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Arithmetic Progressions Consisting Only of Primes

By Emil Grosswald and Peter Hagis, Jr.

Abstract. Let Nm(x) denote the number of arithmetic progressions consisting of m
primes with largest member not exceeding x. Nm(x) has been tabulated for 3 < m

< 10 and selected values of x between 1000 and 50000, and the results are compared
here with those obtained by (heuristic) asymptotic approximations to Nm(x).

1. Introduction. Although an old conjecture asserts the existence of arithmetic
progressions of arbitrary length and consisting only of primes, the longest known pro-
gression of primes consists of only 17 terms and was discovered only recently [11]. In
what follows, when we mention an arithmetic progression, or even simply a progression,
we shall mean an arithmetic progression all of whose terms are primes. Computer
searches for long arithmetic progressions have been made by Golubev ([1], [2], [3],
[4]), Karst and Root ([9], [10]), Weintraub ([11], [12]) and others ([7], [8]). While
a fairly large number of progressions with 10 terms are known, relatively few with 11,
12, 13 or more terms have been found. In some searches negative primes were accept-
ed (see, for example, pp. 300—301 in [3]), but we shall restrict our attention to pro-
gressions consisting of positive primes only. The letter p, with or without a subscript,
will always denote a prime. In particular, p, will represent the nth prime so that p;, =
2,p, = 3, etc. We shall denote the common difference of any given progression by d.

If p | d, then any p consecutive terms of a progression constitute a complete re-
sidue system modulo p so that one of the terms is divisible by p. It is, therefore, easy
to see that for a progression with exactly p,, terms either d is divisible by P, = 2 - 3
-+ p, or P,_, |dand the first term of the progression is p,. If a progression contains
more than p,, terms, then P, |d. For most of the known progressions with 10 or 11
termsd = P¢ =2 -3 -5+7-11-13 = 30030. Indeed, one might well expect to find
arithmetic progressions of primes with up to 16 terms having common difference Py
but, apparently, none is known with more than 12 terms. (The smallest is 23143 +
30030k (k =0, ..., 11).)

A rather natural question suggests itself: If m is a given positive integer, how
large must x,,, be if one is to have a “reasonable” chance of finding a progression with
m terms, none of which exceeds x,,,? In Table 2 we give for each m = 2,3,...,17
the arithmetic progression with m terms for which the last (mth) term g, is the small-
est known to date. For m <10, q,,, is the minimal value for the last term of a pro-
gression of length m. For m = 11, 12, 13 it is highly likely that the given value of q,,
is indeed the smallest mth term that exists. For m = 14, 15, 16, 17 this is much less
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certain. In any event, these values of q,, indicate rather clearly that we may expect
X, to increase quite rapidly with m. One possible approach to evaluating x,, is to de-
rive a formula (or approximation), say F,, (x), for N, (x), the number of arithmetic
progressions with m terms and largest member not exceeding x, and then determine
Y, so that F, (x) = 1 for x >y, . If for any given m one can show that y,, exists
(and, of course, F, (x) is a “good” approximation to N, (x)), one will have verified
the existence of arithmetic progressions of arbitrary length and consisting only of primes.

Several reasonably independent methods lead to explicit asymptotic formulas for
N,,(x). In what follows we shall discuss two of these formulas which we denote by
Ivm(x) and N, (x), respectively. The smallest positive integer y,,, such that ]T’m(x) =1
for x >y, will furnish us with a (hopefully) reasonable approximation to the desired
value x,, (see Table 2). Moreover, these formulas show that for all m, lim,_, ., N, (x)
= oo and, hence, appear to confirm the stated conjecture. For m < 3, the formulas are
known to be correct. For m > 3, however, all known “proofs” make use at some point
of an unproved assumption. Thus, the use of these asymptotic formulas must, at pre-
sent, be considered as being only heuristically justified.

The purpose of the present paper is to compare results obtained by these asymp-
totic formulas with actual computer counts of N, (x). For practical reasons the largest
value of x considered was 50,000. The results indicate that: (a) for large values of m
the limit 50,000 is far too low to permit any accurate prediction of the growth rate of
N,,(x); (b) the heuristic formulas are probably correct.

2. Some Heuristic Results. In 1922 Hardy and Littlewood published Part III of
their famous series of ‘“Partitio Numerorum” [6]. There, among other results, they
prove a number of theorems based on plausible, but unproved, conjectures. Specifically,
following Hardy and Littlewood, let a,, a,, ... , a,, be given, distinct positive integers;
and let

fm(x) = iz A@AP + al) o Ap + am)xp’
p=

where A(n) is von Mangoldt’s function (A(n) = log p if n = p*, A(n) = 0 otherwise).
Using heuristic reasoning, one is led to Hypothesis X (see p. 56 in [6]): If m > 0 and
r — 1, then f,,(r) ~ S,,/(1 —r). Here S, is a constant, dependent on the a;’s, whose
exact (and rather complicated) definition will not be needed in what follows.

Using Hypothesis X, Hardy and Littlewood prove six theorems. The first is the
justly famous “m-tuples conjecture” which they call Theorem X,. We quote this
lengthy theorem in full, with some minor notational changes, in order to make the pre-
sent paper self-contained.

THEOREM X,. Let b, b,, ..., b,, be m distinct integers, and P(x,b,, ... ,b,,)
the number of groupsn + b,,n +b,,...,n + b, between 1 and x and consisting
wholly of primes. Then

P(x) ~G(by, b,,...,b,,)  Li, (x) when x —> oo,
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where

GGy, ...,b )= (—L>”“‘<P_‘_”>

1 "") pgz p-1 p—1)
v=v(p,b,,...,b,,) is the number of distinct residues modulo p that occur in the
set {b,,b,,...,b,}, and
du
Li,(x)= |7 ——.
)= [ g

Further,

G(by, by, ... b)) =D, ~H(b,,b,, ..., b,),
where

o= IAGE)™ (5=

H(by, by, ..., b,)= H{(l,l_)l)m_l(:;j)} pr|IA (Z::,)

p<m
p>m

and A is the product of the differences of the b].’s.

On the basis of Theorem X; one of the present authors has proved (see [5]) the
following result.

THEOREM. Let m > 2, and denote by N, (x) the number of arithmetic progres-
sions of m terms consisting only of primes, none larger than x. Define the constant

0 e 1 BET G

p>m
and set
_ c 2
) N, ()= 5 >

2Am—1) log™x
Then (assuming Theorem X, )
A3) N, (x) ~ N, ().
The factor 1/2(m — 1) - x%/log™ x in (2) is the asymptotic value of the sum

C)) S,,(x)=> (logn, -logn,, ..., logn, )" .

Here the summation is extended over all m-tuples n,, n,, . . ., n,, of positive integers
such that n; <n, <---<n,, are in arithmetic progression and 2 <n,,n, <x. In-
deed, making use of a highly nontrivial application of the Euler-Maclaurin formula it is

shown in [5] that S, (x) can be represented by an asymptotic series as follows:
2 N a(m
®) Sp)= ——— 11+ 3 —M +0<—L~>$,
2(m — 1) log™x =1 log/ x logh+! x

where all the a]-(m) are computable and N may be taken arbitrarily large. The series it-
self in (5) does not converge.
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At least two other methods lead, but still only heuristically, to (3). One, due to
D. Zagier [13], is based on the assumption of the independence of the distribution of
residue classes modulo distinct primes (regardless of the length of the intervals consid-
ered). The other is based on Vinogradov’s version of the “circle method” of Hardy,
Littlewood and Ramanujan. For m =3, (3) (and, in fact, somewhat more) has been
obtained by this approach without the use of any unproved hypotheses (see [5]); but
for m > 4 the technical difficulties could not be overcome. However, if one proceeds
formally, ignoring such difficulties as large error terms, etc., one obtains N, (x) as the
product of a “singular series” and the sum in (4).

In view of the fact that several methods lead to (3), but that none of them (thus
far) provide a convincing proof if m > 4, it appears desirable at this time to investigate
to what extent actual calculations are in agreement with (3).

3. Auxiliary Considerations. Before we describe the results obtained a few re-
marks are in order. From (2) and (5), for m > 2, (3) is equivalent to

(6) N,_(x) ~ Ni(x) = C,,S,,(x),

where S, (x) is given by (4). However, (6), is meaningful also for m = 1 which is not
the case for (3). In fact, (6) is true both for m = 1 and m = 2 as we easily verify as
follows.

If m =1 then, from (1), C;, = 1 and N (x) = Z}_, (1/log n) = 1lix + O(1),
where li x is the integral logarithm. Since every prime is an arithmetic progression of
length one, V,(x) = n(x); and since, by the Prime Number Theorem, n(x) ~ li x, it fol-
lows that N, (x) ~ N (x).

More can be sa1d For, by the Prime Number Theorem, 7(x) =lix + O(xe“”‘ﬁ;g—x)
= li x + O(x log™ x), where M is any positive integer. Therefore, from the classical
asymptotic series for li x, we have

N @ = L L | O +0< 1 >2
x) = n(x) = — It
1) lgx logx  log?x logV x log"*! x
If m =2, then C, =1 and

NAx) = Zx: (logn, -logn,)™! = %(Z logn> - i 10g‘2n$
n=2

n, =3
2<n, <n,

=%{(lix + 0Q1))? + 0(ix)}= % 1i®>x + O(li x)

= % 1i2 x(1 + O(log x/x)),
where we have used the fact that li x ~x/log x. On the other hand, since every pair
of distinct primes is an arithmetic progression of length two, it is clear that N, (x) is
the number of combinations of w(x) primes taken two at a time. Therefore,

N,(x) = Ha@)[r(x) — 1] = % {li x + O(xe*VOE*)} {1i x + O(xe~eVE ¥)}

=% 1i2 x(1 + o(1));
and it follows that N,(x) ~ N (x). Again using the asymptotic series for li x, we
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obtain

N,x) = %Ba@x) [n(x) - 1] =%[lix + O(x log™M=1x)] [li x + O(x log ™~ x)]

=‘/zli2x[l+0<l lM >]
ogr x

__x 31+ 2 45y O +0< ! >%
2log?x logx  jog2x logV x logV t1x

We now call attention to the following rather unpleasant computational fact. For
a relatively small value of x, say 104, log x =~ 9.2, 2/log x > .21 and 5/log2 x > .05.
Hence, for m = 2 and x = 10%, (5) is affected by an error in excess of 26% if we ne-
glect the “corrective terms” in the asymptotic formula for S, (x). The situation is much
worse for larger values of m.

If m =3, (1) yields C3 = 2 11 ,,, Q-@-1)%H= 2C,, where C = .66016 ...
the “twin primes” constant. From (2) and (3), N5(x) ~ (C0/2)x2/10g3 x. In fact,
it is known (see [5]) that

C 2 a a
Ny = -2 - Xl 2 2 g oL
2 logdx logx  log?x log3 x
where a, = 3.5—log 2>2.8anda, = 13— 5log 2 —log? 2 — 7%/12 ~ 8.231344049 ...
If one so desires, any number of coefficients of the asymptotic series represented

by the bracket in the expression for N;(x) just given can be computed. If x = 104,
then a, /log x > 3. If we neglect this term, our error exceeds 30%. As in the case
m = 2 this example shows that if we want to compare in some meaningful way actual
values of NV, (x) with values obtained by our formulas, we have to choose among the
following options:

(i) formulas (2) and (3) may be used if large enough values of x are utilized so
that the neglected terms of the asymptotic series are indeed negligible;

(ii) formula (6) may be used;

(iii) the first terms of the asymptotic expansion in (5) may be used so that (6)
becomes

C x a,(m) ay(m)
) N,x)~ T 14— 4 X2 (L)
2(m=1) log™x log x log" x logV*t1 x
The need for these corrective terms, at moderate values of x, was already recognized by

Hardy and Littlewood (see pp. 37—38 in [6]).
The values of x required by (i) are beyond the practical range of present day com

puters for counting N, (x). On the other hand, the computation of the coefficients
a].(m) required by (iii), quite easy if m is small, becomes very difficult for large values
of m. These considerations led us to rely primarily on (ii) in the present paper.

4. A Description of Our Tables and Some Comments. Using the CDC 6400 at
the Temple University Computer Center, the values of Nm(x),ﬁm(x) (see (2)), and
N (x) (see (4) and (6)) were calculated for m = 3(1)10, x = 1000(1000)10000 and
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x = 10000(10000)50000 and for m = 3, 4, 5 are given in Table. 1. (An extension of
Table 1 which covers the cases m = 6 to m = 10 is available from the authors upon
request.) The required values of C,, were computed by truncating the infinite product
in (1) at p = 999983, and estimating the error thus incurred. The results (correct to
six significant digits for m < 15 and five significant digits for 15 < m < 20) appear in
Table 3. The values of S,,(x) were obtained by a rather straightforward application of
definition (4). Thirteen significant digits were carried in the calculations, and the re-
sults were rounded to seven digits to minimize roundoff error.

The ratios N, (x)/N (x), N,,(x)/N,,(x) and N} (x)/N,, (x) are also given in
Table 1. If the conjectural (for m = 4) formulas are correct these ratios will all ap-
proach unity as x — o°. Otherwise, only N%(x)/N,,,(x) may be expected to con-
verge to one.

Since (3) and (6) are known to be true for m = 3 but (as of this writing) are still
only conjectural for m > 4, the speed of convergence of N,,(x)/N,’ (x) and Nm(x)/./Tfm(x)
to unity in the former case may be indicative of what could be expected in the cases
m 2= 4 if (3) and (6) are indeed true for all m. In this context we observe that the ra-
tio N;(x)/N3 (x) (the more significant of the two) increases from .841 for x = 1000 to
956 ... for x = 10000 to .980... for x = 50000. For m = 4 the corresponding values
increase from .693...to 927...to .970.... However, already for m = 6 the figures
deteriorate to .371...,.695...,.895..., respectively. For m = 7 the figures are
079...,.439...,.789...; for m = 8 they are 0, .270..., .680...; for m = 9 they
are 0, .221..., 464... . An eventual convergence to unity is still suggested, but the
rate of convergence appears to diminish rapidly as m increases.

TABLE 1
m=3
03 — * — v

x Ns(x) Ns(x) Ns(x) N3/N~.5 N:,,/N3 NS/N3
1000 1500 1782.4 1001.4 .84155 1.4979 1.7799
2000 4457 4980.5 3006.7 .89489 1.4824 1.6565
3000 8478 9255.5 5788.4 .91600 1.4647 1.5990
4000 13356 14472 9256.4 .92290 1.4429 1.5634
5000 19174 20548 13356 .93315 1.4356 1.5385
6000 25679 27426 18048 .93630 1.4228 1.5196
7000 33319 35064 23305 .95024 1.4297 1.5046
8000 41029 43427 29102 .94478 1.4098 1.4922
9000 49721 52488 35422 .94728 1.4037 1.4818
10000 59504 62224 42247 .95629 1.4085 1.4729
20000 186647 193195 135930 .96611 1.3731 1.4213
30000 368304 378543 271156 .97295 1.3583 1.3690
40000 599294 612470 443850 .97849 1.3502 1.3799

50000 873953 891421 651487 .98040 1.3415 1.3683
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m=4

* — * — L.

x N, (x) N, (x) N, (x) N/N, N,/N, N/,
1000 318 458.36 209.22 .69378 1.5199 2.1908
2000 914 1126.1 570.88 .81162 1.6010 1.9726
3000 1670 1956.4 1043.4 .85361 1.6005 1.8750
4000 2555 2925.1 1610.7 .87347 1.5863 1.8161
5000 3568 4017.8 2263.1 .88805 1.5766 1.7754
6000 4704 5224.3 2994.1 .90040 1.5711 1.7449
7000 6004 6537.3 3798.9 .91843 1.5805 . 1.7208
8000 7304 7950.6 4673.4 .91867 1.5629 1.7013
9000 8682 9459.6 5614.6 .91780 1.5463 1.6848
10000 10257 11060 6619.8 .92738 1.5494 1.6708
20000 29811 31516 19809 .94589 1.5049 1.5910
30000 56528 58943 37961 .95902 1.4891 1.5528
40000 89345 92400 60450 .96693 1.4780 1.5285
50000 127397 131323 86899 .97010 1.4660 1.5112

m=35

0 G — v =

x Ng (x) N (x) N (x) Nc /N No/Ng Nc/Ng
1000 58 93.881 32.991 .61780 1.7580 2.8456
2000 141 199.61 81.812 .70639 1.7235 2.4398
3000 245 321.74 141.95 .76148 1.7259 2.2665
4000 352 457.95 211.53 .76864 1.6641 2.1650
5000 464 606.69 289.43 .76480 1.6032 2.0962
6000 604 766.88 374.89 .78761 1.6111 2.0456
7000 780 937.67 467.37 .83185 1.6689 2.0063
8000 923 1118.4 566.42 .82529 1.6295 1.9745
9000 1091 1308.5 671.69 .83376 1.6243 1.9481
10000 1283 1507.6 782.89 .85100 1.6388 1.9257
20000 3484 3925.5 2178.7 .88752 1.5991 1.8018
30000 6383 6995.4 4011.0 .91246 1.5914 1.7441
40000 9894 10614 6213.9 .93216 1.5922 1.7081
50000 13835 14721 8748.4 .93982 1.5814 1.6827

1349

For “large” values of m the upper bound x = 50000 of our computations is to-

tally inadequate for drawing meaningful quantitative conclusions. This is clearly illus-
trated by our findings for the case m = 10. N,,(x)/N],(x) varies from 0 for x = 1000
to .143 ... for x = 10000 and then decreases to .082 ... for x = 50000. This erratic
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behavior is very simply explained. The first progression of 10 terms is 199 + 210k
(k=0,...,9); the next two are 34913 + 2100k and 52879 + 420k (k =0, ..., 9)
with last terms 53813 and 56659, respectively. Consequently, the ratio NV, o(x)/N;5(x)
almost triples from about .08 for x = 50000 to about .23 for x = 57000.

Table 2 has already been described in Section 1. For 5 < m < 20, y,, correct
to four significant digits, is the smallest integer such that ./Vm(x) >1forx=>y,. The
value of y, is not tabulated for m = 2, 3, 4 since IVm(x) > 1 for these values of m if
x = 2.

TABLE 2
m Progression with minimal last term a Y
2 | 2,3 3 -
3| 3,5,7 7 -
4 | 5,11,17,23 23 -
s | s5,11,17,23,29 29 29
6 | 7+ 30k* 157 92
7 | 7+ 150k 907 497
8 | 199 + 210k 1669 1406
9 | 199 + 210k 1879 5086
10 | 199 + 210k 2089 24310
11 | 110437 + 13860k 249037 177300
12 | 110437 + 13860k 262897 829800
13 | 4943 + 60060k 725663 5582000
14 | 46883579 + 2462460k 78895559 2.332 x 10’
15 | 53297929 + 9699690k 189093589 1.137 x 10°
16 | 53297929 + 9699690k 198793279 6.793 x 10°
17 | 3430751869 + 87297210k 4827507229 5.774 x 10°
18 - - 3.303 x 10'°
19 - - 2.564 x 10!
20 - - 1.261 x 1012

*
In each case k = 0,1,...,m-1.

The fact that y5 = q; is, of course, coincidental. In fact, one cannot expect y,,
to approximate q,, too closely. Indeed, this is already precluded by the fact that
IVm(x) has been used to find y,, rather than N,;':(x) and all the corrective terms of the
asymptotic series (5) have been neglected. Furthermore, for small values of x the arith-
metic progressions of length m with largest term not exceeding x are distributed in a
very irregular manner as we saw in the case m = 10. Under these circumstances it is
rather remarkable how well y, seems to indicate the correct order of magnitude of q,,,.
Table 2 also “explains” why it is necessary to go to progressions with such large terms
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in order to find arithmetic progressions with a modest length like m = 16 or 17. Final-
ly, Table 2 indicates that if one is seeking an arithmetic progression of, say, 20 terms
one must expect its last term to have about 13 digits.

TABLE 3
m CIn
3| 1.32032
4 | 2.85825
s | 4.15118
6 | 10.1318
7 | 17.2986
8 | 53.9720
9 | 148.552
10 | 336.034
11 | 511.422
12 | 1312.32
13 | 2364.60
14 | 7820.61
15 | 22939
16 | ss651
17 | 91555
18 | 256480
19 | 510990
20 | 1901000

5. Final Conclusions. While the upper bound, x = 50000, of our computations
is far too small to permit any quantitative inferences, especially for m > 6, the validity
of the heuristic formulas (3) and (6) is strongly suggested by our computer data. This
conclusion is reinforced when one compares the rates of convergence of the ratios
N,,(x)/N}(x) and Nm(x)/ﬁm(x) to one in the case m = 3 (when (3) and (6) are known
to be valid) with those in the cases m = 4 and m = 5 and when one observes the (over-
all) agreement of the orders of magnitude of 4y, and y,,.

Department of Mathematics
Temple University
Philadelphia, Pennsylvania 19122

1. W. A. GOLUBEYV, “Faktorisation der Zahlen der Form x® % 4x? + 3x % 1,” Anz. Oester-
reich. Akad. Wiss. Math.-Naturwiss. KI., 1969, pp. 184—191.

2. W. A. GOLUBEV, “Faktorisation der Zahlen der Form x® * 57, Anz. Oesterreich. Akad.
Wiss. Math.-Naturwiss. K1.,1969, pp. 191—194.

3. W. A. GOLUBEV, “Faktorisation der Zahlen der Formen x*® + 83 und x* + 92009,”’ Anz.
Oesterreich. Akad. Wiss. Math.-Naturwiss. KI., 1969, pp. 297—301.



1352 EMIL GROSSWALD AND PETER HAGIS, JR.

4. W.'A.GOLUBEV, “Faktorisation der Zahlen der Form x* + 4x® — 25x + 13,” Anz.
Oesterreich. Akad. Wiss. Math.-Naturwiss. K1., 1970, pp. 106—112.

5. E. GROSSWALD, “Arithmetic progressions of primes.” (To appear.)

6. G.H. HARDY & J. E. LITTLEWOOD, “Some problems of ‘Partitio Numerorum’; III:
On the expression of a number as a sum of primes,” Acta Math., v. 44, 1922, pp. 1-70.

7. E. KARST, “12 to 16 primes in arithmetical progression,” J. Recreational Math., V. 2,
1969, pp. 214—-215.

8. E. KARST, “Lists of ten or more primes in arithmetical progression,” Scripta Math., v.
28, 1970, pp. 313-317.

9. E. KARST & S. C. ROOT, “Teilfolgen von Primzahlen in arithmetischer Progression,”
Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. Kl., 1972, pp. 19-20.

10. S. C. ROOT & E. KARST, “Mehr Teilfolgen von Primzahlen in arithmetischer Progres-
sion,” Anz. Qesterreich. Akad. Wiss. Math.-Naturwiss. Kl1., 1972, pp. 178—179.

11. S. WEINTRAUB, “Seventeen primes in arithmetic progression,” Math. Comp., v. 31,
1977, p. 1030.

12. S. WEINTRAUB, “Primes in arithmetic progression,” BIT, v. 17, 1977, pp. 239-243.

13. D. ZAGIER, Private communication.



