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On the Roles of “Stability” and “Convergence”
in Semidiscrete Projection Methods
for Initial-Value Problems

By Seymour V. Parter*

Abstract. Consider the initial value problem

wn g;u(r) = Au(d) + @), t>0,

1.2) u(0) = ug,

where 4 is a linear operator taking D(4) C X into X, where X is a Banach space. Con-
sider also semidiscrete numerical methods of the form: find Up(®: [0, T] — X v such

that
au,
N _
.1 ar = ANUN t PN
.2 Up(0) = U € Xy,

where X is a finite dimensional subspace and Py is a projector onto X N

The study of such numerical methods may be related to the approximation of
semigroups and Laplace transform methods making use of the resolvent operators
A4 -1 )—1, Ay — AL N)—l. The basic results require stability or weak stability and
give convergence rates of the same order as in the steady state problems.

1. Introduction. In the early 1950, as scientists became concerned with the
numerical solution of partial differential equations, there were many papers concerned
with the questions of “stability” and “convergence” of solutions of difference approxi-
mations to time dependent problems (now called “equations of evolution”).** In
1951 M. A. Hyman, S. Kaplan and G. G. O’Brien [34] discussed this question and de-
scribed the von Neumann “stability criterion”. In the same year W. Leutert [32] gave
an example of an “unstable” scheme which, nevertheless, was in some sense “conver-
gent”. These results were followed by many, many convergence proofs ([12], [24],
[25], [26] for a few). In 1956 there appeared a paper by Jim Douglas, Jr. [11] “On
the Relation Between Stability and Convergence in the Numerical Solution of Linear
Parabolic and Hyperbolic Differential Equations.” However, Douglas was distracted by
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Leutert’s example and restricted his efforts to the proof that stability (under appro-
priate “consistency” conditions) led to convergence. In the same year (1956) the fun-
damental paper of P. Lax and R. D. Richtmyer [30] employed the principle of uni-
form boundedness to show that if one demanded convergence for a sufficiently broad
class of problems, then stability and convergence are indeed equivalent. This result is
the famous “Lax Equivalence Theorem.” In 1958 H. F. Trotter*** [43] returned to
the questions raised by Lax and Richtmyer and put the results (and theory) into the
framework of the theory of Linear Semi-groups.

During this time an effort was made to understand and clarify the several possi-
ble definitions of ‘“stability.” In particular, in 1960 Strang [40] discussed “weak
stability” in which the solution operator becomes unbounded as Az — 0 but at a rate
which is O(At ™). He proved the following beautiful theorem: If the solution u(x, t)
is sufficiently smooth, then the discrete solution U(x, t, At) of such a weakly stable
method is convergent to u(x, t) and the “rate of convergence” is that predicted by the
truncation error. In 1962 H. O. Kreiss [29] wrote a definitive paper on the relation-
ship between various notions of stability, the von Neumann Criterion and the concept
of “Properly Posed in the Sense of Petrowsky” (see Aronson [1], Wendroff [44] also).

But here we are, some twenty years later, and most research in numerical
methods for partial differential equations is not concerned with difference methods.
The interest is now on Ritz-Galerkin methods, collocation methods, and in general
“Projection Methods.” And, as one reads the present day literature one rarely sees the
word “‘stability.” There are many, many “convergence” theorems (with appropriate
smoothness assumptions).

Of course, there is a good reason for this state of affairs. Most Ritz-Galerkin
methods with a continuous time variable are automatically stable. In fact, this obser-
vation is the beginning and the motivation for the paper by B. Swartz and B. Wen-
droff [42] —one of the early ‘“American” papers on the subject of Galerkin methods
for time dependent problems. Moreover, much of the research of today is concerned
with a host of immediate questions, e.g. time discretization by multistep methods (see
[2], [6], [10], [52] for a few), replacement of integration by quadrature methods
(see [17], [37]), collocation (see [8], [15], [48]).

Nevertheless, particularly as we begin to look at more sophisticated projection
methods, e.g. collocation, it seems reasonable to look again at this concept of “stabil-
ity” and its relationship to “‘convergence.”

In Section 2 we formulate the problem of equations of evolution and semidis-
crete numerical methods based on a sequence of subspaces {X,} and related projec-
tion operators {P,}.

In Section 3 we discuss some examples. In Section 4 we use a modification of
a now standard proof of the “Trotter Approximation Theorem” to discuss the roles of
stability and convergence in a general setting.

***This famous paper is particularly interesting. Most numerical analysts do not realize that
it is primarily devoted to the stability-convergence question, and, most probabilists, who—if they
have read the paper—must know, seldom (if ever) mention this fact.
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This discussion explicitly shows how the semigroup theory clarifies much of the
existing literature. In this connection, it is appropriate to mention that Helfrich [21]
and Fujita and Mizutani [16] make explicit use of the theory of holomorphic semi-
groups in their treatment of parabolic problems.

In Section 5 we discuss a particular definition of “weak stability” and show how
one may obtain “convergence theorems” with such methods provided one has some
additional smoothness and makes a particular choice of “initial values.” The results
of this section may be regarded as analogs of the theorem of Strang.

These results of Section 5 are also closely related to results of Beals [3] for the
partial differential equation.

In Section 6 we discuss parabolic problems in one space dimension.

2. The Problem. Let X be a Banach Space and let A be a densely defined linear
operator from D(4) C X into X. We are concerned with “semidiscrete” numerical
methods for the approximate solution of the initial-value problem

‘%u(t) = Au(t) + (), >0,
(2.1)
u(0) = u, € X,
where f(¢) is an X-valued function of . By a solution (see [22, p. 619], [35, p. 105])
we mean an X-valued function u(¢) which is
(i) continuous for t > 0,
(ii) continuously differentiable (in t) for t > 0;
moreover,
(iii) for t >0, u(t) € D(A4), and
(iv) Egs. (2.1) are satisfied.
We assume that Egs. (2.1) describe a “properly posed problem.
precise, we assume:

k2

To be more

H.1: A is the infinitesimal generator of a C, semigroup 7(¢), and, the unique
solution of (2.1) is given by

22) u(t) = Ty + [, Tt = 5)f(s) ds.

Moreover, the semigroup, 7(t), satisfies
(2.3) TN < Me®?,

where M > 0, w = 0 are fixed constants.
A related problem is the “steady state” or time independent problem

(2.4) Au +fy =0,

where f; is a fixed element of X.

We assume that this problem has a unique solution u for all f, € X. In fact, we
assume:

H.2: A7 exists as a bounded linear operator defined on all of X. Moreover,
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the “resolvent condition” is satisfied, i.e., there is a constant M such that, for all real
A>0, (4 — M)7! exists as a bounded linear operator defined on all of X and

(2.5) (4 = N~ < MA™.

Remark. Assumption H.1 implies an estimate of the form of (2.5). Conversely,
under appropriate assumptions on f(¢), assumption H.2 implies H.1. See [35, p. 21].

A large class of numerical methods for the approximate solution of the steady
state problem (2.4) are described in the following manner.

Let {X,}7 be a family of finite dimensional subspaces of X. (For convenience,
let dim X, = n.) Let {P,}T be an associated family of uniformly bounded projec-
tions of X onto X, with

(2.6) IP,Il < My

Let {A,}7 be an associated family of nonsingular maps from X, onto X,. The
approximant u, € X, satisfies the equation

2.7) A, = =P, fy

In fact, the Galerkin method (or, the direct projection method) is obtained when
(2.8a) X, C D),

and

(2.8b) A,=PA.

A typical theorem associated with the above type of approximation scheme takes the
following form.

THEOREM T. There exists a Banach space X C X with

(2.92) Iyl < CIIyII)?

and a function F(n) { 0 as n — o such that: if u, the solution of (2.4), is in X, then

(2.9b) llu =, | < F@)llul .

If we define Q,, on D(4) by
(2.10a) Q,=A7'P 4,

we can restate Theorem T (T for “typical”) as:
Let u € D(A) N f; then

(2.10b) 1Q,u —ull < F(n)llull)?.

Once one has developed this procedure for the steady state problem (1.4) and
obtained Theorem T, one is naturally led to consider the following “continuous time,
semidiscrete numerical method” for (2.1): Find a X -valued function u,(t) which is

(i) continuous for t = 0,

(ii) continuously differentiable for t > 0,
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and satisfies the initial value problem

d

Eun(t) =A,u,@t)+P,ft), t>0,
(2.11)

u,(0) = UO,n €X,,

where U, ,, is chosen in some prescribed way so that |lug — U, |l is small.
In fact, there are two methods for choosing U, ,n Which come to mind at once.
These are

Uy,, =P u,,
(2.12a) On " n70
and, if u, € D(4),
(2.12b) Up,n = Qntto-

Since 4,, is a linear map from X, to X, , and since X,, is of finite dimension,
each 4, generates a C, semigroup S,(¢): X,, — X,, given by

(2.13a) S (5)=e""".

Moreover, the solution of (2.11) is given by

(2.13b) U, (1) = 5,0, + |18, = )P, f(s) ds.

Definition 2.1. The semidiscrete method described by (2.11) is “stable” if there
exist constants M, & (independent of n) such that

2.14) 1S, < M.

Remark. This definition of “stable” is classical and was introduced by Lax and
Richtmyer [30] and Trotter [43]. The “norm” used in (2.14) is the norm of X re-
stricted to X,.

Applying the general theory of semigroups, we find that the semidiscrete method
is stable if and only if there is a constant M, such that, for all real A > & we have

(2.15) ||(An—)\1)"mll<£—(l%—);, m=1,2,....
Unfortunately, (2.15) is an infinite system of estimates and, in general, not easy
to verify. A much stronger result is: the semigroups S, (t) satisfy
(2.162) 1S, < e®*
if and only if for every real X\ > (o we have

1

(2.16b) 4, —AD7HI < o5

In many cases we find that the semigroup 7(¢) is not only a semigroup in X,
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but also is a semigroup in X. For this reason we will sometimes find it convenient to
assume
H.3: There are constants M, and o such that if x € X, then T()x € X and

(2.17) 17, < Mze""llxll)?.

We close this section with the observation that stable semidiscrete methods are
“stable” under bounded perturbation. Specifically, we have the following

THEOREM 2.1. Suppose the semidiscrete method described by (2.11) is stable.
Let {B,} be a family of uniformly bounded linear operators from X,, to X,

(2.18a) B, X, —X,,

and there is a constant B such that

(2.18b) 1B, < B.
Consider the semidiscrete system

dv, X
= =W, + B, +P,f, >0,

v,(0) =7,

n

(2.19)
0 EX,.

Then this semidiscrete method is stable.

Proof. It suffices to consider the homogeneous case, i.e., f = 0. Since (2.19) is
a linear system of ordinary differential equations with constant coefficients, there is a
solution v, (¢). Moreover, we may write

t
0u(8) = 5,V 0 + [0 5,2 = 9)B,v,(s)ds.
The theorem now follows from Gronwall’s Inequality; see [4] and the basic

estimate (2.14).

3. Examples. Before proceeding to the development of the general theory, we
present some examples which are of particular interest.
Example 1. Let 2 be a smooth domain in R,,. Let

(3.1) X =L*Q),
n a2
(3.22) A=A =;§ a_x,;
and
(3.2b) D(4) = {u € X; u € Hy(Q) N Hy()}.

Let X,, C D(A) be chosen so as to satisfy certain approximation properties (as in [2],
[7], [14]). Let P, denote L? projection onto X,. Let
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(33) A, =P,A.

In this case we are dealing with Galerkin’s Method for the classical Dirichlet problem.
A typical result (Theorem T) takes the form: Let

(3.42) X = {u e D"},

where k > 1 is an integer. Let

k
(3.4b) lul2, = 3 14%ul?.
X S

Then, for u € X , we have

(3.5 1Q,u —ull = 4, P, Au — ull < F@llull,.

See [7], [21], [51]. Turning to the parabolic problem

—Q-Li=Au=Au, t>0,
ot

36) u(x, 0) = uy(x),

we see that it is relatively easy to show that the semidiscrete procedure is stable. In
fact, we have: if u,(¢) € X,, satisfies
ou,,

—at—=PnAun, t>0,

(3.7n)
u,(x, 0) = Un,o(x) €X,,

then after multiplication by u, () we obtain

1d
Ezllun(t)llz = (u,, P,Au,) = (u,, Au,) <O.
Hence |lu, ()l < |IU,, oll. which implies that [|S, ()l < 1. Thus, one easily obtains
results of the form: if u(x, t) and u(x, t) € X, then
(3.8)  lluC:, ) —u,(, DIl < C(@)F(n) max [llu(, sl + lu(, OI].

0<s<t X X
See [7], [13], [36].

Finally, in this case, the basic hypotheses H.1, H.2 and H.3 all hold.

Example 2. Choose X and A as in the previous example. However, we now re-
quire only that the subspaces X, C X belong to H,(£2). Let (, ) denote the inner
product in L2(£2) and ¢, ) denote the inner product in L2(d$2). The numerical
method for the steady state problem

(3.92) AU+ f=0

takes the form: find u,, € X, such that



134 SEYMOUR V. PARTER

(3.9b) (Vuy,, W) + (f,v,) + n°,,v,)=0 forallv, €X,.

3

Here o is a positive constant. In this case we are dealing with the “penalty” method
for the Dirichlet problem. The appropriate P, is again the L? projection onto X, -
However, the operator 4, is a perturbation of the Galerkin operator. This problem
has been analyzed under appropriate conditions on X,,; see [7].

Our next example is one of particular interest from the point of view of the
questions raised in this report. Convergence theorems have been proven by J. Douglas
and T. Dupont [15] and by J. H. Cerutti and S. V. Parter [8]. However, these au-
thors have not touched on the questions of stability in the appropriate norm.

Example 3. Let X = C[0, 1] N {u; u(0) = u(1) = 0}. Let

2
(3.10a) A= (%) + a(x)% + c(x),
where
(3.10b) c(x)<0

and a(x) is a smooth function. Let 0 =xy, <x, <::-<x, =1 and let I; =
[x: 1 xj] . Let k be a fixed positive integer, and let

(3.11a) X, ={u(x) € X n C'[0, 1];u|Ij€Pk+2,j= 1,2,...,m},

where P, , , denotes the polynomials of degree < k + 2, i.e. of “order” k + 2. Let
£y, ..., & be the Gaussian points on [0, 1] (see [8] or [15] for a more complete
discussion) and let

Eis =X +£s(xj—xj_l), ji=1,...,ms=1,...,k

be the local Gauss points. The collocation method for the steady state problem stud-
ied by de Boor and Swartz [5] (their work is far more general, but this is the case of
interest here) is described by the following procedure. Find u, € X, such that

(311b) (Aun)(gls)=f(£]s)$ ]= l, LR m, s = l3°'°, k'
For the parabolic problem

ou _
at _Au +f(xr t))

3.12
(312) u(x, 0) = uy(x).

The collocation method- takes the following form: find u,(x, t) € X,, (for each fixed
t) such that

d
(3.13a) Tut"—(gjs, 1= (A“n)(fjs’ D+fEe 0, 71=12,....ms=1,....k

(3.13b) u,(x, 0) = Un’o(x) €X,.
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Both Dupont and Douglas [15] and Cerutti and Parter [8] showed that one obtains
the same kind of error estimates for the parabolic problem as de Boor and Swartz [5]
obtained for the elliptic (steady state problem) when one used

Un,o(x) = Q,u,.

Those results showed convergence in the maximum norm. Yet none of these authors
established stability in the maximum norm. In terms of the discussion of this report,
Dupont and Douglas established stability in the H , norm and used the imbedding of
H, [0, 1] in C[0, 1] to establish convergence in the presence of sufficient smoothness.
On the other hand, Cerutti and Parter established a certain “resolvent estimate” which
(i) came from the H, stability and (ii) could be interpreted as a form of weak stability
and (iii) was good enough to allow the use of the Laplace transform in the case of
smooth solutions. As far as this author knows, the question of “maximum norm sta-
bility” for this collocation scheme is still an open problem.

Our next example shows that the validity of Theorem T (for the steady state
case) does not imply the stability or general convergence of the time dependent nu-
merical method. In this example the operator 4, is a perturbation of the Galerkin
operator. Moreover, in this case X = X.

Example 4. Let X = L?[0, n]. Let

(3.142) A = (d/dx)?

with

(3.14b) D(A) = {u € H,(0, m); u(0) = u(m) = 0}.
Let

(3.15a) X,, = span{sin jx}l'.'=l,

(3.15b) Y, = span{sin nx}.

We write

(3.16a) X, =X, 07,

and let

(3.16b) 4,= [(dixﬂ ® [—(dixf].

Of course P, is the L2 projection onto X,. If u € D(A) and Au = f with
n d n

(3.17a) f~ i f; sin jx € L2(0, m),
j=1

then

(3.17b) u= i‘, (—£/j*)sin jx.
i=1
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Clearly,
n
P =3 f; sin jx,
=1

and the solution of 4,u, = P, f is given by

(3.18) u,(x) = Z (=£;/j*)sin jx + f—sm nx.
! j=1 n

We have the easy error estimate

41,17 i = |Ifil? 2
e = w12 = + X st <a LR,
n j=n+1 j=n ] n4

On the other hand, let u, = sin nx. Then
2
(3.19) S,(Duy = e" u,.

Thus, the semidiscrete method for the initial-value problem

%;— = Au,
(3.20)
u(x, 0) = u,,

is not stable in any norm!!

In Example 4 we are dealing with a perturbation of Galerkin’s method (see
(2.8a), (2.8b)). In our next example we have a direct projection method which ap-
pears to be unstable.

Example 5. Let 0 <w» <1, and let

(3.21) A=[v 1].
1 v

Let u(x, t) = [u,(x, 1), u,(x, )] T and consider the mixed initial-value boundary value
problem

(3.22a) u,=Au,, 0<x<l,
(3.22b) u(x, 0) = uy(x),
(3.22¢) u,0,)=u,(1,)=0, t>0.

In [20] Max D. Gunzburger considered the following semidiscrete Galerkin ap-
proach to this problem.

Let X,, be determined by using cubic B-splines on a uniform mesh with «7'(0)
=uT(1) = 0 and u}'(0), u5' (1) unspecified. The semidiscrete equations are obtained
by requiring

(3.23) @ —Aul’, V™) =0 for every v" €X, .
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In his interesting report [20] Gunzburger asserts that computational results indicate
instability. He discusses the possible reasons for these difficulties.

If there is instability, as the computations suggest, we have here an example of
a direct projection method which is unstable.

4. The Basic Results. In this section we prove the general theorems which are
essentially restatements of the Lax-Richtmyer-Trotter results in our present context.
The main result is that for stable semidiscrete numerical methods of the form described
by (2.11) we can “lift” the results of Theorem T.

Our first result is a modification and interpretation of a basic identity which is
usually used in the proof of the Trotter Approximation Theorem (see Pazy [35]).

LEMMA 4.1. For every x € X we have (t > 0)
A7VP,T() - S, (0P, 1A x

4.1) t -
= L S,(t - s)[An*an -P,A 1] T(s)x ds.

Proof. Let t > 0 be fixed and let
G,(s) =8,(t—- $)A,71P, T(s)A " x.
Then G, (s) is a differentiable function of 5, 0 <s < Using the basic relations

T(tH)Az = AT(t)z, for z € D(4),
%T(t)z = AT(f)z, forz€X,1>0,

A4,5,()=S5,04,, inX

n’

d
ESn(t)z =A4,5,)z, forz€X,,

we find that

L6,(5) = 5, =147 P, ~ P, A" TO)x.

Integrating this last relationship from O to ¢ yields (4.1).

LEMMA 4.2. For every u € D(A?) we have

(42) 0, TOu - S,)Q,u = fo ! S,(t = 5)P,[Q, T(s)Au — T(s)Au] ds.

Proof. Let x = A%u and apply (4.1).
For the moment, we restrict our attention to the case f(¢) = 0.

THEOREM 4.1. Suppose f(t) = 0. Suppose H.1 and H.2 hold. Suppose that
Theorem T holds and the semidiscrete method is stable, i.e. (2.14) holds. Let u(t) be
the solution of (2.1). Let u,(t) be the solution of (2.11) with U, , given by (2.12b).
Let u(t) and Au(t) = du(t)/dt belong to D(4) N X. Then
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(43a) 10, u(e) = w, (O < BMGFGm) [ =Dl u(o) ds
and

@3b)  llu(@® ~u,@Oll < F(n) [Ilu(t)llf + M, [ LN Au) ds].

Proof. Apply Lemma 4.2 and Theorem T (under the integral sign) to obtain
(4.3a). Then (4.3b) follows from the triangle inequality and Theorem T.

THEOREM 4.2. Suppose f(t) = 0. Suppose H.1, H.2 and H.3 hold and the
semidiscrete method is stable. Suppose Theorem T holds. Let u(t) be the solution of
(2.1) and u,,(t) be the solution of (2.11) with U, o given by (2.12b). Let u, and
Au, belong to D(A) N X. Then

10, u(2) — u, (D < MMM, F(n) [ fo f e (t-s)gas ds] 14ugll,

(4.42)

< (MoMz)C(t)F(n)uAuoui ,
where
(4.4b) c@ = [ fot ew(t=8)gas ds].
Moreover,

(440) (o) — u(ll < Fn)[Mye* g, + (MM, CQON AUl .

Proof. Apply H.3 to (4.3a) and (4.3b) in Theorem 4.1.

Remark. Note the differences in the hypotheses of Theorems 4.1 and 4.2. In
Theorem 4.2 we assume u,, and Au, € D(4) N X ,F which is the hypothesis of Theo-
rem 4.1.

Definition 4.1. The semidiscrete method described by (2.11) is “convergent” if
for all u, € X and all 7 > 0 we have

(4.5a) max {||S,, () Upo~ T(Huyl; 0<t <7} —0 asn-—> oo,
wheneéver
(4.5b) Uy, —tll — 0 asn—> oo

THEOREM 4.3. Let
(4.6) V={u€DA)NX;Au € D(A) N X}.

Suppose H.1, H.2, H.3 hold. Suppose Theorem T holds and the semidiscrete method
is stable. Suppose V is dense in X. Then, the semidiscrete method is convergent.

Proof. Letuy € X. Let {v(")};:=1 be a sequence satisfying

1-Hence, by H.3 u(z) and Au(t) belong to D(4) N X
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(i) For every k, v e v,
(i) 1v*) —ugll — 0 as k — .
Then for every k we have

1S, () Uy, — Tyl

<US, (Do, = Q™I + 115,60, v* = TEW®|| + | T(2) [v™® — ug]|l.

Given e > 0 we may choose kg so large that

A+ M+ He®TYuy v ) < ef10.
Then

1S,(D[Up ,, ~ Q™ 0’
@.7)

— — — — k — — k
< MR U, ,, ~ ugll + He®Mug —v* Ol + 270 - g *0).

Thus, employing Theorem 4.2 with &, fixed, we have

ko)
o))

lim 115, ()0, - T ) = 0
n-—>oo

and
lim sup (IS, () U, , — T(2)u,ll < €/10.

Hence, the theorem is proven.
Employing the “Principle of Uniform Boundedness” in what is now a familiar
argument (see [30], [38]), we obtain the converse result.

THEOREM 4.4. Suppose H.1 and H.2 hold. Suppose the semidiscrete method
is convergent. Then the method is stable.

Returning to the general case when f(¢) # 0, we recall that H.1 includes the as-
sumption that (2.1) has a solution u(#); and this solution is given by (2.2).

THEOREM 4.5. Assume that H.1, H.2, H.3 hold. Assume that Theorem T holds
and the semidiscrete method is stable. Let u(t) be the solution of (2.1) while u,(¢) is
the solution of (2.11). Let uy = U, 0 = 0. Suppose that

fOEDUA)NX, Af)EDMA)NX.

Let C(t) be given by (4.4b). Then

10, u(t) = u, O < | (FIMoM,)F(m)C(2 MAFO, ds
(4.8) :

+ [ BRI, - P,) Oy ds.
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Proof. We have
0,u(t) ~ u, () = [[[Q,T(t ~5) = 5,(t = 5)P,] f(s) s
That is,

Q,u(®) ~u, 0 = [ [0,T(t ~5) = S, (t ~)Q,] f(s)ds

+ [28,(t = 910, ~ P,) f()ds.

Thus, the theorem follows from Theorem 4.2.

Of course, one can now go on to assume that f is approximated by functions
£ € V. In this way one obtains general convergence proofs similar to Theorem 4.3
for the general case.

5. Weak Stability and the Laplace Transform. In the finite difference case,
where the approximate solution is defined only at times t, = kAt¢, one sometimes de-
fines “weak stability” by the condition (see [19], [29])

5.1) IS, (eI < e FapF, k=1,2,...,

where P is a fixed positive number. In analogy to this one might consider in the semi-
discrete case a definition of weak stability by the condition

IS0l < Me®™nF, t>0,

where we remember that n = dim X,.

Unfortunately, at this time we have not seen how to effectively study condition
(5.1). Thus, for our purposes it is useful to work with the resolvent conditions (2.15),
(2.16b) as the basis of stability and a corresponding concept of “weak stability”.

Definition 5.1. The semidiscrete method described by (2.11) is “weakly stable”
if there exists a function M, (o) > 0, and two constants &, ¢ such that: for all \ with
Re A > & we have that (4, — A/ )~! exists as a linear map taking X, onto X, and

(5-2) (4, = N7 <M, (Re MIX - @4,

Remark. Stability implies weak stability because of the equivalent forms (2.15),
(2.16a).

Once one has introduced such a “resolvent condition” for stability or weak
stability one naturally turns to the Laplace transform (see Hille and Phillips [22]) as a
tool of analysis (see Strang and Fix [41], Cerutti and Parter [8] for applied examples).
Unfortunately, this approach seems to demand deeper results for the steady state prob-
lems. On the other hand, we are able to obtain “convergence theorems” for the time
dependent problem in this weaker setting.

In particular, we consider an extension of Theorem T to the case of systems.

We shall sometimes require the validity of a theorem of the following form:
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THEOREM S, N. Consider the steady state system of equations
APy = fy,

A®, =, ., +f,, m=0,1,...,N-1,

(5.3)

and the related discrete system

Aoy =Py Sy,

Apby =Po@psr * o) = sy + Pofyy m=0,1,... N—1.

(5.4)

There is a Banach space Y C X with IIyll}? < Cliylly and

(55 19, = Pyl < CF @)Dy, Iy

Remark. 1t is perhaps worth noting that the Example 4 of Section 3 has the
following properties:

(i) if n > 2N, then Theorem S, N is valid,

(ii) the semidiscrete method is not weakly stable.

Before proceeding with the technical details of the arguments to come, it is per-
haps worthwhile to sketch our approach.

Let u(t) and u,(#) be the solution of (2.1) and (2.11), respectively. Consider
their Laplace Transforms

(5.6) i(s) = f 0°° etu(r)ar, u,(s) = ﬁ) Z ety (¢)dt.
These functions then satisfy

(5.72) sit(s) = Al + f(s) + dig,

(5.7b) sil,(5) = A, 8, + P, f(s) + U ,.

If we imagine s fixed, then (5.7a) is a steady state problem similar to (2.4) which is
solvable by virtue of the resolvent condition (2.5). Moreover, (5.7b) is a discretization
of this problem based on the same subspaces X,, and the projections P,. Thus, if an
appropriate Theorem T(s) holds we would have an estimate of the form (for sufficient-
ly smooth i#i(s))

(5.8) lidGs) - @, < C (S)F(n)llt?(S)II)?.
Applying the well-known integral inversion formula [50], we have with s = y + io
_ _ _1_ Y +ice StrA _a
(5.9a) u(t) —u,(t) = i Sy i € [u(s) —u,(5)] ds,
or
llu(®) = u, (D) < ﬁf“’“ |ICEOIF@IAEI, |ds!
(5.9b) nOI<Z- ) IFm)llu(s) lf s|.

Unfortunately, one must worry about a few technical details. In particular, there
is the question of the convergence of the integrals in (5.9a), (5.9b). At this point, it is
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worth noting that this question is really very different in these two cases. The inte-
gral appearing in (5.9a) is the usual integral of complex variable theory, the Cauchy
limit as the interval of integration tends to e. Moreover, the term ¢'° enables one to
employ (directly or indirectly) the Riemann-Lebesgue Lemma to aid in this conver-
gence. The integral appearing in (5.9b) is a Lebesgue integral, and its absolute conver-
gence is required.

We require one technical lemma concerning the inversion formula (5.9a).

LEMMA 5.1. Let v(?) satisfy the appropriate growth conditions so that its La-
place transform

(s) = f Ow e Stu(t)dt

exists for Re s > é&. Let k be an integer > 0, and let v > &. Let 1 > 0 be fixed, and
suppose that t < 1. Then

vHie g1l (° s _
fy_im e ij; e v(o)do:,ds—O.

Proof. This result is an immediate consequence of the usual formal formulas for
the Laplace transform and its inverse; see [SO]. Intuitively, it asserts that the future
cannot affect the present.

Remark. The growth conditions required in this lemma are easily verified in the
applications to follow. For example, if u(z) satisfies an equation of the form (2.1),
then the appropriate estimates follow from the representation formula (2.2) and esti-
mates on f(s).

Instead of using Egs. (5.7a), (5.7b), (5.9a), (5.9b) directly, we proceed as fol-
lows. Assume that U, , € X, has been chosen so that we need only consider a related
function v(¢), which satisfies

(5.10a) Vo =Von=0
and,
1
. <
(5.10b) lv(-, I S

for an appropriate choice of V.
Let

(5.11) W,(s) = Q,,0(s).

Then, using (5.7a) (with v, = 0) we have, for an appropriate £(s),
(5.12a) A, W, = P,A0(s) = P, [s0(s) - &(s)] .

We rewrite (5.12a) as

(5.12b) (s —A4,)W, = P,[&(s) + s(W, — ()]
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From (5.7b) we have

(5.12¢) (s—4,)0, =P,[5)].
Thus
(5.13a) (s—4,)W, -0,] =sP,(W, - s)).

We may rewrite (5.13a) as

(5.13b) [W,(s) = 0,()] = s(s —4,)"'P.(Q, — D).
Our first result is P special case in which the “mild instability” is truly mild.

THEOREM 5.1. Suppose H.1 and H.2. Suppose the semidiscrete method is
weakly stable with

(5.14) -1<g<o0.

Suppose Theorem T holds, uy, € D(4) N X and Up n = Q,Uy. Furthermore, if v(t) =
u(?) — ug, we suppose that v(r),w'(¢), v"(t) € D(4) N X and satisfy the approximate con-
ditions so that Lemma 5.1 applies. Then, there is a constant K such that

iz—v(O)

(5.158) 11Q,v(®) — v,()Il < F(n) - K@+ 11
dar?

53(0)" + max
t g 0<o<t

(5.15b) lu(®) = v, (I < F(n)llv(t)ll)? +11Q,,v() — v, (DI,
(5.15¢) lu(®) — u, @Ol < llv(®) — v, @Ol + F(n)lluollf.

Proof. Letv, =u, — U, o; then

u(®) —u, (1) = v(t) —v, (@) + [y — Q,u,).

Thus, since Theorem T holds, we need only study v(¢) — v,,(¢). We have

% = Av+ f(6) + Aug,  (0) =0,

dv,
s Av, + P [f(t) + Au,], v,(0) = 0.

Applying the Laplace transform to these equations, we have
sU=A0+g, s, =A,0,+Pg,

where £(s) = f(s) + Augy/s.
Applying the inversion formula [50], we have with s = (& + 1) + io,

1 [(@+1)+iw

0,0 = v,() = 5= ) & 4 1) e [W,,(x) - 0,(s)] ds.

Applying (5.13b) and (5.2), we have

(5.16) 10,0(2) ~ v, (Ol < €@ ¥ DFm) 777 b, @ + Dls = SISO o,
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Since v(0) = 0, we have

(5.17) o) = 122’( )+si2ﬁ) e—“[ ] ot dt.
Let

(5.18a) a=(1+lql)/2,

and let

M@+1) rw
(5.18b) G )f do

2w —oo (02 + l)a'

Then, applying Lemma 5.1 and (5.9b), we have (5.15a). The estimates (5.15b),
(5.15c) follow from Theorem T and the triangle inequality together with the identities

u(t) = up (1) = (@) ~ v, () + Uy — Q)

(&= (2) o

Remark. The error estimate (5.15a) should be compared with (4.3b) of Theo-
rem 4.1. If f(z) = 0, the estimate (4.3b) depends only on IIu(t)II~ and IIdu/dtIIN,
while (5.12) also includes a term Ild2u/dt2II)?. This last term is (apparently) not in-
troduced because of the weak stability (as opposed to stability) but is rather due to
the Laplace transform approach—see the remarks following (5.9a), (5.9b). However,
the resolvent estimate with —1 < g < 0 is a very strong estimate—a sort of “weak ho-
lomorphic semigroup stability.” Such an estimate should not be expected unless 7(z)
is itself a holomorphic semigroup. This would occur if (2.1) were a parabolic problem.
In fact, it is this estimate that was exploited by Cerutti and Parter [8].

Remark. While the results of Section 4 also seem to be based on the choice of
Uo,n = @nuy, there is a significant difference between those results and the result
above. The stability assumption of Section 4 allows for an immediate result for any
Up,n close to u,. In the theorem above we are definitely limited to a restricted choice
of Uy ,, This aspect of the theory will be very clearly emphasized in the more gen-
eral result which follows.

Definition 5.2. Suppose Theorem S, N holds. Suppose

j, ~
(5.19) ¢,=§—‘]‘7(0)ep(,4)nxny, j=0,1,...,N
t
Then
Ad,, = £,
(5.20) NN
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Let q)l-(n), j=0,1,...,N, be the solution of the corresponding discrete system

4 =P fu.
(5.21) nfn(t) =By fy

A,0,, @)= ¢m+l(n)—Pn|:<(%>mf(O):|, m=0,1,...,N—1.

Then, we let En be the operator which maps u — ¢,(n), i.e.

(5.22) 0, u = ¢,(n).

145

THEOREM 5.2. Suppose H.1 and H.2 hold. Suppose the semidiscrete method is
weakly stable with q = 0. Suppose Theorem T holds and Theorem S, N holds with

(5.23) N>gq + 1.
Suppose (5.19) holds and

(5.24) Up.n = Dt = ¢(n).
Suppose
j, ~
(5.24a) rI>].=d—l;(O)€D(A)anY, j=0,1,...,N
dt
and
(5.24b) dV+tly gVt e ¥

and satisfies the necessary growth conditions so that Lemma 5.1 applies.
Then, there is a constant K so that

— d N +1
1 = 4,00 < Ke@ ) max [(4)" uio)] )
o<o<:il\at %
(5.25)
N i
+ CzF(n) Z ||fI>]||Y]—|-
=9 '
Proof. Let
N
(5.26a) u(e) = u@®) - Y @, Fx
j=o0 T’
N /
(5.26b) v() = u, () = X ¢,(n) R
=0 :

Then a direct calculation shows that

dv a\ ,
5.27 = = N — = = 1,..., N,
(5.27a) 0 Av + tNY(@), < dt) v0)=0, j=0,1,...,
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dv a\’
621 S, + 2,60, (5) @ =0, j=0.1..1,

where Y(¢) is determined from the Taylor series expansion of f(#) and u(¢) and A®,, .
Since Theorem S, N holds we have

N tj
llu(e) =, N < 1) = v, Ol + 32 7l9y(m) — &
< ]!
(5.28) ]
N tj
< lu(®) — v, Nl + C,F(n) 3 ||<I>,.||Y].—,.
j=0 '

Therefore, we need only study [lv —v,ll.

The theorem now follows from (5.13b) as in Theorem 5.1.

Remark. Perhaps it seems very artificial to suggest such special initial values.
However, such choices have already appeared in the literature. For example, in Cerut-
ti and Parter [8] just this choice was made in order to assure the “superconvergence”
at the knots. Working on the same problem, Dupont and Douglas [15] employed an
even more complicated algorithm to obtain an appropriate initial value. See [14],
[32] also.

6. Parabolic Problems in One Dimension. Let X = C[0, 1], and let 4 be given

by
©6.1) domain(4) = {v € C?]0, 1]; v(0) = v(1) = 0},
62) Au = gx-a(x)j—; ~ b(x) Z—: — e,

where a(x), b(x) € C'[0, 1], c(x) € C[0, 1] and there exist constants ay, a,, ¢q, €;,
such that

(6.3) 0<agy,<a(x)<a,, 0<cy<c(x)<c,.
Let
(6.4) B =max{|b(x)|,0 <x < 1}.

We consider the parabolic partial differential equation

p(x)%lf = Au + r(x, 1),

©5) u(x, 0) = u°(x),

where p(x) € C[0, 1] and there are constants p,, p, such that
(6.6) 0<py <p(x)<p,.
Remark. The introduction of p(x) has almost no effect on the analysis of Sec-

tion 5. However, since the problems naturally arise in the form (6.5), we choose to
include it in our work of this section.
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Consider a Ritz-Galerkin approach to this problem. That is, let M, be a se-
quence of subspaces of H, such that

6.7 dimension My, = N.

The Ritz-Galerkin approach to the numerical solution of the steady-state problem

(6.8) Ay +rx)=0
is: find Y(x) € My, such that
(6.92) @', v)+ (Y, v) + (c¥, v) = (, v)

for every v € M, where we use the notation

(6.9b) 6. 9= [ o), 19, = . 9)

Our concern here is the establishment of the estimate (5.2) with ¢ = 1/2 and
M, (Re \) = M, a constant.
We first obtain some estimates for the special case when b(x) = 0.

LEMMA 6.1. Consider the eigenvalue problem. Find ®(x, N) € My, and )\, a
complex number, with ®(x, N) # O such that

(6.10) @d', v') + (c®, v) = A(p®, v)
for every v € My,. Then the eigenvalues )\j, j=1,2,..., N, are real and satisfy
2
(6.11a) N =2
) ao

Moreover, the corresponding eigenfunctions (I>j(x, N) may be chosen to satisfy the
modified orthogonality condition

(6.11b) (0%}, B) = b

Proof. The inequality (6.11a) follows from the variational characterization of
the eigenvalues and the minimax principle. The relationship (6.11b) follows from a
standard argument about selfadjoint operators.

LEMMA 6.2. Let f(x) € L%(0, 1), and let
(6.12) De{s=a+i3 18l =>1-a}.
Let s € 0. Then there is a unique function Y(x; s) € My, which satisfies
(6.13) @Y',v") + (Y, v) + s(pY, v) = (£, v)
for every v € My,. Moreover,

21
14 Y(- <£_ N s
(6.142) 1YC, 9, < Y21,
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(6.14b) Y'CLo)l 5 < Iuﬂm
where
5 0 1/2
(6.14c) M, = ;;,',;[1 + ;i] .
Proof. Since (6.6) holds, we may write

N
(6.15) £) = Fx)p(x) = p() 3. f,®y(x, V),

k=1
where
(6.15b) fie = (F @)
We write

N

(6.16) Yx)= > ¥;®(x)

=1

and find that

N N
> yj(>\j + s)(Pq’i, v) = Y fr(p®y,v),
j=1 k=1

ie.

(6.17) v =FI\ + ).

Consider two cases. If s = a + i and a <0, we have |[3| =2 1 — a = |a|. Hence
28% > |sI? or 1/I8l <+/2/Isl. Thus

1 <L {2 a<0.

—— < —= < ,
IN + sl 181 sl
On the other hand, if a = 0, then, since >\

1 1

<_
E T
Thus,
1 1
7, Y)<;0—(pY, Y)= ;()—(Zyip@,-, Zykcbk)’
ie.
1 & 2 2
(6.18) (¥, <=3 Iyl < Z IA1°
Po j=1 Pol sl? =1
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However, f] =(f, <I>].) = (pF, <I>i). Hence,

252 < (oF, F) = (£, fip) < —-Ilfllzz.

Thus, (6.14a) is established. From this estimate we see that Y(x) exists and is unique
because Y(x) is obtained as the solution of N equations in N unknowns.
In (6.13) we let v =Y. We have

@Y, Y+ (cY, V) +s(pY, Y)=(f Y).
Thus

"2 ) 2
a,llY IIL2 < IIfIlL2 i , + Isloyll YIILz.

Using (6.14a), we have

2l Y12, < 5£1|||f||2 2|s|IIfII22,
which proves (6.14b).
LEMMA 6.3. Let
(6.19a) M, = 2BM,,
and let
(6.19b) D, =D N {s; sl > M2}

Suppose r(x, s) is given and for every s € D,, as a function of x, r(x, s) € L?[0, 1].
Let s € D,. Then, there is a unique solution Y(x, s) € My, of the Ritz-Galerkin equa-
tions

(6.20) @Y', v") + (dY', v) + (cY, v) + s(pY, v) = (r, v)
for every v € My,.
Moreover,
\/_
6.21b Y’ <2
( - ) " ( ’ S)”L2 = |s|1/2 ”r( s S)IILz s
(6.21c) MYl < s Sl

Proof. We assume that we have a solution Y(x, s) and write
(6.22a) G(x, s) = r(x, s) — b(x) Y'(x, s).

Then, since s € D C D,, we have
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Y'c, N 2 < IGC, M 2

I Il/2

ie.

Ny'c, M 2 < G, Il + Y'C, 2

Is| 1/2 s Il/2

Since s € D,, we have (6.21b). Applying (6.14a), we have

\/2 1|, M
(6.22b) 1YC, I, < [1 o /z]llr( DIPY

o ISl

which implies (6.21a). Finally, (6.21c) follows from a standard inequality.

COROLLARY. Let =1+ Mg. Then the resolvent inequality (5.2) is satisfied
with

(6.23a) q==%
and
(6.23b) M,(Re \) = 2M, .

Proof. See (6.21c).

Remark. Of course, the estimates of Lemma 6.3 imply stability in the L? norm.
The force of this corollary is that we are obtaining the desired estimate in the maxi-
mum norm.

Application. In [47] and [48] M. F. Wheeler studied these problems. Essen-
tially following her notation we let A = {x }IM o> Where 0 = xy <x, <+ <xp
=1. LetI; = (x;_y, x;), h; = x; —x;_;, h = max h;. Let d be a fixed integer. Let

M%A = (v e [0, 1];v EPM),i=1,2,...,M},
where P(I) is the set of polynomials of degree less than d + 1 on an interval / C R.
Let

MG 2 = {veM®?;v0) = v(1) = 0}.

The dimension ofM(‘f'A isMd—1. Let N=Md — 1 and set My, = Mg'A. A major
result of [47] is, if y € W¥+1:*[0, 1], then

(6.24) I = Q)Y = Iy — AR Py AVl < CHE MM iy s

where Py, denotes L? projection onto M N-

Thus, with X = W9+ 1[0, 1] we may apply Theorem 5.1 (if p % 1, we merely
repeat the argument of Theorem 5.1. There is no difficulty with this modification) to
obtain the following result for the parabolic problem (6.5).

THEOREM 6.1. Let U(x, t) € My, for each fixed t, be that function which sa-
tisfies

(6.25a) (pU;,v) + @U,,v,) + (U, ,v) + (cU, v) = (r, v)
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for every v € My, with
(6.25b) Ulx, 0) = U%x) E My,
chosen as the solution of

@U2,v,) + UL, v) + (cU°, v) + @(pU°, v)
(6.25¢)
= (aug, v,) + (bug, v) + (cug, v) + @(pu®, v)

for every v € My, Let u(x, t) be the solution (6.5). Then,

U@ — u@ll. < Chd“IIuOIIX,
(6.26)
d’u

dr?

+Chd+le(w+1)t Max
0<o<t

d_u" + Max
dtlly  o<ost N
X

We observe that the result given in [48] is stronger because the error estimate
given there does not depend on d%u/0t2. However, we have already discussed the
occurrence of this term.

On the other hand, because we have obtained the estimate (5.2) (with M, (Re X)
= M, a constant) in a region which reaches into the left halfplane, we easily obtain
the next result.

THEOREM 6.2. With the same hypothesis as in Theorem 6.1 there is a constant
C(7) depending only on 7, such that if 0 < 7 <'t, then
d_u"
dtii
b

6.27) U@ —u@)ll. < Che (U0 + C(r)Re +1e® +1)t) Max
X o<o<t

Proof. We turn to the proof of Theorem 5.1.
The estimate (5.17) is now replaced by the estimate

sy L[ —st| 4
56s) = fo e [ Z v(t)] dt.
Moreover, the contour of integration in the inversion formula (5.9a) is shifted from
the vertical line Real(s) = v to the curve I' given by: let s = a + i, then we have
three straight lines
B=a—-2w+1), —o < a<(w+ 1),
(6.28) a=w+1, “(w+ << (w0 + 1),
B=—a+2@+1), -o<a<(@®+1).

As we see, the integrals now converge absolutely for 0 <7< t. See [8], [41] where
similar computations are carried out.
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Finally, this contour can be used to obtain convergence 0 < 7 < ¢, when U 0=
PNuo; see [8]. Indeed, A-stability results are obtained by further shifts of the con-
tour; see [8].
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