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Initial Value Methods for Parabolic Control Problems

By Ragnar Winther

Abstract. We study iterative methods for barabolic control problems with a Neumann
boundary value control and where the observation is the final state. The methods are
based on transforming the original control problem (which may have constraints on the
control) into an equivalent problem of minimizing a strictly convex functional (no con-
straints). The methods are semidiscrete in the sense that we assume that parabolic ini-
tial value problems can be solved exactly.

1. Introduction. The purpose of this paper is to study approximations of cer-
tain parabolic control problems. In order to describe these problems, let  be a
bounded domain in R? with sufficiently smooth boundary, 82, and for a fixed 7> 0
let @=(0,7) x Qand X = (0, T) x 9%2.

On the domain £ let L denote the second order differential operator

== 3 — (a0 2 + o
u=- — {a; (x) — c()u.
ij=1 axi .l'] ax]-
We will assume that a;; and c are sufficiently smooth real-valued functions on

Q and that the operator L is strongly elliptic; i.e., there is a constant ¢, > 0 such

that
d

d
Z ai,j(x)5i5j>cl 121 5:‘2

i,j=1

for all x € Q and ¢ € RY.
Now let v, € Lz(Q) and f € L%(Q) be given and for any g € Lz(E), let u, =
ug(t, x) denote the unique weak solution of the problem

dufdt + Lu=f on Q,
(1.1) oufov =g on X,
u(0, -) = v, on Q.

Here 9/ov = Eg].=1 a; ].ni(a/ ax].), where n; is the ith component of the outward unit
normal on 9.
We shall consider optimal control problems of the form

(1.2) gn€1111<1 (T, ) =0, 172, + elgll2 5}
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where v, € L?(Q2) and « > 0 are given and where X is a closed convex set of L2(2).
In Section 2 we shall consider the case when K = L2(Z), while in Section 4 we con-
sider K = {g € L*(Z)Ig >0 ae. on T}.

In both cases we shall derive algorithms where approximations of the solution of
(1.2) are generated by solving linear initial value problems of the form (1.1). This will
be done by showing that (1.2) (in both cases mentioned above) is equivalent to mini-
mizing a strictly convex functional over the entire space L2(Q). The minimum of
this functional can then be found by standard iterative techniques. In the case K =
L?(2) the associated functional is quadratic, and in Section 3 we study how this func-
tional can be minimized by the conjugate gradient method. We shall particularly show
certain superlinear convergence estimates for this method by applying some results
recently given by the author in [13].

In order to evaluate the functionals mentioned above we have to solve two ini-
tial value problems of the form (1.1). Hence, the approximation of (1.2) is reduced
to the well-studied problem of solving problems of the form (1.1) numerically. Such
numerical methods will not be considered here. We shall instead assume that problems
of the form (1.1) can be solved exactly. However, we mention that a detailed study
of fully discrete analogs of the methods considered here was done by the author in
[11] and [12] in the case when K = L2(Z), and some numerical examples- can be
found in [11].

2. Preliminaries. We start with some notation. If H, and H, are two Hilbert
spaces then L(H,, H,) will denote the set of bounded linear maps from H, to H,.
On the spaces L2(Q) and L2(32), respectively, we shall use the notation

(2 xl/)=fn pydx and (g, y)= | ¢¥do

for the inner products, and the associated norms will be denoted by ll- |l and |-].

If p >0, let HP(S2) denote the Sobolev space of order p of real-valued functions
on £ (see for example Lions and Magenes [5]). If p <0, HP(Q) is defined to be the
dual of HP(2) with respect to the inner product of L2(2). Furthermore, we let

WO, T) = 3f|f€ L*(0, T; H' (), gEﬁ(O, T, H“I(Q))i ;

where d/dt is taken in the sense of distributions on (0, T) with values in H' (). We
recall from [5] that W(0, T) C C(0, T; L2(2)).

Let also B: H'(Q2) x H'(£2) — R denote the bilinear form associated with the
operator L;i.e.,

n v oY
B(p, ¥) = fn ; Z (x) a—"' a— + e(x )y %dx
i,j=1

The problem (1.1) can now be written in the variational form

@2.1) {(du/d’ ,0) + B, )= (f, p) + (g, @) for p € H(Q),
(0, ) =v,.
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From [5] we know that if v, € L%(R), g € L*(2) and f € L%(Q), then (2.1) has a
unique solution in W(0, T).
If w € W(0, T) is a solution of the ‘““adjoint problem”

(dwjdt, 9) + B(p, w) =0  for ¢ € H'(Q),
w(0, -) =z,

for some z € L2(2) then we let E(f)z = w(t, *). By using parabolic regularity and
certain trace theorems from [5] we then find that the map

(2.2 z— E(*)zly

is continuous from L?() into L2(Z). (In fact, adopting the notation from [5], the
map is continuous from L2(£) into H"%(Z).)

3. The Case of No Constraints. Throughout this section we consider the con-
trol problem (1.2) only in the case when K = L2(Z). We shall show that this problem
is equivalent to minimizing a quadratic functional over L2(2). It is well known that
(1.2) has a unique solution. The following characterization of this solution is given
by Lions [4].

LEMMA 3.1. Let g € L*(Z) and let u = ug(t, x) be the corresponding solution
of (1.1). Then g is an optimal solution of (1.2) if and only if there is a w € W(0, T)
such that

(dujdt, ©) + B(u, o) + & Xw, )= (f, ¢)  for p € H(Q),
3.1 = (dw/dt, ¢) + B(p, w) = 0 for p € H' (Q),

u@©,)=v;, WD =uT, )~ v,
where g = —a 1wl

The disadvantage of this characterization of the optimal control is that the sys-
tem (3.1) is coupled in time. Hence it is expensive to solve numerically. We also ob-
serve that, if w(T) were known, then the solution of (3.1) (and hence the solution of
(1.2)) could be found by solving two parabolic initial value problems.

The purpose of the rest of this section is to give an alternative characterization
of w(T). From this new characterization we can derive methods for approximating
w(T) directly. We shall first study a parabolic system where the coupling between the
two unknown functions is simpler than in (3.1). For any given z € L?(Q) consider
the system

(da/dt, o) + B(u, p) = o Xw, p)  for ¢ € H(Q),
3.2) — (@w/dt, ) + B(p, W) =0 for p € H(Q),
4(0,)=0, WT, )=z

This system has a unique solution &, w € W(0, T). We now define an operator R:
L%*(Q) — L*(Q) by Rz = i(T). In fact, by using parabolic regularity and trace theo-
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rems from [5], it follows that R € L(L2(2); H'(Q)); hence Rellich’s Lemma implies
that R is a compact operator on L2(2). Note also that an evaluation of the operator
R requires that two parabolic initial value problems be solved.

Next we wish to show that R is positive semidefinite on L2(£2). In order to see
this let z, z' € L?(2) and let &, w and u', w', respectively, be the corresponding solu-
tions of (3.2). Then

(dajdt, w'y + B(u, w') = o~ Ww, w') = (du'/dt, W) + B(u', W)

or
, rd . |, Td , . ,
Rz, ) = [ ;t(u,w)dt—fo ~ @, Wydt = ®2, 2).

Similarly, we also obtain
T .
Rz, z) = 0o ! fo lwl2 dt > 0.

Hence, we have shown that the operator R defined by (3.2) is a positive semidefinite,
compact operator on L%(Q).

Now let u, € W(0, T) be the solution of the initial value problem (1.1) with
g =0, and let by = uy(T) — v,. Furthermore, let u, w be the solution of (3.1) and
let z* = w(T). Then

(3.3) 2* +v, =u(T) = uy(T) —Rz* or (I +R)* =b,.

The equation (3.3) can now be used as a starting point for approximating z*. In Sec-
tion 4 we shall show how the conjugate gradient method can be used to find approxi-
mations of z*. For each iteration one application of R is needed, and hence two para-
bolic initial value problems must be solved. We also observe that z* minimizes the
quadratic functional

¥ (2) = %(( + R)z, z) — (by, 2).

Hence, we have shown that the control problem (1.2) (where the control variable is
in L%(2)) is equivalent to minimizing the quadratic functional ¥, over L2(Q).

4. Application of the Conjugate Gradient Method. In this section we let (-, -)
denote the inner product of a real separable Hilbert space H and |-l the associated
norms in A and L(H, H). Instead of studying only the equation (3.3) we shall con-
sider an equation of the form

4.1 Az=I+ Az =b»

on the Hilbert space H. Here we assume that A is a selfadjoint, compact operator on
H such that A =1 + A is positive definite and invertible.

The conjugate gradient method is an iterative method for the equation (4.1)
which generates a sequence {z,,} of approximations of the solution z from an arbi-
trary initial approximation z,. If e, =z —z, and r, = Ae,,, then the method is given
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by
Zn+1 = Zn + ApSp> &, = "rn "2/(sn’ Asn)’
(4.2) ‘

_ _ _ 2 2
Spa1 =Thae1 T B  So =g B, = lr,  1%/lr, 1%

For a survey of results for the conjugate gradient method we refer to Patterson
[7]. For example, it is well known that the method is linearly convergent when it
is applied to the equation (4.1). This result is obtained by only assuming that A4 is
uniformly positive definite on H. However, as it was observed by the author in [13]
that, when A is compact, the conjugate gradient method is R-superlinearly convergent
(in the sense of Ortega and Rhineboldt [6]); i.e.,
4.3) le, I <(c,)"lleyll,  where lim ¢, =0.

n—oo

The following theorem was proved in [13].

THEOREM 4.1. Let A be a selfadjoint, compact operator on H such that A =
I + Ais positive definite. If {z,} is generated by (4.2), then {z, } converges R-super-
linearly to the solution z of (4.1).

If A is restricted to a certain trace class, then it is also possible to give a con-
vergence rate for the sequence {c,} in (4.3). For any p € [1, ) we let C, denote
the von Neumann-Schatten class of operators on H. For details we refer, for example,
to [9]. Here recall that the operator A € C, if and only if 22| I[P < oo, where
{7\].} is the spectrum of A. Furthermore, the associated Cp-norm is given by

kel 1/p
[N =<,~§1 mjv’) :

The theorem below, again proved in [13], shows that, if A € C,, for some p € [1, o),
then ¢, ~ (1/n)!/P asn — oo

THEOREM 4.2. Let A, A and {z,,} be as in Theorem 4.1 and assume in addition
that A € Cp for some p € [1, ). Then

I, I < (AN IAT DY 21 /m) P LA™ AN Y T I

We now return to the equation (3.3)£ ie,H=L*Q)and A =R. Since we
have already seen that R is a compact, selfadjoint operator on L?(Q), it follows that
Theorem 4.1 applies to this equation. In order to see that Theorem 4.2 applies, we
have to show that R € C,, for some p € [1, e). But this follows from a result of
Pietsch and Triebel [8] which states that L(L%(Q), H(2)) C C, with continuous in-
jection if ¢ > 0 and 1 < p < oo are such that p > d/q. Hence, since R €
LIL2(Q), H'(Q)), R € C, for any p >d.

5. Problems with Positive Controls. We recall that in Section 3 we showed that
the control problem (1.2) with K = L2(Z) is equivalent to minimizing a quadratic
functional over L2(£2). Throughout this section we consider (1.2) with K = {g €
L?(2)lg=>0ae. on }. We shall show that also in this case (1.2) is equivalent to
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minimizing a functional over the entire space L2(Q2). Hence we transform the problem
(1.2) into a minimization problem with no constraints on the space L?%(Q). In this
case the associated functional is not quadratic, but it is still strictly convex; and there-
fore, the minimization problem can be solved easily by iterative methods. In analogy
with Section 3 two linear parabolic initial value problems have to be solved for each
evaluation of the associated functional on L2(2). We also observe that a direct dis-
cretization of (1.2) in the case of positive controls leads to a quadratic programming
problem. Such problems are usually expensive to solve on a computer.

Now let Py denote the nonlinear projection of L%(Z) onto K ie., (Px8)0) =
sup(g(0), 0). As in Section 3 we first consider the parabolic system which character-
izes the optimal solution of (1.2). The following lemma is a consequence of the anal-
ysis given in [4] (see p. 124).

LEMMA 5.1.  The control problem (1.2) has a unique solution. Furthermore,
ifg€Kandu = ug(t, x), then g is an optimal solution of (1.2) if and only if there
isaw€ WO, T) such that

(@u/dt, o) + B(u, ¢) = (f, ¢) + a” (P (-w), p) for p € H(Q),
G.1) —(@dw/dt, ) + B(p, w) =0  for p € H(Q),
u@©,)=v,, W )=ulT, )-v,,

where g = o 1Py (—w).

Again we observe that the essential unknown in (5.1) is w(7), in the sense that
if w(T) were known, then the solution can be found by solving parabolic initial value
problems. In order to characterize w(T'), we define a nonlinear operator analog to the
operator R defined in Section 3. For any given z € L%(Q) let i, we W(0, T) be the
solution of the system

(di/dt, ) + B(@, ¢) = —a NP (-W), v}  for p € H'(Q),
(5.2 — (dw/dt, ) + B(p, W) =0  for ¢ € H'(Q),

#0,°)=0, WT, )=z

and define a map F :L%(Q) — L?(Q) by F(z) = u(T).
We note that, if %, w are given by (5.2), then w(f) = E(T — f)z, where E(t) was
defined in Section 2. For any ¢ € L2(£2) we now have

~

- & UP(~-W), B(T - typ) = < ‘% ,E(T - t)¢) + B@, E(T - t)p) = dit @, ET - t)).

Hence we see by integration that

(53) F@), 0) =~ [ (Pr(-Et)2), E@t)e) dt.
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In particular, if z,, z, € L%(), then
(F(z)) — F(z,), 2, — z3)

=gl IOT (Py(~E(@®)z;) = Pu(—E(0)z,), E(f)z, ~ z,))dt > 0.

(5.4)

Hence, F is a monotone operator on L?(2). Furthermore, we note that since Py is
contractive it follows from the regularity of the map (2.2) and from (5.3) that there
is a constant M > 0 such that

T
59 IF(Gz,) - Fz,)l < s ol fo \B(t)z, — z,)| IE(typl dt

<Mlz, -z,l.

We now note that, if u, w is the solution of (5.1) and z* = w(T), then
(5.6) z* + v, =u(l) = uy(T) - F(z*) or z*+ F(z*)=b,,

where b, = uy(T) — v,.

We also observe that since F' is monotone and Lipschitz continuous it follows,
for example, from Vainberg [10] that (5.6) has a unique solution in L2(2). In fact,
if we define a sequence of approximations {z,},_, of z* by z,,, , = z, — €G(z,),

z, arbitrary, where G(z) = z + F(z) — b, then {z, } converges to z* for 0 <e <
2(1 + M)y~2. However, this is not a practical numerical method since a sharp bound
for the Lipschitz constant M is hard to obtain.

In order to obtain a more practical iterative method for (5.6), we first show that
G is a potential operator; i.e., G is the gradient of a nonlinear functional on LZ(Q).
First observe that F is a positive homogeneous map; i.e.,

F(Bz) = BF(z)  for any B > 0.

Hence, the only possible functional (up to addition of a constant) is given by

¥(@) = [ (602), 2)do = 15(2 + F(), 2) ~ (b, 2)-

THEOREM 5.1. Let ¥ be the nonlinear functional on L2 () defined above.
Then V is Fréchet differentiable everywhere in L*(2) and V¥(z) = G(z).

Proof. We first note that since every continuous Gateaux derivative is a Fréchet
derivative (see, for example, [10]), it is enough to show that G is the Gateaux deriva-
tive of ¥. In order to show this, it is enough to show that F is the Gateaux deriva-
tive of

() = % (F(2), z) = -;-a IOT |E~(£)z|? dt,

where (E7()z)(x) = inf(0, (E(¢)z)(x)). Recall that it follows from [5] that, if 0 € =
is fixed and if {g, } converges to ¢ in L%(S2), then { (E( )0, )(0)} converges to
(E(-)e)(0).
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Now let z, h € LZ(Q), B ER, B+# 0, and consider

1 ~ ~
w(@) = f [W(z + ph) — ¥(2)] - (F(2), h)
= “2% [(F(z + Bh), ph) + (F(z + h) — F(2), 2)] — (F(2), h)
- S "Btz + fr) - 1)z, B0 dt
200 70 ’

1 cr[1l B -
+ 2—a jo [E (E~(t)(z + Bh) — E~(t)z, E(t)z) — (E™(2)z, E(D)h )] dt.

Hence, since ]jmﬁ_,0 w’gi) = 0 by the dominated convergence theorem, F is the
Gateaux derivative of ¥. [0

We now observe that, if z* is the solution of (5.6), then z* minimizes the
strictly convex functional ¥ over L2(£2). In order to find the minimum of this func-
tional we can now apply any reasonable method for minimizing a strictly convex
functional. We shall not go into a detailed study of algorithms for minimizing ¥ here,
but we should like to mention a version of the steepest descent method which is glob-
ally linearly convergent and where no a priori bounds need be known.

Consider the method

(5.7) Z,01 =2, ~N\,G(z,), z, arbitrary,
where A is given by

B 1G(z,)I?

(U +RI6G,), G,))

(5-8) A,

Here R is the linear operator defined by (3.2). We note that in the same way as we
derived (5.3) it follows for z, ¢ € L2(£2) that

T
Rz, ¢y =" [ (B, E@yprat.
Hence, it follows from (5.4) that
(5.9) 0<(F(z)- F¢) z-9) <Rz — ), 2~ ¢).

By using (5.9) and the mean value theorem it now follows that, if {z, } is generated
by (5.7) and (5.8), then

1G(z,)I*
2 + R)G(z,), G(z,))

(5.10) ¥z, ) < V() -

Even if the choice of A, given by (5.8) is not the best possible, the estimate (5.10)
can be used as a test in order to guarantee fast convergence of a method of the form
(5.7).

Finally, we should like to consider the possibility of obtaining superlinearly con-
vergent iterations for the equation (5.6). These methods could for example be certain
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quasi-Newton methods (see the survey paper [1] by Dennis and Moré€). Since a nec-
essary condition for obtaining superlinear convergence is that F be continuously
Fréchet differentiable, we shall give a condition that implies that F has this property.
We assume that for any z € LZ(Q), z#0,
(5.11) m({(t, u) € Z | (E(t)z)(1) = 0}) = 0,
where m( -) denotes the surface measure on Z. A sufficient condition for (5.11) to
be satisfied is that 32 be analytic and that the coefficients a; ; and ¢ of L be analytic
(see for example [4, p. 125]).
For any z € L?(Q) define T, € L(L%(Q), L2(Q)) by

(Tt o) =a [ (B8 Bayprar
forany ¢, ¢ € LZ(Q), where
E®E)x),  if (E@)e)x) <0,
, otherwise.
We note that T, is selfadjoint since (E,(£)¢, E(t)p) = (E,(2);, E,(t)). Also, E,(t)z
= E"(¢)z.

THEOREM 5.2. Assume that the condition (5.11) is satisfied. Then F is contin-
uously Fréchet differentiable for all z € L*(2), z # 0, and F'(z) = T,

(E,)e)x) =

Proof. We first recall from the theory of analytic semigroups (see, for example,
[3]) that there is a constant ¢, > 0 such that for any z € L%(Q2)

IE@zI, <cpt™'/%lzIl, 0<t<T,

where |I-ll, denotes the norm on H' (). It also follows from [5] that there is a con-
stant ¢; > 0 such that for any ¢ € H'(Q),

lol <egy II«pII}/2 lollt/2.
Hence, for any z € L%(Q)

(5.12) E@)zl <cpt™ M2z, 0<t<T,

where ¢, > 0 is independent of z.
Now let z € L2(Q), z # 0, be given and for any h € L2(SZ) consider

w(t) = Fz + h) = Fz) = T h
We would like to show that limy,,_, o lw(®)II/I2I = 0. In order to do so let first
Bty = o (E(O)z + ) ~ E(0)z ~ E,(0) .

Then for any ¢ € L(Q),

T
(w(h), 9) = fo (B(h), E(t)p) dt.
Now let € > 0 be given. First note that, since

(B(h), E(typ) < 207 L IE(t)h! |E(t)0l,
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it follows from (5.12) that there exist a p = p(€), 0 < p < T, such that

(5.13) 12 <om. By at <§ 1Al gl

Define now for each 6 > 0

S =10 w €3, [|EO)W! <81,

where 2, = {(t, ) € Z l#>p}. We note that condition (5.11) implies that
lims_.o m(Sg) = 0. Hence, there is a § = §(¢) > 0 such that

(5.14) J-Ss BR)E(t) do < % IRl gl

Finally, for each /1 € L*(R) let
S5 n =10 w) € X, [IED + m)u) - E@)w)! > 5}.

Now note that it follows from (5.13), (5.14) and from the definition of §(%) that for
any h, ¢ € L?(Q)

(@), o) < elnllol + [ 5 1BE@)| do.
§,h

But since the map & — E( )kl Z, is a continuous map from L?(Q) into az,)it
follows that there is a constant y > 0 such that

Spn=g for lnl<y.

Hence, limy ;¢ llo(®@)II/lIAll = O, which implies that F is Fréchet differentiable at z and
that F'(z) = T,. In order to see that F'(z) is continuous we have to use an argument
similar to the one above. This will be omitted here. [ ’

As a final observation we note that the techniques in this section can also be
applied to elliptic control problems. Numerical methods for such problems were, for
example, studied by Falk in [2]. Also, in this case we obtain numerical methods
that seem to be more efficient than those provided by solving a quadratic program-
ming problem.
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