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A Special Class of Explicit Linear Multistep Methods
as Basic Methods for the Correction in the
Dominant Space Technique

By Peter Alfeld

Abstract. A class of explicit linear multistep methods is suggested as basic methods
for the CDS schemes introduced in [3]. These schemes are designed for the numer-
ical solution of certain stiff ordinary differential equations, and operate with domi-
nant eigenvalues, and the corresponding eigenvectors, of the Jacobian. The motivation,
and the stability analysis for CDS schemes assumes that the eigensystem is constant.
Here methods are introduced that perform particularly well if the eigensystem is not
constant. In a certain sense the methods introduced here can be considered explicit
approximations to the well-known implicit backward-differentiation formulas used by
Gear [6] for the stiff option of his o.d.e. solver.

1. Introduction. In [1] and [3] the CDS technique is introduced for the numer-
ical solution of separably stiff initial-value problems of ordinary differential equations.
For these systems the eigenvalues of the Jacobian can be separated into two sets, one
of which dominates the other.

The CDS technique consists of taking a step from x,,,,_, tox, ., by a conven-
tional explicit k-step method, the basic method, and then applying a correction in the
dominant space (hence CDS), i.e., the space spanned by the right eigenvectors corre-
sponding to the dominant eigenvalues.

We will use notations and definitions as they are given in [8]. For a more de-
tailed description and motivation of the CDS technique the reader is referred to [1]
and [3].

In Section 2 the basic definitions are given. It is convenient to change slightly
the notation employed in [1] and [3].

In Section 3 the effects of nonlinearity, of errors in the approximation of the
dominant eigensystem, and of the change of the dominant eigensystem with the
independent variable x (interprojection) are investigated.

In Section 4 explicit linear multistep methods are introduced that subdue the
interprojection effects, if they are employed as basic methods in the CDS scheme.

In Section 5 numerical examples are given.

2. Correction in the Dominant Space. We consider the (in general nonlinear)
initial-value problem (IVP)
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(2.1) Y =fG»); y@)=n; y,fER;xE [a, b].
We will also consider the special case that the IVP is linear, i.e.,
(2.2) ¥ =AX)y +g(x); y@ =n; y f,g€ER™;,x € [a, b],

where A4 is an m x m matrix function.

In all that follows we will assume, without specifically mentioning it, that f pos-
sesses as many continuous partial derivatives as required, and also that there exists a
unique solution y = y(x) of (2.1).

Definition 1. Let A be an m x m matrix, and let A, i =1, 2,...,m, be the
eigenvalues of 4. A is said to be separably stiff if

(a) A is nondefective, and

(b) there exists a constant integer s, 1 <s < m, such that )\(i), i=1,2,...,s,
are real, distinct, and negative, and

min NP>  max \D|.

1<i<s s+1<i<m

Remark. A matrix 4 is nondefective if the set of right eigenvectors spans R™.
This does not imply that 4 is nonsingular.
Definition 2. The initial-value problem (2.1) is separably stiff if the matrix

Alx, y) = %f(x, »)

is separably stiff for all (x, y(x)), where x € [a, b] and y(x) is the exact solution of
2.1).

Remarks. 1. We are considering problems whose stiffness arises from a set
(which we assume to be small) of troublesome eigenvalues AD =1, 2,...,s, which
are real, negative, and well-separated from the rest; note, however, that we do not re-
quire all the eigenvalues to have negative real parts.

2. We assume that A(x, y) is a continuous function. Thus, A(x, y) will be
separably stiff for y close to y(x).

Consider the Correction in the Dominant Space (CDS) scheme

(2.3() Vnsk =By,

S . .
(2.3(i1)) Yk =Tnex T 2 ED e

i=1

Remark. Our notation differs from that in [3]; there k is assumed to equal 1.
Here we use k for convenience; it will be easier later to refer to approximations evalu-
ated atxn+]-,j= 0,1,...,k

(2.3) applied to a separably stiff IVP (2.1) defines a sequence y,, ~y(x,), n =k,
k+1,k+2,...,wherex, =a + nh, h being a constant steplength. We assume that
starting values y, y,, ..., ¥, _, are given.

B is a symbolic notation for the application of a conventional explicit k-step
method. (We will only consider the case that B is an explicit linear k-step method.)
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cfl’l « is the right eigenvector corresponding to )\ffl x> the ith eigenvalue of
/0y f (x4 j7n+k)'

The Effl « are scalar correction factors that can be determined in a variety of
ways, see [1], [3].

We denote the left eigenvectors corresponding to )\fflk by d,(,’l x> and assume the
following normalization:

(@) D, a®dy = (MTdP =1,i=1,2,...,m,
() 1@ =D, DV =1,i=1,2,...,m,
(iii) The first nonvanishing component of cgi) is positive,
(2.4) (iv) If tc(;) denotes the tth component .of cf,i), t=1,2,...,m,
and FMc( is the component of ¢ with maximum modulus
(the first such component if the maximum is not unique), then

sgn{f(”)cff?l_l} = sgn{f(")cfli)}, i=1,2,...,mn=0,1,2,....

The set of right and left eigenvectors of A(x,, 7,,) is then uniquely defined.
Note that

(2.5) (D, dy =5,

the Kronecker delta.

Definition 3. Let )\f,i) = k(i)(xn, ¥,), and let the right and left eigenvectors
cfli) and d,(li) of A(x,, 7,) be normalized by (2.4). The dominant and subdominant
eigensystems of A(x,, ¥,) are defined to be {kfli), cfli), d,g") li=1,2,...,s} and
{)\f,i), cf,i), d,(,i) li=s+1,s+2,..., m}, respectively. The subspaces spanned by
{cf,") [i=1,2,...,s} and {c,(,i) li=s+1,s+2,...,m} are defined to be the
dominant and subdominant spaces at x,,, respectively.

Remarks. 1. The CDS technique requires the explicit computation of the dom-
inant eigensystem; see [3].

2. Our notation differs from that in [3]; there the eigensystem is denoted by
XD, &0 G0,

3. It would be desirable to be able to use the dominant eigensystem evaluated at
(x,, ¥,,), but this would introduce complicated implicitness.

Since we assume A(x,,, ¥,)) to be nondefective, we can express any vector v as

0= 3 e,
i=1
where, because of (2.5), 'yff) = (d,(,i), v).

This motivates

Definition 4. Let v € R™. Then v = (d@D(x, y(x)), v) are said to be the
components of v (atx). Y, i=1,2, ... ,s, are the dominant components, and v,
i=s+1,s+2,...,m, are the subdominant components of v (at x).

Remarks. 1. When there is no confusion, we will omit the specification “at x”’.

2. In a similar manner we will talk about subdominant global and local trunca-
tion errors, etc.



1198 PETER ALFELD

It is convenient to introduce a special notation for the components of the exact
solution of (2.1) and its derivative. Thus, we write

Y@ = 3 g0 D0, yx),  ¥'@ = 3 YOO, yix)),
i=1 i=1
where

$D@) = dDCx, y), e, YO) = @D, y(x)), '(x)-
We finish this section by stating a consequence of Theorem 1 in [3].

THEOREM 1. Assume the basic method in the CDS scheme (2.3) is an explicit
linear k-step method with steplength h, and that the correction factors are computed by
any of the methods described in [1] and [3). Then all numerical solutions y,,n =0, 1,
2, ..., 0f the separably stiff test equation

y' =Ay

by the CDS scheme (2.3) tend to zero as n tends to infinity, provided that mder B>
i=s+1,s+2,...,m, where RB is the region of absolute stability of B. [

Remark. Thus stability requirements are imposed only by the subdominant
eigenvalues. These are much less severe than those that would be imposed by the
dominant eigenvalues if the explicit basic method were to be employed on its own.
However, the above theorem suggests that one factor in the choice of the basic method
is the size of its region of absolute stability.

3. Sensitivity and Interprojection. Let us assume that we have obtained sequences
»,ln=0,1,2,..1, {,in=0,1,2,...} and {f,In=0,1,2,..1},

where f, = f(x,, ,), by applying (2.3) to a separably stiff IVP (2.1).
Define forn =0,1,2,...,i=1,2,...,m,

?f,’) = c(')(xn, Vo) d,(,') re= d(’)(xn, Vo)
This is the system of eigenvectors of A(x,, y,). Further
*
(3.1 Acy) = cff) - cy), t=1,2,...,s.

(Note that A does denote differences but is not identical with the forward difference
operator. In the sequel it will be defined for each individual case.)

The vectors given in (3.1) are the errors in the approximations to the dominant
right eigenvectors at (x,, y,) due to the fact that we evaluate cff) at (x,, ¥,,), and to
round-off and truncation errors occurring in the numerical method used for computing
the dominant eigensystem.

We write

m - * .
(3.2) y(xn) = Z ¢£’)c$’l)

i=1

and
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(33) Y, = fl yOED
P

and define fori=1,2,...,m,

(3.4) AP = 6D — @Dy ),

(3.5 A = v — a1,

These are approximate components of the global errors of the approximations to
y(xn) and y’(xn)'

Let us now assume that » is fixed.

We define for ¢t = 1, 2,

(3.6) AER), (dn+k’y(xn+k) Vnsid £ -

This is the difference between the “ideal’ correction factors, which would render the
dominant components of the global error zero provided Acff) = 0, and the actual cor-
rection factors.

We also define

ABy,, = y(x, ) ~Vn+ro

which is the global error in the intermediate approximation ¥, , .
From the biorthonormality of the eigensystem and (3.1), (3.2), (3.4), (3.6), it
follows that the dominant components of the global error in y, , , are given by

s
G Ad, = A  + 3 £ @D, A D, r=1,2,.. 8
=1

Similarly, we obtain for the subdominant components of the global error

(3.8) ASY . = r(zr-+)-k’ ABy,)» + Z E(t)k<dr(tr-l)—k’ Ac) o,
: t=1

r=s+1,s+2,...,m
As an example, let us consider the case that the basic method is the explicit

linear multistep method defined by

k—1 k—1
3.9 Yo+ =~ Z Yyt +h Z ﬁjfn+i‘
j=0 j=0

Recall that the local truncation error of (3.9) is defined by

k—1 k—1
(3.10) 1n+k = y(xn+k) + Z ajJ"(xn+,') —h Z Bjyl(xn+i)’
j=0 j=0

i.e., the error that would occur in y,, , ., if the back values y, + fn+j (i=0,1,...,
k — 1), were exact.
Then, from (3.2), (3.3), (3.4), (3.5), (3.9), (3.10), we obtain
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k=1 m
N ks
(3.11) ABy, =1, 4~ 2 D (o800 — n;ApS, e .
j=0 i=1
Defining
®(i *(;
(.12) (nlzl-k =R

and substituting this into (3.11) yields

N k—
<d,(.’+)k, ABy,) ={d{ iy ) = Z ley A¢£zr-)u - thA‘pS:rJ)rj]
=)

i [\/]5

T s v, A el
Substituting this into (3.12) we obtain forr=s + 1,s + 2, ..., m,

k=1
¢( r(z’:l-k’ Liva) ~ Z%) [ajA¢£lr3-]_ hB Alp;’?—j]
I=

(3.13)

II[VJs

. . - *
g [o288) ;= gAY, 1<dln),, A, jeD
s P *
+ Zl Elek<dr(z?-k’ Acg?-k%
=

which is the global subdominant error if the basic method is given by (3.9).

The expressions (3.7) (dominant components of the global error), and (3.8) and
(3.13) (subdominant components of the global error) illustrate the influences of errors
arising from various sources.

Let us discuss the individual terms:

s
M Z £0 @0, Ay, r=1,2,...,m

These terms, contributing both to the dominant and to the subdominant com-
ponents of the global error, are due to the impossiblity of computing the dominant
eigensystems exactly. Let us refer to the dependence of the global error on these
terms as sensitivity of the CDS scheme.

In the linear case (2.2), where the dominant eigensystem depends on x only, the
Acff}_k do not vanish because of truncation and round-off errors arising in the numer-
ical method employed (e.g., power method). However, we can iterate the power method
until we reach an accuracy limited only by the accuracy of the particular computer
that is used. So IlAc(’) 1%l will equal approximately 2~ T, where 7 is the number of bits
used for the mantissa.

In the nonlinear case (2.1) we face the additional problem that the dominant
sigensystem is evaluated at (x,, . ., ¥, 4 ) instead of (x, 4, ¥, 4 1)
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Consider now the other factors under the sum (1). The norm of the left eigen-
vectors will be large if the eigenproblem associated with A(X, 4z, V,4g) is ill-
conditioned. Note that this is not at all related to the condition number of
A(x,, 41> ¥ +1)> Which, for a separably stiff system is always large (it does not exist
if ACx,, ;1 yn_,_k) is singular). In spite of this Ild,(l’_,)_kll can be small, for instance

1S 1l = 189D =1,

if A(x,, x> ¥, 1) is symmetric (and thus left and right eigenvectors coincide).
For the dominant components of the error lld,(fl s readily available and should
be a good approximation to IId(' )kll. For the subdominant components this is not so,

however.

Since the error contributions in (1) are proportional to the correction factors
Effi %> these should be small (in modulus). It turns out that the correction factors very
critically depend on the choice of the basic method, and can be excessively large; see
[3].

In summary, the sensitivity of the CDS scheme depends on the conditioning of
the eigenproblem, the size of the correction factors, and the errors in the right-hand
eigensystem. Since the latter are very small in the linear case (and can be controlled
in the nonlinear case by forming the difference c¥ )(xn+k, Vi)~ ?Fk after com-
puting y,, , . using (2.3)), sensitivity usually will present no serious problems, provided
the eigenproblem is reasonably well-conditioned, and the basic method is sensibly
chosen.

) A r=1,2,...,s

This term contributes to the dominant global error (3.7) only. Whereas the
error considered under point (1) is due to not correcting exactly in the right direction,
this term is due to not using exactly the right correction factor. It depends on the
choice of the correction factors.

(3) @), ABy), r=s+1s+2...,m

These terms, contributing to the subdominant error (3.8) only, represent the
,(l’l x-components of the local truncation error of the basic method and of the errors
due to the basic method not operating on exact back values. It plays the same role that
Agf{}r « does for the dominant error. Here we consider the special case that the basic

method is the linear multistep method (3.9); see paragraphs (4), (5), (6) below.

4 @D ol r=s+Ls+2, ., m

These terms, contributing to the subdominant error (3.13), are the Z‘gy}r x-com-
ponents of the local error of the basic method. They are small if the exact solution
is smooth (which will usually be the case in the steady-state region).

k—1
) T [ A00), —hBAUSL),  r=sHlsH2 . m
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This term, contributing to the subdominant error (3.13), represents the error
arising from the errors in the previous values that we would expect if the eigensystem
were constant and known exactly, and the basic method thus operating on the com-
ponents of the numerical solution individually. It does not depend on the correction
(2.3(ii)) at all and is peculiar to the basic method.

© 3 kzl (020, — W AYD, XA e, A ), r=s+1,5+2,...,m
i=1 j=0

This term contributes to the subdominant error (3.13). It arises from the fact
that the eigensystem changes with x, and is peculiar to CDS schemes. It can be de-
scribed as representing the partial projection of previous errors, including dominant
ones, into the current subdominant space. Although it only appears in the expression
(3.13) for the subdominant error, a similar process influences the dominant error.
(This is masked by the concept of an “ideal” correction factor (dn L1 Y1) Vi
cf. (3.6), that deals with all dominant errors in 7 n+%» NO matter what source they come
from.) We refer to the feature represented by the above term as interprojection.

Interprojection provides for communication between dominant and subdominant
components of the numerical solution, by means of the basic method. Note that it
occurs for linear as well as for nonlinear problems.

Because of the ill-conditioning of f(x, y), dominant errors in V4 are amplified
when computing f,, , i =1, +j* Vn +i)) and then, because of interprojection, partly
projected into the current subdominant space. This is undesirable. One attempt to
decrease the interprojection effect is to design special basic methods that will be de-
scribed in the next section. Another one is to devise CDS schemes for which the dom-
inant errors in y, j are so small that the dominant errors in f,, j are still tolerable,
and their projection into the current subdominant space does not contribute unaccept-
ably to the subdominant error. (Here the first version of reduction to scalar and the
gradient prediction CDS schemes are notable; see [1], [3].)

Still another, more obvious, attempt is to reduce the steplength 4 (and thus the
c(’ n+x)- But, after all, the whole point of the CDS technique is to get rid of step-
length restrictions due to considerations other than accuracy requirements. So, for an
implementation of the CDS technique, this strategy should be considered a last resort.

However, it is a typical feature of CDS schemes that, because of interprojection,
the dominant errors are considerably smaller than the subdominant ones.

4. Minimal-Projecting Methods. In [3] explicit linear multistep methods are
recommended as the best choice for the basic method in (2.3). The reason given there
is that a repeated evaluation of £, such as it occurs in predictor-corrector and Runge-
Kutta methods, leads to large round-off errors, because of the ill-conditioning of f.
These round-off errors may even render the numerical solution meaningless.

Using a basic method that evaluates f repeatedly leads to large correction factors.
The above is a practical argument for keeping the correction factors small.

There are also two more theoretical arguments in favor of small correction factors.
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Firstly, we have seen (cf. (3.7) and (3.8)) that the contribution due to the sen-
sitivity of the CDS scheme, both to the dominant and to the subdominant components
of the global error are proportional to Eff}r wt=1,2,...,5

Secondly, in the nonlinear case we take c(t)(xn+k, )“)'n+k) (t=1,2,...,s)as
an approximation to c(t)(xn +% Ynyr)- This is only feasible if Ypix isclose toy, o,
which is another way of saying that the correction factors are small.

In this section special explicit linear multistep methods are suggested that sub-
due the interprojection effect described in Section 3, and that have the additional
advantage that their region of absolute stability is larger than that of an Adams-Bash-
forth method of the same order, for k = 1, 2, ..., 6. This latter feature may be
advantageous in view of Theorem 1.

Let us look again at the subdominant components of the global error given by
(3.13).

The first term represents the local error, and the second the conventional error
propagation in the linear multistep method. These can be expected to be small. The
fourth term is due to the sensitivity of the CDS scheme and is also ignored here.

The third term represents the influence of interprojection, and may be large if
chg’?l_ k= *gl’zl_ - *(’) ;70 (cf. (3.12)), i.e., if the eigensystem is not constant.

Recall that IAt//(’) | equals approximately (exactly in the linear case) DN A(b(’) i,

n+j n+j

and is thus much larger than .A¢f,’?wl i=1,2, , 5). Hence, if I<d$,’3_k, Alcf,'l ol s
sufficiently large (i.e., the eigensystem varies rapldly), then the major contribution to

Aq&ff ) in the interprojection terms will be given by

s k—1 .
@41 p=n)y > ﬁjAgl/f,’l](d,(,Qk, n’lk>, r=s+1,s+2,...,m
i=1 j=0

Assume we can write At[/f,’l j as a smooth function AY® of x

A‘I’gflj = &y, +)-

This is true, e.g., in the linear case (2.2) for the gradient projection scheme,
described in [3], where Aw(i)(x )= w(i)(xn n ]-). The following motivation also

holds if Ag[/(’ can be expressed as p(h)*q(x, . ;), where p is some function and q is

n+j
smooth.
The equation (4.1) becomes
s k-
4.2 Py i) =h Y Z p (xn_,_]
i=1 .:
where
43)  pDx, ) = AYDG,  KAD @, ), D) — D0, )

Here the eigenvectors are assumed to depend on x only (in the nonlinear case we
can consider ¢(x) = cD(x, y(x))).

Note that if we consider x,, , ; fixed, p(i)(xn +1') defined by (4.3), and thus
p(x,, , ;) defined by (4.2), is a function of 4 only.
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Assume p(i)(x) can be expanded about x,, .. We obtain from (4.2) for arbitrari-
ly large q

s k-1 q t t .
ph)=h . 3 B,-[Z ’t’—'(,- - k) ar pDx, ) +OmITY)
i=1 j=0 t=0 ° dxt
q s t
—ny ¥ L 0w, z B - R +0@I*2),
t=1 i=1 " dx

The summation in ¢ starts at £ = 1 because p(i)(xn +x) = 0. This suggests re-
quiring that

k=1
2 B(-k'=0 fort=12...,q
j=0
Note that this puts a restriction on the basic linear multistep method that is
independent of the particular problem to be tackled.
Definition 5. The explicit linear multistep method

[V]a-

k—1
(4'4) ayn-)-] h E ijn+j9 ak = 17
j=0

j=0

is said to be nonprojecting of degree q, if
k—1

(4.5) Zﬁj(j—kt=0 fort=1,2,...,q
j=0

The term ZF-08,(j — k)7 +" =iy # 0 is called the projection constant of (4.4).

Remark In the above motivation we formally proceed in a manner similar to
that employed in the definition of the order and error constant of a linear multistep
method. The local truncation errors (respectively the interprojection terms (4.3)) are
expanded about x, (respectively x, . ), and the first p (respectively q) terms of the
resulting Taylor series are required to vanish. The coefficient of the first nonzero
term is called the error constant (respectively the projection constant) of the method.
Of two linear multistep methods which are nonprojecting of the same degree we
would normally choose the one with the smaller projection constant, provided that
other features (accuracy, stability) are about comparable for both methods.

It follows at once from the definition that a consistent LMM which is nonpro-
jecting of order ¢ = 1 has stepnumber k >

Consider now the LMM (4.4), and assume it is nonprojecting of degree g, and
its order is p. Since the basic method is responsible for the accuracy of the subdom-
inant components, where IAD is small, we are interested in convergent methods (4.4).

The order of a convergent LMM cannot exceed k + 2, and even this value is
attained only if the method is implicit and the stepnumber is even. The order of an
explicit convergent linear k-step method cannot exceed k; see [7], [8].

We have k parameters §3;; since for consistency we have to require
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k—1
> Igl+o,
=0

we expect to be able to satisfy & — 1 conditions of the form (4.5).
In order to achieve order p = k we have to satisfy

Co=C=-=(C,=0, Cor1 0,
where
Co=ay ta; +-+- +a,
(4.6) L -
Cq:E;:-o] %~ 1)| Z] By

and 0° := 1 (0° occurs in C,); see [8, p. 23].

Taking into account the number of free parameters in the general linear multi-
step method (4.4), we expect that for each k > 2 there exists a unique kth order
linear k-step method, which is nonprojecting of degree k — 1.

Definition 6. The linear k-step method (4.4) is said to be minimal-projecting, if
it is of order > k and nonprojecting of degree k — 1.

The following theorem provides an explicit expression for the coefficients of
minimal-projecting LMMs.

THEOREM 2. For k = 2 the minimal-projecting k-step method is defined by

Ak
(4.7) 6f=(—1)’<].>, i=01,..., k-1,
(4.8) aj=—6j/(k—]'), i=0,1,..., k-1,
k—1
(4.9 @ == 3 o#0,
j=0
where
kY _k the binomial coefficient
i) k=Y '

Remark. The coefficients given in Theorem 2 have to be normalized so as to
satisfy o = 1; see (4.4).

Proof. An elementary, but very technical and tedious proof of this theorem,
can be found in [2]. That proof does not add insight into the subject of this investiga-
tion and, therefore, is here omitted. An alternative proof can be organized along the
following lines:

Supplementing (4.5) by the normalizing equation

k—1

Z Bj = (_l)k—l

j=0
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yields the Vandermonde system

1 e 1 B et
12 k Br_1 0
1 22 k.2 6k_2 = :
1 2kt gkt Bo 0

This establishes the existence (and uniqueness but for normalization) and also
the formula (4.7) from the well-known determinant expressions.

The existence and uniqueness of the o; (and how to obtain them) for given B;
can be deduced from the proof of Theorem 5.7 in [7];see also the Theorem in [1]. O

Table 1 lists the coefficients of the minimal-projecting linear k-step methods,
obtained from Theorem 2, for k = 2, 3, ..., 7. For easier representation the coef-
ficients are given as integers (which are chosen so as to have no common factor). The
coefficients oy, by which all coefficients have to be divided in order to obtain the
normalized form (4.4) are printed in boxes.

TABLE 1
Minimal-projecting k-step methods for k = 2,3, ...,7

Projection
k Constant j: 0 1 2 3 4 5 6 7

o 1 -4 @

N 2 -1.33 2 .

o -2 9 -18 <>

8 3 3.2 6 -18 18

o 3 -16 36 -48 @

8 4 -5 -12 48 72 48

a -12 75 -200 300 -300

J 5 52.6

8 60 -300 600 -600 300

5 6 2903 10 72 225 -400 450 -360

B -60 360 -900 1200 -900 360

5 . 1944 -60 490  -1764 3675 -4900 4410 -2940

8. 420 -2940 8820  -14700 14700  -8820 2940
Thus, e.g., for k = 3 we obtain

3yn+2 _4yn+l +yn = h(4fn+1 - 2fn),

which is equivalent to

4 1 4 2
Ynt2 "3Vne1 T 3Vn = h<§fn+1 _§fn>~
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Let us now consider a different motivation for minimal-projecting LMMs: The
partial projection of back values f, , ; (j < k) could be avoided completely by using
methods

k
(4.10) ];0 %YV,y; =M fik
These are termed backward-differentiation methods; they were first used for stiff
systems by Curtiss and Hirschfelder [5] and have been much used by later authors,
notably Gear, who used (4.10) for the stiff option in his general purpose integration
package for ordinary differential equations [6] .

(4.10) has the advantage that the zeros of the stability polynomial governing the
numerical solution, tend to zero as |A\| tends to infinity. Thus, (4.10) possesses an
infinite region of absolute stability (in the sense that the region of absolute instability
is bounded).

Unfortunately, (4.10) is implicit and, hence, inferior as a basic method for CDS
schemes. One idea one can consider is to choose the Bj (j=0,1,...,k—1)in the
LMM (4.4) such that

@.11) z By () = < > ﬁ)y(xn+k) + 0(n%)

for some g. (4.4) satisfying (4.11) can be considered an approximation to (4.10).

On expanding the y'(x,, +j)in (4.1 1) about x,, , , we find that (4.11) holds if
and only if the corresponding LMM is nonprojecting of degree q.

Because of this property the first characteristic polynomial of the minimal-pro-
jecting k-step method is identical with that of the k-step backward-differentiation
method (4.10).

This is formally stated in the following definition and theorem.

Definition 7. The polynomial {(§) = E]’-‘zoajsi is said to be the first character-
istic polynomial of the linear multistep method (4.4).

THEOREM 3. For k > 2 the first characteristic polynomial of the k-step method
(4.10) is identical to that of the minimal-projecting k-step method defined in Theo-
rem 2.

Proof. Let

k

'Z:O a]'yn +j = hﬁkfn+k
]=

denote the kth order k-step method (4.10), and

K ko
Z: GYVp4j = Z:ﬁ n+j’

the kth order minimal-projecting k-step method defined in Theorem 2.
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Then, according to the definition of order (see [4]), we have for an arbitrary
sufficiently smooth test function y(x)

x>

Y0, ) = BBy Xy 1) = o+,
0

]

M-

k—1
&jy(xn+j) —h Zo Bjy'(x,,+,~) = O(hk+l)~
]=

j=0

On subtracting and using (4.11) with ¢ = k, we obtain
- A k+1
> (o5 — aj)y(xn+].) = 0(H**1).
j=0

Since this is true for all (sufficiently smooth) test functions y(x), it follows that
o = &]- forj=0,1, ..., k, which is the statement of the theorem. [

It is natural to require that the basic method of a CDS scheme be convergent.
Since minimal-projecting LMMs are consistent, this is equivalent to them being zero-
stable.

It is well known that the BDF methods (4.10) are not zero-stable for k = 7.

(A numerical investigation in [2] showed that they are zero-instable for k = 7, 8,
cee, 17)

The restricted order of minimal-projecting LMMs is clearly a drawback. How-
ever, bearing in mind that the CDS scheme (2.3) is aimed at obtaining cheap numerical
solutions that are stable and reasonably, but not extremely, accurate, order 6 appears
to be an adequate maximum order. Note also that interprojection phenomena become
stronger as the stepnumber of the basic method increases which also restricts the order
of the basic method.

Let us now compare minimal-projecting methods with Adams-Bashforth methods,
defined by

k=1
4.12) Ynik =Vnsr—1 T h Zoﬁjfn+j’
j=
which was first used as early as 1883 [4]. In modern terms a motivation for using
(4.12) is that the zeros of the first characteristic polynomial (with the necessary excep-
tion of 1) equal zero. (4.12) probably defines the most widely used class of explicit
linear multistep methods.

Both types of methods are k-step methods of order k; the minimum stepnumber
of minimal projecting methods is 2, as opposed to 1 for (4.12); (4.12) is zero-stable
forall k = 1, 2, 3, ..., whereas minimal-projecting methods are zero-stable for k =
2,3, ..., 6, and not zero-stable for k = 7, 8, ..., 17 (see above).

Both classes of methods have the disadvantage that the B; are numerically large
and alternate in sign (see Table 2 and [7]). This can introduce and amplify round-off
errors.
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Further comparison is contained in Table 3. There Cy,p and C, 5 denote the
error constants, and (= k,,p, 0) and (=« 4, 0) are the intervals of absolute stability of
the minimal-projecting and the Adams-Bashforth methods, respectively. (Recall that
the interval of absolute stability is the intersection of the region of absolute stability
with the real line.) For the error constants of the Adams-Bashforth methods see [8,
p. 26].

TABLE 2

Comparison of Adams-Bashforth methods and minimal-projecting methods

k CMP CAB Kvp KAB

1 0.5000 2.0000
2 0.4444 0.4167 1.3333 1.0000
3 0.4091 0.3750 0.9524 0.5000
4 0.3840 0.3486 0.7111 0.3000
5 0.3650 0.3299 0.5505 0.1633
6 0.3499 0.3156 0.4402 0.0877

It follows from Table 2 that the error constants of minimal-projecting methods
are slightly larger than those of Adams-Bashforth methods, which means that the local
accuracy of the latter can be expected to be slightly higher. On the other hand the
stability properties of the minimal-projecting methods are much better than those of
the Adams-Bashforth methods; in fact, the interval of absolute stability of the 6th-
order minimal-projecting methods is almost 50% larger than that of the 4th-order
Adams-Bashforth method and only slightly smaller than that of the 3rd-order Adams-
Bashforth method. A heuristic explanation for this phenomenon is that minimal-pro-
jecting methods can be considered, in the sense outlined above, to be approximations
to the implicit backward-differentiation methods which possess infinite regions of
absolute stability.

5. Numerical Examples. In this section we compare the fourth-order Adams-
Bashforth and the fourth order minimal-projecting methods as basic methods for the
gradient prediction scheme described in [1]. The inverse linear multistep method used
for the gradient prediction is the strongly infinite stable 4-step method given in [1].

The example problem is constructed artificially such that a function that controls
the change of the eigensystem with x can be incorporated.

We consider the problem

5.1 Yy =AX)zkx) -y) +z'(x), w=yp0)=1z20), x€][0,100],

z(x) = [sin x, sin <%), e_x] T

where
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an(x) — B f-a (B — a)/n(x)
Ax)= | (v —Bmx) Bnx)-vy B-v
(@— M%) (v-anx) ) -«

The solution of (5.1) obviously is z(x), independent of A(x). The reasons be-
hind the selection of the exact solution z(x) were to have functions that are well-be-
haved over the entire interval [0,100], but not as simple as polynomials; and, although
the first entries of z(x) are periodic, z(x) as a whole should not be periodic. Apart
from this the choice of z(x) is arbitrary.

The reasons for the choice of A(x) is to have a matrix, whose eigensystem can
be easily controlled by the choice of the parameters a, 8, v, and n(x).
The eigensystem of A(x) is given by

A =a; M =g)[1,0,nx)]T;  dD = w@)[nE), -1, - 1/nE)] 7,
A =8 @ = @)[1,nx), 01T;  d® = wx)[-1, 1, 1/n(x)] T,
NP =y o =k@)[0, 1, =) 7 dP = w@)nE), ~1,-117,

where
k@) = 1M1 +0°(x)),  wx) =1 + 72@)/(nx) - 1).

(In the numerical test, the dominant eigensystem was not computed from the above
information, but is obtained at each step by the power method.)
The eigenvalues of A(x) are chosen to be

a=-10% B=-1, y=-2.

Thus, the system (5.1) is separably stiff.
The functions n(x), governing the change of the eigensystems are given by

n(x) = -2 + 1.5 sin(¥x),
where

& = 0.9234567, 1.1234567, ... , 2.5234567.

The period of oscillation increases by steps of 0.2, the digits 234567 are chosen
such as to make the period incommensurable with any occurring in the exact solution.

In Table 3 we use the following abbreviations:

AB: Adams-Bashforth method (of order 4)

MP: minimal projecting method (of order 4)

MC: = max, . n<1ooo|‘§f11)| (maximum correction factor)

MD: = max,,<y (@Y, ¥(x,) — y)i (maximum dominant error)

MS:  =max,.,<ylI¥(x,) - (dfll), yex,) — yn>cfll)ll (maximum subdominant
error)

The step size employed is & = 0.1, the starting values are exact. We define the
method to have failed if MD or MS exceeds 100.
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The results are as follows:

TABLE 3

Numerical results

BASIC
3 METHOD MC MD MS
MP 3.10, -4 6.46, -9 9.98. -5
0.9234567 10 10 10
AB 9.6010-4 6.4610-9 1.0610-4
MP 3.06,,-4 6.34. -9 1.02, -4
1.1234567 10 10 10
AB Failed after 420 steps
MP 2.93,,-4 6.15,,-9 1.01,,-4
1.3234567 10 10 10
AB Failed after 213 steps
MP 3.89, -4 6.48,.-9 9.69,,-5
1.5234567 10 10 10
AB Failed after 146 steps
MP 5.02,,-3 6.49, -9 9.53, -5
1.7234567 10 10 10
AB Failed after 130 steps
MP 1.82, -3 7.20, -9 9.36,,-5
1.9234567 10 10 10
AB Failed after 114 steps
MP 4.09,,-3 9.40, ,-9 1.84, -4
2.1234566 10 10 10
AB Failed after 104 steps
MP 2.81, -1 4.11, -7 1.39,,-2
2.3234567 10 10 10
AB Failed after 123 steps
MP Failed after 261 steps
2.5234567
AB Failed after 110 steps

Conclusions. Minimal-projecting methods appear to be more robust with respect
to rapidly changing eigensystems than Adams-Bashforth methods, if employed as the
basic method in CDS schemes.

They have the disadvantage that their stepnumber is restricted to k¥ < 6. How-
ever, this is not a severe restriction, since they will be employed for separably stiff
systems with significant interprojection effects in which case small stepnumbers are
preferable.

The zero-stable minimal-projecting methods have comparatively large regions of
absolute stability. This can be explained heuristically by considering them, in the
sense outlined above, to be explicit approximétions to the implicit backward-differentia-
tion formulas.
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