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An Application of the Finite Element Approximation
Method to Find the Complex Zeros of the
Modified Bessel Function K (z)

By K. V. Leung and S. S. Ghaderpanah*

Abstract. Using a finite element approximation, an iterative optimization scheme is
described to find the z zeros of K, (z) for fixed order n. Two computer programs
have been implemented to find the complex zeros with a computational accuracy of
either 13 or 27 significant digits. The optimization scheme described in the paper
may also be readily applied to find real and complex zeros of an arbitrary function
with real and complex coefficients. Neither its accuracy nor its efficiency is affected
by the number of the roots of the function.

1. Introduction. In investigation of wave propagation and scattering in an elastic
medium, the modified Bessel functions of the second kind K,,(z) are used to describe
the potentials for outgoing radiation waves which decay with distance from their
source. If scattering problems are studied by use of integral transforms, it becomes
necessary to determine the z zeros of K,,(z) in order to locate the poles required for
inversion of the transform.

Luke [7] evaluated the zeros of Bessel functions by means of rational approxi-
mations. Such approximations have proven useful, both as first approximations of the
zeros and as the starting point for iterative schemes that use higher-order rational ap-
proximations to yield more accurate estimates of the zeros. The error in the rational
approximations for K, (z) is treated by Fields [3] and Luke [8], [9].

Other methods have also been employed successfully [12]. Olver [10] evaluated
zeros of Bessel functions of large order using uniform asymptotic expansions. For the
case of Hankel functions, this work has been extended by Cochran and Hoffspiegel
[1]. Based on the McMahon and Olver expansions, Déring [2] derived a method for
the evaluation of complex zeros of cylinder functions.

By tracing the argument of K, (z) along the four sides of a square, and using a
double linear interpolation, Parnes [12] has given an iterative scheme to obtain the
complex z zeros of K, (z) for fixed integer orders n = 2,3, ...,10. The scheme con-
sists of generating a sequence of squares whose sides are reduced by a reduction factor
of 0.1 at each iteration. If the double linear interpolation could ensure that a complex
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zero would always be within these squares, each reduction in the size of the square
would yield a further significant figure in the location of the zeros.

In the following section a finite element method for finding the complex z zeros
of K,(z) is proposed. The method compares favorably with Parnes’s iterative scheme
insofar as its rate of convergence, computational accuracy and efficiency are concerned.
It also compares favorably with other iterative methods such as Ward’s downhill meth-
od [14] and Frank’s quadratic approximation method [4].

2. Formulas and Method. The modified Bessel function of the second kind is
defined as follows:
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Let
) F(xl» x2) = [R(x1,x2)]2 + [I(xp xz)]2 =0,

where R(x, x,) and I(x,, x,) are, respectively, the real and imaginary parts of K,,(z)
with z = x; + ix,.

The problem of finding the z zeros of K, (z) may be reduced to determination of
x, and x, to minimize F(x,, x,). The proposed method of finding the minimum of
F(x,, x,) is described in Appendix I. This method starts with an arbitrarily chosen
initial point (x xJ) and generates a sequence of further points (x7, x3), . . .,
(x1,x3), ..., that converges to a point where F(x,, x,) is minimal. At each iteration
F(x,, x,) is approximated by a quadratic function F*(x,, x,), and the next point of
the sequence is chosen as the point where F*(x,, x,) is minimal.

3. Results and Observations. All calculations were undertaken on a CDC 6400
computer. A Fortran program, using double-precision arithmetic, was able to perform
the calculations to an accuracy of 27 significant figures. However, as complex double-
precision operations are not available in standard programming languages, the real and
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imaginary parts of K, (z) had to be evaluated by the following formulas:
Real:
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where p and 0 are the modulus and argument of z, respectively. The complex zeros
of K, (z) were determined for integer order n = 2(1)10 and are shown in Table II. At
these zeros, F(x,, x,), as defined by (2), is of the order of 10755,

TABLE |
Coordinates of the nodes, and the values of o, a,, o, at these nodes

Qlird) MR ({9 CEIN INCIELN CRE
(0,0 x{0,0) S - %hr x50,0) - %hr 1 o o
e x{l,l) - xl(0,0) . Bt x2(1,1) _ xéO'O) o 1 o
0202 xiz,z) - x{0,0) x;2'2) - x;0,0) .t o o 1
NERY x{0,1) - x{0,0) N %hr x;o,l) _ x;0,0) % % o
0(0:2) xio,z) - {00 xéo,z) _ x2(0,0) . %hr % o %
g2 | (12 X{O,O) RS x;l,z) _ x2(0,0) . %hr o % %

It appears that the required number of iterations, and hence the amount of CPU
time required to obtain the zeros of K, (2), is very sensitive to changes in the reduction
factor \ of the size of the finite elements. Starting from an initially chosen point
where x; = —1.3 and x, = 0.5, and with values of the reduction factor chosen as
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TABLE II
The real parts R(z) and imaginary parts 1(z) of
the complex zeros of K, (z) with n = 2(1)10

n R(z) +1(z)
2 -1.281373797656096478848434T943 4, 2048496520871968779577284110
3 -1.6817888047458U54647221805246  1.3080120322739490396502284389
4 -1.9781618634659070241700412324  2,2043719815468711802301895462
4 -2.6286711679571242189239356978  4.326966486217784651852U769588
5 -2.2186262746398760466991398972  3.1130829449859484932024599078
5 =3.1351328447046434221402224695  1.3038823977137057333868902412
6 -2.4234043880011252372669320326  4.0309615812693082518160866112
6 -3.5510979040000786787689256194 2. 1834951775778858208942180135
6 -3.9615580702543404860650878072  u.333u540861473783228197493649
T -2.6031262658681676073605916898  4.,9559696065385237377946547292
7 -3.9081257398031834786414725236  3.0708717702488955667126782799
T -4.512626T7T4997091289243634516  1.3027788416202u45155997 188405
8 -2.T76414297T73113U22214T4T06T049  5.8867128822557099755500071045
8 -U4,2231522789550338555580428982  3.9650659693874916655430042023
8 -4,9882787925531101790986431543 2, 1770827464789907589102679543
8 -5.2907612925994479853857895222  4.3357769522400T748475850727130
9 -2.9105824231361973641127863752  6.8221903314329512927258712281
9 -U,506465945520297544UG4T7T54224 4, 86520714326372176495419182TT
9 -5.4097UTUUTSH00236316635820253  3.0565442393434597827549120928
9 -5.8665514666851772591442131577  1.3023283269981807534615329324
10 -3.0452934989589U89096726573840  7.7616556708745682219592817911
10 -U,7648453733729039927675961572  5.T70555598709976847552T429057
10 -5.7900271641796772769369101588  3.9409726157692468366207406587
10 -6.3783949707941569023306522990 2. 1742485862026654802191073802
10 -6.6184818847079360692456212008 4. 3368620578620986460836833209

0.5,0.25, 0.025, and 0.0001, a zero of K, (z) is found after 45, 23, 13, and 7 itera-
tions, respectively. The effects of the reduction factor A on the number of iterations
and CPU time are shown in Figures II and III.

x2

(2,2)

1,1
Q( )

*1

FIGURE 1

Finite right-angled triangular element A" associated with X" = (x|, x})
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A second computer program, also written in Fortran, but using single-precision
arithmetic has been tested. This program, which is four times faster than the previous
version, provides computations to only 13 significant digits.
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Appendix 1
The Finite Element Algorithm. The algorithm described here is based on a
sequence of quadratic surface-fitting problems. At each stage of minimization, the
objective function F(x,, x,) is approximated by a quadratic form over the finite ele-
ment region about the current minimum point. Zldmal [16] has proved the exis-
tence and uniqueness of such a quadratic polynomial. Each finite element is a right-
angle triangle, with nodes at the vertices and midpoints of each side. Ghaderpanah
[5] has generalized this technique and applied it in higher-dimensional minimization
problems.
Iteration Steps. 1. Setr = 0. A starting point X = (x?, xg) and a step size
h° are given.
2. Select the vertices Q9 i = 0, 1, 2, for the right-angle triangle A" accord-
ing to the following scheme:
0,0) — yr _ }_l_r K
0 =x <3’ 3)’
0D = @) + 1, 45,
022) = (q(lo,O)’ ng,O) + 1)

and determine the side midpoints as follows:

QR = D) + 9B - 0< 1 <k<2.

Figure I illustrates the construction of the element about the point X.
3. Compute the nodal values F' (1) at the six nodes Q01 ie.,

FG&D = FQWD),  0<i<j<2.
4. Approximate F by the quadratic F* given by

2 2
FrX)=3 > F(’J)S(”’)(ai, 0‘,'):
i=0 j=i
where S¢) | 0 <i <j <2, are the quadratic shape functions defined by
SED(0y, 05) = 22 = 8040 — %8 (0 + &)

and 8,.]. is the Kronecker delta. The functions ; are the coordinate functions defined
by

1
a(X)=—(@;—-q°9) i=1,2, and o, =1-@a, —a,.
i 24 i i 0 1 2

It is easy to verify that the functions S®/) and «; satisfy the respective properties of
shape functions and natural coordinate functions given in [15]. The values of o; at
each node are explicitly shown in Table I. It may be shown that the quadratic F* is
continuous and interpolates F at the six nodes 0™/ ie.,

F*Q®EDy = F(Q®D), 0<i<j<2.
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Moreover, the first and second partial derivatives of F and F* at Q(°:%) are identical.
Therefore, the approximation is of second order over the triangular region, thus

IF(X) - F*(X0)| ~ 0((h))

for all X in A",
5. Determine the new approximation to the local minimum X"+ as follows:

g =g g, i=1,2,

where (o, o , o5) is a stationary of F* in the natural coordinate system obtained by

solving the system of algebraic equations in the unknowns o, o and o/ given by
oF* oF™*
~=0, ~=0, ap +aof +a), =1.
oa) 00,
The solution of this system is given by:
o) = (BAy, —B,4,,)ID, oy = B4y, —B4,,)/D

and o =1 -0} — o), where D =4,,4,, —A;,4,, and

= F(©,0) _op(0,1) 4 (1,1)
= F(0,0) _ p(0.2) 4 [(22),
A,=4,, = F0,0) _ p(0,1) _ (0,2) + F(1,2)
B, = %FO0) ~ FO.1) 4 yp(11),
B, = %F00) — p(0.2) 4 3, (2,2)
Let " be the distance between the solution X = (x,, x,) and the point X" = (x, x5),

ie., 8" = X" — XIl. It may be shown by use of the Taylor series expansion of F' that

for sufficiently small 8", 8"+ is reduced to O((8")?).

6. Termination Criterion and Convergence. Let 0 < X < 1, be a predetermined
reduction factor for the step size. Define the step size /”* ! for the next iteration as
follows:

All

A22

o M if X" is inside A", ie., 0 <of, o], o) <1,
Pl =

h"  if otherwise.

Terminate the process if #"+! < e, or
FX*Y)-F(X)<e, and IX"™*! X"l <e,,

where the nonzero scalars €, €, and e; are predetermined minimal improvement,
minimal step length and minimal step size, respectively. Otherwise, accept the new
point X**1 set r =r + 1 and repeat from step 2.
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