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Recurrence Relations for Computing With
Modified Divided Differences*

By Fred T. Krogh

Abstract. Modified divided differences (MDD) provide a good way of representing a
polynomial passing through points with unequally spaced abscissas. This note gives re-
currence relations for computing coefficients in either the monomial or Chebyshev ba-
sis from the MDD coefficients, and for computing the MDD coefficients for either the
differentiated or the integrated polynomial. The latter operationis likely to be useful
if MDD are used in a method for solving stiff differential equations.

1. Introduction. A modification of divided differences was first suggested by
Blanch [1] as a means of getting some of the desirable characteristics of differences
when working with unequal intervals. Modified divided differences (MDD) of the form
used here were introduced in [2] and developed further in [3]. Shampine and Gordot
use them in [4]; and Jackson [5] has made a careful study of related computational
approaches, concluding that the form used here is best. Jackson has also shown that
the round-off characteristics of these modified divided differences are excellent.

This work is the result of requests from users of a code for solving differential
equations which uses MDD. Several users of this code have wanted to convert MDD t¢
Chebyshev coefficients in order to get results in a form compatible with existing pro-
grams which are used in further processing of the data. For similar reasons another
user was interested in converting differences formed from accelerations to the equiva-
lent differences based on velocities. We believe it worthwhile to call attention to the
fact that computationally efficient procedures are available for getting to various repre-
sentations of a polynomial, starting from MDD’s.

The polynomial of lowest degree passing through the points (¢;, w(t,)), i = n,
n—1,...,n—q + 1 (notation here reflects the fact that MDD are used primarily for the
step by step solution of ordinary differential equations) can be expressed in terms of
divided differences, [6, p. 45], using Newton’s interpolation formula
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or in terms of MDD as
q-1

@) PQ—l,n(t) = Pq-—l,n(tn +h,1) = ‘ZO ¢i(n)ci,n(7)’
i=

where we use notation similar to that in [3]:

h,=t,—t

i i i—1>
T=(t-t,)h,,
gm)y=h, +h,_ o th, =t -t =& (n—1)+h,
o;(n) = h,[&;(n),
Bo(m) = 1,
3 By () = &)/ (n — 1)B, (),
$o(n) = w(z,),
¢;41(n) = 6,(n) —B(m)p,(n = 1) (= £y Ewlt,, tyys oo s iy 1),

Cin = [ai—l(n)T + Ei—2(n)/si—l(n)]ci—1,n’ =1 (E_l(n) =0).

Here we think of the ¢,(n) as coefficients of a polynomial expressed in terms of the
basis polynomials ¢; , (7). In [3], the presentation focused more on the ¢,(n), which
are the modified divided differences of w computed at ¢ = Ly by s e s by_iiq- To
simplify notation, we will no longer explicitly include n when referring to the various
parameters defined in (1)—(3).

Note that for the case of constant stepsize, 8; =1 and the MDD reduce to back-
ward differences. In most applications ¢, is a vector and computational savings can be
realized by taking advantage of constant steps when they occur. More details can be
found in [3] or [4].

2. Converting to the Monomial Basis. In order to get to the monomial basis,
we represent the polynomial in the right member of (2) as

k=0

] Ek—l q—j-2 X
+ o T+ > M; 7
k=0 (& | k=o

where an empty product has the value 1,7 = g — 1 gives a representation as in the right

I i—1 €1
P_m=2 ¢ 1 <“k7+ £ >

i=0 k
@

member of Eq. (2), and j = 0 gives the desired monomial basis. Equating coefficients
in Eq. (4) for the cases j and j + 1 yields
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§
b1t My 0 k=0,
Ei+1
6 M, = & B .
rk G My oy Vo Mo K=1,2,...,9=37],
j+1
G 1M1 k-1 k=q-2-17

The operation count for this recurrence can be reduced by introducing 11711-’ k= M,

kk> O,M]-_H,_l = ¢j+1' Since a = 1,]1710’,c = Mo,k = the desired coefficient of
+1
™,

a]Mi+1,k—l+Mj+l,k’ k=0,1,...,q_3_j,
(6) ]Wj,k=

UMy k-1 k=q=2-7

wherej=q—-2,9q—3,...,0.
The operations in (6) require only a single vector of storage. For example, with

~

M; , always stored in location ;4 444, (6) becomes

af¢f+k+l+¢/j+k+2’ k=09 19"'aq_3_j’
Q) Vitk+1 =

G¥isprr =¥y, k=q-2-7]
j=q—-2,9-3,...,0. A similar recurrence can be derived from Eq. (5.11) of [3].

3. Converting to the Chebyshev Basis. Proceeding as above for the monomial
basis, we write

i=0 k=0

i i-1 £
Po_m=2 & [ (ar+

where T, is the Chebyshev polynomial of degree &, j = q — 1 is the starting point, and
in this case to get the final result we need j = —1. The step fromj=0toj=—11is
a special case and will be treated separately. As before, we equate coefficients in Eq.
(8) for the cases j and j + 1, except this time using the identities: 77, (7) =

[Ter (™) + T (D12, k>0, 7Ty(x) = T, (x).
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€)
§
Gar TGy +r Gt 1,60 k=0,
j+1
§
502G ko1 T Gt ] +§.+1 Cripr k=1,
i
=9 +C 8 k=23 —4-j
7 2a,‘+1[cj+1,k—1 i+1,k+1] $i+1 i+1,k? =2,3,...,q 7,
! NLE k=q-3-j
%011 Gy oy £ Gk =gq 7,
j+1
T TR k=qg-2-]J

The operation count for this recurrence is reduced by introducing éi x = &G for
k>1,GC o =20C .

2050541 k=0,j=q-2,
2ai¢].+1 +C}+l,0’ k:O’]=q—3,
. o[2¢; + Gy il + Gy s k=0,
(10) C].,k = R A ) '
Bou[Crpy oy ¥ Gy par] T Ciype k=1,2,...,9-4-],
%04C ko1 T Gy e k=q-3-]
%05Ci4 1 k1 k=q-2-7J,

Jj=q-3,q—4,...,0. This step fromj = 0 toj = —1 is obtained by equating
coefficients in

g—2 q—1
b+ 7 X CoxTi(M) = 3 C_y ;T (1),
k=0 k=0

using Cy . = Co 4, k >0, Cy o = %4Co.0-

¢o + %C, 1, k=0,
(11) Coyip={ %Cos_y *Cors1)s k=1,2,...,q-3,
%Co k_1» k=q-2,q-1.

As before, the calculations in (10) and (11) can be done in a single vector of
storage. Starting with Y, = ¢,, and with C] x Stored in d/j +k+1» We obtain
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d/q—l =2C¥q_2d/q_1 (]=q_29k=0)a

Vgoa =20 _3¥g 2+ ¥, (=4¢-3,k=0),

ll’q_l =%aq_3\bq_1 (]=q—39k=1),
(12)
G204+ Y5l + Y0, k=0,
B[Vt F Yaarsl T ¥iaksa K=12,00,974)
Vivr+r1 = ) )
B ker T Viskras k=q=-3-]J,
l/zaj‘pj+k+1’ k=q—-2-],

j=q—4,9—3,...,0. And from (11) the final Chebyshev coefficients are obtained
from

¢'0 = wo + 1/2%,
(13) U = %W, +¥ri,), k=1,2,...,q-3,

‘Pk=l/z\1/k, k=q—2,qg-1.

It is sometimes convenient to get a scaled value of 7 in the T,. That is to
obtain the Chebyshev coefficients for the case P, (1) = Z C_, ; T;(A7). Such C’s
can be obtained by replacing o; with a]./)\ in the recurrence (12) and replacing all %’s
in (13) with %\. For example, X\ = h gives an expansion using T} (¢ — ¢,) in place of
T, (¢t — t,)/h.

If one is using the method outlined in [3] or the code in [4], the o’s are avail-
able at the time of integration. Except for the case X = %, a multiplication can be saved
in the innermost loop of (12) by storing aj/27\ in a temporary location when starting a
new value of j.

If one wants to approximate the solution of a differential equation by a
Chebyshev polynomial, and thus wants to get the coefficients of the integrated polyno-
mial, one can save a little computation by computing such coefficients from the Cy
instead of the C_, k- Denoting the kth coefficient of the integrated polynomial by
Ek, and using the identity

Toi(m) Tp (1)
[rmrar = [ B D @]

one has for 2 < k < g — 4 (other values of k are special cases)

\
»

A

a4 G = (I/Zk)[c—l,k—l “C oy kals o 5;( = (k) Co —2 ~ Co,k+2]~

4. Computing Coefficients for the Integrated or Differentiated Polynomial.
When integrating stiff equations, the best integration method depends on whether the
most active transient has decayed. If a procedure such as that in [3] is used, changes
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in the method involve either getting coefficients for the integrated polynomial when
leaving a transient region, or for the differentiated polynomial when a transient is en-
countered.

The best algorithm we have been able to find for the case of variable stepsize is
based on using the recurrence in (7) to get the polynomial in the monomial basis,
differentiating or integrating this polynomial (which is trivial) and then doing the re-
verse of (7) to get back to the original basis. Thus after running through the recur-
rence in (7), ¥, is replaced by (k + Dy, .,k =0,1,...,q — 2, for differentiation
(or with Y, _,/k, k =q,q—1,...,1, for integration). In the case of integration,
¥, is set to the constant of integration. The reverse of (7) is given by

Vg'_1/%, k=q'-2-,
(‘pi+k+2_‘pj+k+l)/aj’ k=q-3-j,qg-4-j,...,0,

i=0,1,...,q9" -2, where ¢' = q + 1, for integration, and ¢' = q — 1, for differen-
tiation. In the case of a constant stepsize, one can accomplish this goal more efficiently
by repeated differencing of the corrector equation

q-1
(16) Vp=h 3 vk,

k=0
Thus after applying the operator V/~! to both sides of Eq. (16) and replacing
vk*i=1y! by 0 for k +j — 1 = g, one obtains

by =k S TR =12
(17) vy, DAY Yo T=1,2,...,q
k=0

and the reverse operation simply involves treating (17) as a triangular system to be
solved for the v¥y!.
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