? is absorbed by I if € = O(Ax). Letting p'(§7') = py,, the other term
then is

N
At '

KX 2 [Prs1 i — Pr_1 117
X k=1

At

t ’ ' ’
=K Ax 2 e (Feer = fe—) + Py _pk—l)fl?—l]2'

From the definition of &, (4.4), it follows that
Prs1 — Pr—1 SKOSP_ 1+ 1£2, 00+ 1o (0, )] Ax)
S KAfR L+ 121+ Ax) <K Ax
by Theorem 4.1(c). Thus, the term in question is bounded by
_A_t n2 2,02
K2LAD SR + ax? 1P,

The term [Df”|? is bounded just as was [De”|? in (4.17). And the other term, by
Theorem 4.1, is bounded by K AtF" < KAth?, which may be absorbed into II.
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(4.16) has thus been reduced to

B
(4.18) G"<G"!-K, Z;C(IAe"l2 + |Af"12) + K, Ath?.

From (3.5), (3.8), and the definition of G" we have
6" <K aen, e+ carm, py <K aenp + 14,
Ax Ax3

so that

- Zﬁ; (14e™? + |Af"?) <-KAtG™.

Hence (4.18) becomes
G"<(1-KANHG" ! + K, Ath®.

By induction we have
Kl
(4.19) G"<(1-KAH'G® +7<—h2,

and the required estimate (4.15) follows from (4.19) and our hypothesis, which en-
sures that G© = O(h?). O
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