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Computational Complexity of One-Step Methods
for Systems of Differential Equations*

By Arthur G. Werschulz**

Abstract. The problem is to calculate an approximate solution of an initial value prob-
lem for an autonomous system of N ordinary differential equations. Using fast power
series techniques, we exhibit an algorithm for the pth-order Taylor series method re-
quiring only O(len p) arithmetic operations per step as p — + . (Moreover, we
show that any such algorithm requires at least O(pN) operations per step.) We com-
pute the order which minimizes the complexity bounds for Taylor series and linear
Runge-Kutta methods and show that in all cases this optimal order increases as the er-
ror criterion € decreases, tending to infinity as € tends to zero. Finally, we show that
if certain derivatives are easy to evaluate, then Taylor series methods are asymptotical-
ly better than linear Runge-Kutta methods for problems of small dimension N.

1. Introduction. Let D be a set of points in the real N-dimensional linear space
RY, and let / be a set of operators on RY such that the initial value problem of
finding a function x : [0, 1] — RY satisfying

(1.1) x(t) = v(x(r)) if0<t<1,

x(O) =Xg»
has a unique solution for every (x,, v) € D x I/; we assume that x is analytic on [0,
1]. (The autonomous form of this system is no restriction, since any nonautonomous
system may be made autonomous by increasing the dimension of the system by one;
however, see the comment after Theorem 3.1.)

In Werschulz [1976], we looked at the computational complexity of using one-
step methods to generate an approximate solution to (1.1) on an equidistant grid in
the sense of Stetter [1973]; that is, the methods considered computed approximations
x; to x(ih) by the recursion

(1.2) X =X +hox, h) (0<i<n-1,n=hr"),

where 7 = n~! is the step-size of a grid with n points, and ¢ is the increment function
(Henrici [1962]) for the method. (To be brief, we will refer to “the method ¢.”) In
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that paper, we discussed the problem of optimal order and minimal complexity for
rather general classes of one-step methods.

In this paper, we will use the techniques and results of Werschulz [1976] to
analyze the complexity of using Taylor series methods and linear Runge-Kutta meth-
ods to generate approximate solutions whose error does not exceed e. The model of
computation, error measure, and complexity measure to be used are described in Sec-
tion 2, as well as the relevant results from Werschulz [1976].

We discuss the complexity of Taylor series methods in Section 3. Using the fast
power series techniques of Brent and Kung [1978], we show that O@"1n p) arithme-
tic operations suffice to compute the pth-order Taylor series approximation; moreover,
we show that O(p"V) operations are necessary. In Section 4, we discuss the complexity
of linear Runge-Kutta methods. In both sections, we compute lower and upper
bounds on the complexity using a fixed method of given order; these results are then
used to compute optimal orders which minimize these complexity bounds. We show
that in all cases, the optimal order increases as € decreases, tending to infinity as €
tends to zero.

Finally, we compare these two classes of methods in Section 5, where we show
that if the partial derivatives of v are easy to evaluate, then Taylor series methods are
asymptotically better (as € tends to zero) than linear Runge-Kutta methods for prob-
lems of small dimension V.

2. Preliminary Results. Before proceeding any further, we will establish some
notational conventions. Let X be an ordered ring; then XT and X7 respectively de-
note the nonnegative and positive elements of X. (This is used in the cases X = R,
the real numbers, and X = Z, the integers.) The symbol “:=" means “is defined to
be.” We use “I”’ to denote the unit interval [0, 1]. The symbol “V” is used to de-
note the gradient of a mapping. The notations “x {4” and “x t4” are used to indi-
cate one-sided limits.

We next describe the model of computation to be used. We assume only that
all arithmetic operations are performed exactly in R (i.e., infinite-precision arithmetic)
and that for any algorithm to be considered for the solution of (1.1), a set of proce-
dures is given for the computation of any information about v required by that algo-
rithm. (For instance, with Runge-Kutta methods, we must be able to compute v at
any point in its domain.)

In addition, we must pick an error measure, so that we may measure the dis-
crepancy between the approximate solution produced by ¢ (via (1.2)) and the true
solution. For the sake of definiteness, we use the global error

2.1 o(p, h) := max lx@h) — x|,
0<i<n
where |-l is a norm on RY. Other error measures may be used such as the local er-

ror per step and the local error per unit step (see Henrici [1962] and Stetter [1973]
for definitions); this would involve only a slight modification of the results contained
in the sequel.
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We now describe the complexity measure to be used. Let & = {¢p pEZTH)
be a basic sequence in the sense of Werschulz [1976]; that is, we may write

2.2) o(p,, h) = k(p, Wh? forh Elandp € Z*H,
where
(23) 0 <Ky (p) S k(p, 1) < ky(p) <+ forh €L

We say that @p has order p. This is a slight extension of the definition of order given
in Cooper and Verner [1972]; the function k, introduced here is necessary and suffi-
cient for the “order” of a method to be unique. Then we will be interested in the
total number of arithmetic operations C(p, &) required to guarantee that

(2.4) o(p, h) < €=,

for a given p and a given . (Here e is the base of the natural logarithms.) We sup-
pose that 0 < e < 1, so that « is positive. Clearly, « increases as € decreases, and «
tends to infinity as € tends to zero.

In the methods we consider, we may write

(2.5 Cp, @) = ne(p),

where 7 is the minimal number of steps required and the cost per step c(p) is the num-
ber of arithmetic operations required for the method of order p. As in Traub and
Wozniakowski [1976], we shall express the cost per step associated with ¢, in the
form

26) o(p) = u@, (V) + d(p).

Here ‘Rp(v) is the information about v required to perform one step of ¢, and we
write u(‘ﬁp (v)) for the informational cost of ¢, we call d(p) the combinatory cost
of Gp-

Note that we explicitly indicate the dependence of ‘.np on v, so that we may
compare the cost of (say) an evaluation of v with a scalar arithmetic operation. Ba-
sically, ump(v)) measures the cost of getting new data about v required by Ops while
d(p) measures the cost of combining this new data to get an approximate value of the
solution at a new point. For example, Euler’s method in RY,

Xy, = X; T ho(x)),

has informational cost E?Ll u(v;), where v, . . ., vy are the components of v, and
for any function w: RV — R, we define

(2.7) u(w) = cost of evaluating w at one point,

which we assume to be independent of the point of evaluation. The combinatory
cost is 2V arithmetic operations, i.e., one scalar multiplication and one scalar addition
for each of the N components.

We must now face a problem that occurs in almost all areas of complexity
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theory. The number of operations c(p) required for one step of a pth-order method
is usually unknown per se; we only have bounds of the form

(2.8) ¢, (p) < cp) < c,(p).

That is, ¢, (p) is a lower bound on the number of operations required per step, usually
derived via theoretical considerations, and c,(p) is an upper bound on the number of
operations required per step, which is derived by exhibiting an algorithm for comput-
ing the pth-order method. (In what follows, we shall assume that the functions c;,
K;: Rt — R* (i = 1, 2) are analytic and that limp_,oxi(p)l/p > 0, although this re-
quirement may be greatly weakened. However, this assumption holds for all examples
that we consider.)

From the discussion in Section 3 of Werschulz [1976], we find that the step-
size h must satisfy

(2.9) hy(p, ) <h <h,(p, @),
where
(2.10) h(p, o) = k()PP (i=1,2).

Using (2.5), (2.8), (2.9), and (2.10), we may find bounds on the complexity C(p, @).
THEOREM 2.1. Define (fori= 1, 2)
CAp, &) = f,(p)e®/P, where f,(p) := kp)' Pcp).
Then
(2.11) C,(p, @) < Cp, 0) < Cy(p, ®-

Proof. See Theorem 3.1 of Werschulz [1976]. O

Thus, we have bounds on the complexity of using ¢, to compute an approxi-
mate solution satisfying (2.4). We now wish to consider the problem of optimality.
Define

(2.12) C*(e) = inf{C(p, a): v, € P}.

We are interested in bounds for C*(a) under reasonable assumptions about f; and f,.
We first suppose that (fori = 1, 2)

(2.13) fp)>0 ifp>0
and

lim £,(p) = +°.
(2.14) lim )

Assumption (2.13) is that there is no method whose cost per step is zero, while (2.14)
essentially means that the “better” a method is (i.e., the higher its order is), the more
we should expect to pay for its use.

Using the techniques of elementary calculus, we find that a necessary condition
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for p to minimize Cy(-, ) is that

(2.15) a = GAp) := P*f{P)If{p).

Sufficient conditions for the existence and uniqueness of a solution to (2.15) which
actually minimizes C;( -, @) are given in

LEMMA 2.1. Let f; satisfy (2.13), (2.14), and
(2.16) Gip) >0 if G(p) > 0.

Then (2.15) has a unique solution p}(a), and
2.17) CHa) = CipF(@), &) < Cdp, @) forp ER*T,

with equality in (2.18) or (2.19) if and only if p = pf().
Proof. See Theorem 2.1 and Lemma 3.1 of Werschulz [1976]. O

We call p§(a) (respectively, p3(a)) the lower (upper) optimal order, C}(a) (re-
spectively, C3(a)) the lower (upper) optimal complexity, and

(2.18) h¥(@) := hf(p¥(a), @) (respectively, h5(e) = h,(p3(@), @)

the lower (upper) optimal step-size. Combining (2.11), (2.12), and Lemma 2.1, we
have

THEOREM 2.2.
CHo) < CH*a) < Cio. O

We next describe the behavior of these quantities as « increases and tends to in-
finity.

THEOREM 2.3. Let f; be as in Lemma 2.1. Then pf(c) and C}() all increase
monotonically and tend to infinity with a.

Proof. See Theorems 2.2 and 3.3 of Werschulz [1976]. O

Finally, we need a restriction of the problem class D x V to “sufficiently diffi-
cult” problems; this will allow us to determine Kk, and thus establish lower bounds.
We will assume that

(2.19) o(p,, k) = (M kY ifhE€landp € Z**

for some M; > 0 independent of z and p. In the methods we study, (2.23) holds pro-
vided all sharp upper bounds are attained.

3. Taylor Series Methods. The class @, of Taylor series methods is defined by
taking a truncated Taylor series as an approximate solution. From (1.1), we see that
the increment function @, is given by

p—1 hk

3.1 = K)(y.
(3.1) 0, (% 1) : kz=:o v®)(x;) PR
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where (using the notation of Henrici [1962])

k
(3.2) vF)(x,) = <%> v(x(?))

x(t)=x;

The usual method of computing (3.2), as described in “classical” numerical analysis
texts invokes the chain rule. This quickly leads to expressions of horrifying complex-
ity; for this reason, most texts quickly abandon the discussion of high-order Taylor
series methods.

We are interested in faster algorithms for computing ¢, First, we address the
problem of a lower bound for the combinatory cost d(p) of Gp-

THEOREM 3.1. There exists a, > 0 such that
(3.3) dp) =>a,p" foranypeZ*t+.
Proof. Any algorithm for computing ¢, requires the information
RN,@) = {DPv:0< 1l <p-1}.

We use the standard multi-index notation found in Friedman [1969]; that is, for § =

Bys -5 By EE@T
5 3 \A o \Anv N
DFy .= | — oo l—) v and I8l:=3 B,
i=1

0x, 0x

It is then easy to see that the above set has O(pY) (as p 1 =) distinct elements, which
are (generally) independent; this is an immediate consequence of Problem 11 in Chap-
ter 1 of Polya and Szeg6 [1925]. Thus, (3.3) gives a lower bound which is linear in
the amount of information required. [

Note that @, in (3.3) depends on N. Since we are treating the case where NV is
fixed and p is allowed to vary, we will not indicate this dependence explicitly. Also
note that Theorem 3.1 need not hold if we cannot assume the independence of the
derivatives of v € U, i.e., if |/ satisfies some special property. In particular, the theo-
rem need not hold for N-dimensional problems which arise by changing an (V — 1)-
dimensional nonautonomous problem to an N-dimensional autonomous problem.

We now see how close we can get to an optimum value for d(p).

THEOREM 3.2. There exists a constant a, > O such that the combinatory cost
d(p) of computing vp, € Pp satisfies the bound

(3.4 d(p) < a,p" In(p + e).
Proof. We first consider the case N = 1. Note that x(k) is the zero of

(3.5) F(z) = j io dtu(E) - h.

As in Brent and Kung [1978], we consider the formal power series

P(s) := F(x, +5) — F(x,),
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where s is an indeterminate. Let V be the power series reversion of P. Adopting the
notation of Brent and Kung [1978], we see that

x(s) = xo + V(s) = xo + V,(s) + O(P*1).
By the uniqueness of the Taylor coefficients of an analytic function, we see that
¢p(xg, B) = h71 V,(h).

Since the number Vp(h) can be computed in O(p In p) operations from the Taylor
coefficients of v (by Theorem 6.2 of Brent and Kung [1978]), the result for N =1
follows.

For N > 2, we use Newton’s method (Rall [1969]) applied to the formal power
series operator P given by

Er)E) = ¥6) = xo — |, viy(r)dr;

clearly, the formal power series x(s) is the zero of P. The algorithm itself is defined
recursively. Let a formal power series X ,(s) satisfying x,y(s) = x(s) + OGP ") be
given. Precompute

3.6) w(s) = f: UX (p)(T) AT =X = X () + 0(s*P+?),

(3.7 0(s) = Vu(x,)(5) + O(s?P*2),
and let u(o)(s) := 0. Then set

x(2p+1)(s) = x(p)(s) + “(p+l)(s)’

where

B8 ugy) ) = f : QMg (M dr + wis) + 0?P*?),  0<k<p.

Following the proof given in Rall [1969], we find that X2p H)(s) = x(s) + 0(s?P*2).

We need only consider the cost T(p, N) of computing the series x(p)(s) in de-
termining d(p), since x(%) may be recovered from the formal power series in O(p)
operations. Clearly, we have the recursion

(3.9) Tp + 1, N)<T(p, N) + T + T, + T,

where T, is the cost of step (3.m) for m = 6, 7, 8. Let COMP(p, N) be the time re-
quired to find the first p terms of the formal power series f(y,(s), . . . , ¥ y(s)), where
f, ¥y, ...,y are formal power series, and y,, . .., y, have zero constant term.
Theorem 7.1 of Brent and Kung [1978] states that

COMP(p, 2) = O(p* In p),
and it is easy to show that for any N € Z+ ™,

COMP(p, N + 1) = O(p COMP(p, N)).
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Thus, for N = 2 we have
(3.10) COMP(p, N) = O(p" In p);
and so, we see that T, + T, = O((2p + 1)VIn p). Finally, let MULT(p) be as in
Brent and Kung [1978]; we see that
Ty = (p + D)[N*MULT(2p + 1) + O(p)] = O((2p + 1)* In p)
if Fast Fourier Transform multiplication (Borodin and Munro [1975]) is used. Since
N = 2, we have
(3.11) Tg + T, + Ty =0(2p + 1) In p),

and so (3.9) and (3.11) imply that T(p, N) = O(p"'In p), which completes the proof.[]

(Note that the second algorithm is inferior to the first algorithm when applied
to the scalar case N = 1, where we find that the second algorithm requires O(p?In D)
arithmetic operations.)

We now determine bounds on C(p, @). First, consider lower bounds. Clearly,
there exists u, (v) > 0 such that

(3.12) uDPv)>u, () (1 <i<n IpleZh).

Since ‘Rp(v) has O(p™V) elements, there exists a constant b, > 0 such that

(3.13) u@, () = b u, )P".
From (3.3) and (3.13), we have a lower-bound cost per step of
(3.14) c,(p) = [a; +b,e,)]P".

This leads to
THEOREM 33. C,(p, ® =M, [a, + b e, (v)]pNe®/P.

Proof. This is an immediate consequence of (2.19) and (3.14). O
Note that f, (p) := M, c,(p) satisfies the conditions of Lemma 2.1. Thus, the
optimality theory of Section 2 holds. In particular, we have

THEOREM 34. C¥(0) =M, [a; + b,e, ()] (e/N)Ve.
Proof. From (2.17) and (3.14), we find that G,(p) = Np, so that
P¥()=0o/N and h¥)= (M) !,

The result follows by letting p = p*(a) in the definition of Cp o O

Next, we turn to upper bounds on the complexity. Theorem 3.2 tells us how to
combine the necessary information to get the solution at a new grid-point; we need
only measure the cost of getting the information. So, let

u® () = max{u(DPv)): 1 <i <N, I8l = k}.
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Using the result in Pdlya and Szego [1925], we see that

p—1 -
(3.15) uN,EN<N Y u(k)(v)<N +: l>.
k=0

Unfortunately, the right-hand side of (3.15) does not fit our general model, so we
must assume that we know how u(* )(v) changes as k increases. We will consider the
case where the cost of derivative evaluation is bounded, that is, we will assume that

(3.16) u®(v) < u,(v)

for some u,(v) independent of k. Other cases (e.g., u® ) = O(K™) for some m >
0) may be analyzed in a similar manner; of course, they will give different results. By
(3.15) and (3.16), there is a b, > 0 such that

(3.17) U(RN ,©)) < byu, PV
From (3.4) and (3.17), we have an upper-bound cost per step of
(3.18) ¢,(p) = a,p" In(p + €) + b,u, )PV .
This leads to
THEOREM 3.5. There exists an M, > 0 such that
Cy (0, @) = M, [a,pV In(p + €) + byu,(w)p™]e*/P.
Proof. By Cauchy’s Integral Theorem there exists a B > O such that
Mx®+ DUk + 1)! < B¥,
where we define

(3.19) iyl := max Iyl
€1

for any y: I — R¥. Thus by Section 3.3-3 of Henrici [1962], we see that a Lipschitz
constant for p, in @ is given by

p—1 p—1
> MxEEDNRE (e + 1)1 < Y Br)F <L = (1 -Bhy)!,

provided that # < hy, < B~'. By Sections 3.3-2 and 3.34 of Henrici [1962], there
exists an M, > 0 such that o(p,, h) < (M,h)P. The result now follows from Theo-
rem 4.1 and (3.18). O

We are now ready to consider the optimal p for C,(p, o).

THEOREM 3.6. (1) For all a > 0, there exists p3(c) such that (2.17) holds.

(2) p3(«) increases monotonically with &, and p3(c) ~ of/N as at oo,

(3) C%(«) increases monotonically with o, and C3(c) ~ Mzaz(e/N)N oIn o
as ot oo,

(4) hE(@) ~ M,eV) ! as atoo,
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Proof. Clearly, ¢, satisfies (2.13) and (2.14). Now write
GZ(p) = Gzl(p) + Gzz(p),

where
Gzl(P) =Np and Gz(p) = sz/Dz(p)',

here we set
D,(p) =(pte)lpte)in(p +e)+1] and v:=a,/[be,(v)].
We see immediately that G, satisfies (2.17); a straightforward calculation shows that
vp[ln(p + e) — 1] + 2e[vIn(p +¢) + 1]
D)’ ’

so that Géz(p) >0 for p > 0. Thus, G,, satisfies (2.16), which shows that G, satis-
fies (2.16). Hence, p% and C% behave as described in Theorem 2.3.
Since p%(a) goes to infinity with a, we see that

Gy,(p) =v

a = G,(p3(c)) ~ Np3(e) + p3()/in p3(e) ~ Np3(w),

which gives the asymptotic estimate in (2). The rest of the theorem follows from
this estimate. [

Unfortunately, the estimates given above are only asymptotic as a1 oo; this is to
be expected, since many of the equations to be solved involve products of logarithmic
and polynomial terms, and thus cannot be solved in closed form. On the other hand,
these asymptotic expressions are sufficient for our purposes, since they describe how
quickly p%(a) and C4(a) increase with a.

Note that as o tends to infinity, C3(«) becomes independent of u, (v), which
measures how hard it is to evaluate the derivatives of v; this is because the combina-
tory cost eventually overwhelms the informational cost. This kind of behavior will be
typical of the complexity analyses in this paper. Finally, note that the bound

(3.20) CHa) = 0@y < C*(a) < 0@ Ina) = Cie) asatos
implies that
C;(a)/Ci“(a) =0(lna) asa 1 oo;

this indicates the gap in our knowledge of the complexity of solving (1.1) via Taylor
series methods.

4. Linear Runge-Kutta Methods. For many functions v, calculation of the de-
rivatives required by Taylor series methods is prohibitively expensive. For this reason,
we are interested in methods which use information that is somewhat more readily
available. In particular, we will consider methods that use only evaluation of v, com-
sined in a highly structured manner. We say that ® is a class of linear Runge-Kutta
nethods (abbreviated, “LRK methods”) if each increment function ¢, may be written
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in the form

4.1 5

4.1) op(x; h) = IZ:O Ak,

where
-1

4.2) k=vlx,+h Y Nk ) for 0<I<s-—1,
i=o

the integer s = s(p) is said to be the number of stages of ¢,; the number of stages is
equal to the number of times the vector function v must be evaluated. (In order to
simplify notation, we will not explicitly indicate the dependence of Ny and k; on p.)
The method ¢, defined by (4.1) and (4.2) is explicit in that k; depends only on k,,
..., k;_;; see Butcher [1964] for a discussion of semiexplicit and implicit methods.
(We use the adjective “linear” to distinguish these methods from ‘“‘nonlinear Runge-
Kutta methods,” which were first proposed in Brent [1974].) In what follows, we
assume that ¢, is evaluated using the algorithm suggested by its definition.

In order to compute lower bounds on complexity, we consider the problem of
finding the smallest value of s(p) such that ¢, has order p. This minimal value is
given by

D, p=1,2,3,4,
p+1, p=25,6,

p+2 p=1,

unknown, p = 8.

For methods of order greater than seven, a gap develops. For instance, eighth-order
methods with eleven stages exist, and it is known that any eighth-order method re-
quires at least ten stages. For arbitrary p > 8, the best bounds known for the opti-
mum value of s(p) are

(4.4) p +0(p) <sp) < @>-7p + 14)/2,

where 6(p) = ¢ In p for all sufficiently large p (for some ¢ > 0). The lower bound
is given in Butcher [1975]; the proof is quite involved, and the result is not much
better than the “trivial” lower bound s(p) = p (Hindmarsh [1974], p. 84). A class
@, of methods such that ¢y, requires only (p* — Tp + 14)/2 stages is given in
Cooper and Verner [1972].

We first consider lower bounds on the complexity C(p, «) using LRK methods.
The “trivial” lower bound s(p) = p will be used, since the term 0(p) will be small
when p is small and will not affect the asymptotic behavior of optimal order and com-
plexity for p large. It is known (Butcher [1964]) that at least O(p?) of the subdiag-
onal elements of the matrix A (whose elements are the A;j in (4.2)) must be nonzero
in order for A to define a pth-order method. Thus, there exists @; > 0 such that

(4'5) d(p) = a1p2;
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since s(p) = p, we see that

(4.6) u(R, ) > 1, )P,
where we now write

u,(v) = min (V).
1<i<N

Thus, (4.5) and (4.6) show that a lower bound on the cost per step for ¢, is given by

(4.7) ¢,(p) = a,p* + Nu; V).

THEOREM 4.1.
C,(p, @) = M, [a,p* + Nu, (v)p]e*/P.

Proof. This follows immediately from (2.19) and (4.7). O
It is clear that f,(p) := M, [alp2 + Nul(vp]e"‘/” satisfies (2.13) and (2.14).
We claim that f; yields a G, satisfying (2.17). Indeed, write

fl(p) =f11(p)f12(p), where fll(p) = Mlalp

and

N
fi,) :=p+v, wherev=— u, (v).
a,
Clearly, f,, yields a G, satisfying (2.16). Since f1, is a linear polynomial with a
negative zero, it may be shown that f, , yields a G, satisfying (2.16). Thus, f, yields
a G, satisfying (2.16); in fact, we have

p
4.8 G + G =
(4.8) @) 12(0) 1+ (1 +vfpy!

This leads us to

THEOREM 4.2.
CHe) ~ [Mya,e*[4]a® as ot e

Proof. From (4.8), we see that G,(p) ~ 2p as p T ee. Since (2.13), (2.14), and
(2.16) hold, p¥() tends to infinity with a. Thus

a=G,(pHa)) ~ 2pF(@) asat oo

.e., p¥(@) ~ /2 as atoo. The result now follows from Theorem 41. O

We now turn to upper bounds on complexity. The class @ derived in Cooper
ind Verner [1972] has two deficiencies, the first of which is that no uniform upper
yound on the local error per unit step is known for @ ; in addition, the combina-
-ory cost for this class of methods is O(p*) as p t . Instead, we turn to the basic
iequerice ® discussed in Theorem A.2 of the Appendix. There, we prove that there is
i M, >0 such that

4.9) o(pp, h) < (M, In(p + ey
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provided & < h,, where h, = O((In p) ') as p too. Furthermore, there are a large
number of extra zeros in the matrix A for o, € ®. Using the notation of the Appen-
dix, we see that the number of nonzero entries in A is

1

s p—
2 g=2 2 +p=p33-p*2+p/6 <p33+2p%/3
. 0 i 1
i= i=

for p € Z**. Finally, note that the number of stages s(p) required for ¢, € @ is

(4.10) sp) = 1> -2 + 42l <P*/2+p

for p € Z**, which shows that the number of stages required for a pth-order method
in ® asymptotically equals the number required for a pth-order method in ®.,,. Thus
(considering the combinatory costs), the class @, actually costs more per step than
does ®; ignoring the combinatory costs would have caused us to reach the opposite
conclusion.

First, we look at the cost per step. By (4.10), we see that

@11 u@®, ) < % (P + DNy (v),
where
uy(v) ;= max u(v,).
1<i<N

Since we are using &, it is easy to see that there is a b, = 2/3 such that
4.12) d) < (p3/3 + b,p*)2N.

Combining (4.11) and (4.12), we see that the total combinatory cost per step is
bounded by

(4.13) ¢,(p) = N[2p°/3 + 8,° + 1,p],
where

By ==u,()/2+2b, and v, :=u,()2.
Using (4.9) and (4.13) gives

THEOREM 4.3.
C,(p, @) = MyN[2p°[3 + B,p* +v,p] In(p + €)e*/P. O

Now we look at the optimality theory for the upper bound.

THEOREM 4.4. (1) For all a > 0, there exists p%(a) such that (2.17) holds.

(2) p%(c) increases monotonically with o, and p%(c) ~ /3 as atee.

(3) C%(w) increases monotonically with o, and C%(c) ~ [’2.M2Ne3 /811¢3In « as
atoo,

(4) hi(@) ~ M,e’in a)™! as atoo.
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Proof. We write

fz(P) =M, In(p + e)cz(p)
in the form

f2(p) = f2 1(p)f22(p),
where

f,,(P) =MNp In(p + ) and f,,(p) = 20*/3 +B,p +7,.

It is clear that f,, satisfies the hypotheses of Lemma 2.1. Now we consider s
Clearly, f,, has no positive zeros; it may be seen that the condition b, = 2/3 implies
that f,, has a positive discriminant and, hence, has no complex roots. Thus, f5, has
only negative roots; one may show that this guarantees that f,,, satisfies the hypothe-
ses of Lemma 2.1. Thus, the same may be said for f, = f, ,f,,.

Thus p3 and Cj behave as described in Theorem 2.3. We also see that
G,(p) ~ p as p teo. Thus, the estimate in (2.) holds, from which we get the estimates
in (3.) and (4.). O

So in the class of linear Runge-Kutta methods, we find that

(4.14) CHe) = 0(0*) < C*() < CH®) = 0(c® In a)
as a tends to infinity; hence, the ratio
CH(@)/CH) = O(aln a)
indicates the gap in our knowledge of the complexity of linear Runge-Kutta methods.

5. Comparison of the Methods. We now wish to compare the classes of Taylor
series methods and LRK methods. Let Cy 1 denote the lower bound and CU’T denote
the upper bound on complexity of Taylor series methods, and let Cy denote the in-
herent complexity of Taylor series methods; then Cp 1@ < Cp(®) < Cy p(a). Simi-
larly, we write CL Lrx> Cu,Lrk> and Cy g for linear Runge-Kutta methods. Since
we have only asymptotic expressions for these quantities, we are forced to use an
asymptotic comparison. If f, g :R** — R** satisfy lim; ., f() = lim,; ., g(@) =
+ oo, we will write

(5.1) f<g iff fla) = o(g(e)) as a 1 oo;

we say that f is asymptotically less than g. If f < g, there is an &, > 0 such that fle)
< g(a) for a > @, so there is a nonasymptotic interpretation of the order relation <.
Thus, if f and g are cost functions, the statement “‘f < g’ implies that the method
whose cost is given by fis “better” (i.e., cheaper) than the method whose cost is given
by g, for e sufficiently small. Using the results of (3.20) and (4.14), we then have the
following

THEOREM 5.1. Suppose that (3.16) holds.
(1) If N =1, then Cu,r <CL LrK-
(2) If N =2, then Cy 1 < Cy Lrk-
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(3) If N =3, then Cy @)= O(CU’LRK (@) and Cy 1 rg (@) = O(CU’T(a)) as
atoeo
(4) If N = 4, then CuLrk <Cp - O

If (3.16) does not hold, then (1), (2), and (3) may be false, but (4) will certainly
be true. As an immediate corollary to the above theorem, we have

THEOREM 5.2. (1) If N =1 and (3.16) holds, then C; < C| g k-
(2Q) If N>4, then C g <Cp. O

So if the derivatives of v are cheap to evaluate, we see that the best Taylor series
method known is better than the best linear Runge-Kutta method possible for the
scalar case V = 1; but if N > 4, the best linear Runge-Kutta method known is better
than the best Taylor series method possible.

We hasten to point out that these comparisons are asymptotic as the error crite-
rion tends to zero. This leads us to ask whether these results (especially the first
statement of Theorem 5.2) have meaning for “practical” error criteria, e.g., five to
twenty decimal places. We suspect that the fast Taylor series methods may be better
than the linear Runge-Kutta methods for € in this range (with N = 1), but more work
has to be done along the lines of good implementations of the fast methods. As a
matter of fact, even if we were to assume that the asymptotic formulas in Theorems
3.5 and 4.2 were exact, computing the crossover value of « for a given function or
class of functions would still be difficult, in view of the fact that the asymptotic con-
stants will be difficult to compute in practice.

Appendix: Error Bounds for a Sequence of LRK Methods. In this Appendix,
we describe a subclass of a class of linear Runge-Kutta (“LRK”’) methods due to
Cooper [1969]. We shall first prove the following

THEOREM A.l. There is a basic sequence ® of LRK methods such that
(1) Each ¢, € ® requires s(p) = (»* — p + 2)/2 evaluations of v per step.
(2) There exists an M > O such that

A1 0(¢,, h) < (M In(p + e)n)?

for h<h, = O((ln p)").

We use the notation of Cooper and Verner [1972]. Let p € Z*™ be given;
define p: Z* N [0, p] — Z* by

j
> k=jG+ D2 ifj#p,
p() = § k=0

s ifj=p,

(A2)

where we write “s” for “s(p)” as defined above. Next, a set {&,, ..., &} of integers
is defined by picking &, := p, and setting &; (i # 0) to be the unique integer in [1, p]
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satisfying

(A3) P& — 1) <i<p(g).

We now pick Uy, - . ., U, €1 satisfying

(A4) uy =0, u,=1, w;#0 ifi#0
and

(A.9) (¢ =% andi+#j) implies u;+ u;.

Finally, we pick a matrix of coefficients A := {)\i].: 0<j<i—-1,1<i<5s}such
that

(A.6) Ay =0 if g <g-1(1<i/j<s)

and
i~1

(A7) > N =+ It 0<7<g-1,1<i<s).
j=0

Cooper and Verner [1972] point out that these conditions may always be fulfilled;
the resulting A defines a pth-order LRK method with s stages.

We are interested in a choice of Uy, - - ., Uy which will give a small error coeffi-
cient. To this end, we will choose

(A.8) {up g =ny={(1+x,)2:1<k<n} (Q<n<p-1),

where x,,, ..., X,, are the zeros of the Jacobi polynomial P, := P{!'1) (see Szego
[1959]). Since these zeros are distinct and lie in [~ 1, 1], conditions (A.4) and (A.5)
may be satisfied.

Now we are able to exhibit a solution to the ith system in (A.7). First, note

that the equation for 7 = 0 may be separated from the others, since uy, = 0. Setting
n:=§, — 1, we see that

i—1
(A.9) No =u; = 2 Ny =u; =2 {N\;:j<iand §>n},
=1

the last by (A.6). We wish to determine the nonzero )\ij, i.e., those )\i]- for which ‘;’j >
1and j <i So setting 7\,.]. = O unlessj € {j,,...,j,}, we see that the remaining
\;; are the solution of the system

n
3 uf N, = (1 + DIt (1<7<n).
k=1

Thus, the Aij,, are the weights for an interpolatory quadrature formula on [0, u;] with

tbscissae u;, . . ., u;,,. From the usual expression for such weights and (A.6), we
see that
1 P, (cos 6
>\ij i #L do,

2P (cos 0,,,) Y Pin+1 cos 6 — cos 0,

vhere x, . =cos 0,, (1 <k <n).
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LEMMA A.l. ., = O(n 'In n) as nt o,

Proof. Since the zeros of P, are symmetric about the origin, we may assume
that 0 < 8,, < m/2. Using (8.9.2) of Szeg6 [1959], we then find
™ P, (cos )
K, = OKS/2073 ————————sin 6.d9.
thn )fei.n+l cos § — cos 0,

Case 1. 0, .4 <0;,., <O ,4,/2. We consider the integral over [6,,/2,
6',.'"_{, 1 ], since Theorem 15.4 of Szegé [1959] proves that

f" + feln/2
J O 0

(Here the integrand is the same as in the preceding integral.) But the proof of

0(k5/2n-3)[

] =om™").

(15.4.12) in Szego [1959] extends almost immediately to a proof that the remaining
integral is O(k~2n), since (15.4.12) is proved by order-of-magnitude estimates. Thus,
Mign = Om™") = O(™'In n) for Case 1.

Case 2. Bk,"+1/2 < Oinsr S 30k,n+1/2. We consider the integral over [6,,/2,
0; n+1], since Szego [1959] shows that

{7 _|=0@™
Oknl2 )

As in (15.4.13) of Szeg6 [1959], we have

O(k5/%n3)

Oin+1 -3/2
fekn/2 =O0mk™>'*), +1,.

Here
Oin+1 .
I, = fekn/z D(6)sin 0 d6

with

cos(NV0 + v) — cos(NO,,, +7)
- cos § —cos 0, ’

where N := n + 3/2 and vy := —37/4, and

D(6)

Oin+1 . _
L ‘=fek,,/2 R, (0, 0,,)sin 6 db = O(mk™>/?),

with R, the remainder term in (8.8.2) of Szegé [1959]. Unfortunately, the proof
that (15.4.14) of Szegd [1959] is bounded does not extend to a proof that I, is
bounded, since the proof of the former requires that the interval of integration be
symmetric about 6, ,. However, it is straightforward to verify that

/4 | sin NO
n=o00],

Thus, ;,,, = O(n™ 2k In n) = O(n™'In n) for Case 2.
Case 3. 30, , 4,
0; n+1], since Szego [1959] proves that

l df = O(Inn).

<0, ,4, <3n/4 We consider the integral over [30,,/2,
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w
f30kn/2

But the proof of (15.4.19) in Szego [1959] extends to prove that the remaining in-
tegral is O(k~*/?n) (as in Case 1). Thus, ;;,, = O@™') = O(n™In n) for Case 3.
Case 4. 3m/4 < 0 nt1 S 0,44 n+1- We consider the integral over [3n/4,
0; n+1], since Szegd [1959] shows that
™
f317/4

As in Cases 1 and 3, the proof of the above may be extended to prove a similar bound
on the integral of interest. Thus, u;, = O(™!) = O(n'In n) in Case 4, completing
the proof of the lemma. O

Thus, (A.9) and Lemma A.1 show the existence of a A > 0 such that

(A.10) 5 Il <A Ingg + e);
j=0

O3/*n™3) =0@m™).

0(k5/2n—3)

=0m™").

here A is independent of p. Moreover, the result for the case i = s may be sharpened.
We see that 7\sj = 0, since the u; for the sth system in (A.7) are the abscissae for
Lobatto quadrature. Thus

s—1 s—1
(A.11) 2 I\gl=2 =1,
j=0 j=0

the consistency condition in the last equality being a consequence of (A.7) with 7 = 0.
Proof of Theorem A.1. As in Cooper and Verner [1972], we define

) i-1
€ = X(uh) —k, and §; :=f:' x(uh)du — 37 NE(uh)
j=0

for 0 < i< s;note that §, = ¢, = 0. Let z(h) be the computed approximation to
x(h); then

s—1

Z )\siei

i=0

W1 Ix(h) — 2(8) )l = Hh-l k) - xO) - 3 Ak, ” <ls,l + ,
(A.12)

l=
< I8, + max lel,
£/=p—1
the last by (A.6) and (A.11). By the analyticity of x, there is an A4, > 0 such that

£i
B = W M| x(uh) — 3 (uh)xDO)/| < A, h)E
7=0
and
. Ei_l
v = || X@h) = X @h) D) || < @A, k),
=0

i0 that the definition of 8, gives

. -1 i—1
A1) I8N <p+ X Nl @b+ 3 Il < (A, h)E
j=0 j=0
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for a suitable 4, > 0. Thus, (A.12) becomes
(A.19) 1 x(h) — z(h)| < (4,0 + max gl
£i=l’”'1

We now use Lemma 1.1 of Cooper and Verner [1972] and (A.6) to find that if
L is a Lipschitz constant for v, then there exists 4 3 > 0 such that

i—1
lel <hLIS,I + hL ;) I)\ijl max ||ei||
j= j

< (A;h)ETY + (45h) In(g; + e) max | &l
J
the last by (A.10) and (A.13); here, the maximum is taken over all j < i such that §=>

£ — 1. A straightforward induction shows that if (1 + In 2)4,h < 1, then
el < (4, In(g; + e)n)kit?

for a suitable 4, > 0. Combining this with (A.14), we find

(A.15) 1 x(h) — z(h)Il < (A5 In(p + )P,

the desired bound for the local error for a single unit step.

To extend (A.15) to a global error result, we must look at the Lipschitz constants
for the increment functions. Let L be a bound on I vvll, and write “Ve, (v, h)” to
indicate gradient with respect to the vector variable y. Now

s—1
Ve, HI< 3 D\l max 1VkQ@, i)l = max 1V, B,
i=0

0<i<s—1 0<i<s—1
where we write “k,(y, h)” to indicate the dependence of k; upon y and h. By the
definition of k/(y, k), we find

i—1
vk, h) = Vu(u) [1 o FH Y MK, h)] :
j=0

whereu ==y + h 2;:;10 N;jkj(v, h) and 1y, is an N x N identity matrix. Taking
norms in the above gives the result

¢ <L\ + RLN[In(g; + e)max{§;: j <iand § > & — 1}],

where §; := I Vk,(y, h)ll. Writing A, for the Lipschitz constant for ¢,, it is easy to
see that (A.16) and the above inequality imply

p—1 j—2
A, < Zo (hL©\Y knl In(p + e — k),
]: =

which is bounded for all p, provided that # < hp < (LN In( + e))™'. Thus (A.1)
follows from this result, (A.15), and Theorem 3.3 of Henrici [1962]. O

The value for s(p) indicated in Theorem A.1 may be improved somewhat by not-
ing that since we are using a Lobatto quadrature, higher order may be expected with
fewer steps. Indeed, if we use the strategy outlined in the comments following Theo-
rem 4 of Cooper and Verner [1972], we have
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THEOREM A2. There exists a basic sequence ® of LRK methods such that (A.1)
holds and @, requires

s(p) = |(p*> — 2p + 4)/2
evaluations of v per step. O
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