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The Shooting Method Applied to a Cyclic Inequality

By B. A. Troesch

Abstract. It is known that the cyclic sum
i=n

Sp() = D x;/Cepq + Xip0)s

i=1

where Xpt1 T X1 Xpgn = X9, %; =0, (xi_'_1 + xi+2) > 0, can be made smaller
than n/2 for n > 24. The value of A(n) = lim inf (n —> «) S, /n is investigated
by the shooting method for two-point boundary value problems, and the analytical
result lim(n = <) A(n) < 0.49457 is proved. The inherent difficulty in a straight-

forward minimization of S, (x) is mentioned.

1. Introduction. Many results are known about the cyclic sum
i=n

1) Sp(0) = 2 x, /(g + X40)

i=1

formed with the n components of a vector x, where x,, , =x, x; 20, and x;,, +
X;4, > 0 for all i (see [9] for the origin of the problem and [S] for the results and
the history of the inequality connected with this sum). If we introduce

o(n) = S,(x)/n, Nn) = inf o(n),

the infimum being taken over all admissible vectors x, then A(n) < %, because x; = 1
for all i is an admissible choice. Nowosad [6, p. 463] has proved that A(n) = % for
n < 10; on the other hand, a general relation [2] and counterexamples for n = 14
and n = 25 (see [8] and the references given there) show that A(n) < % for even
n = 14 and for all n > 24.

In [7] Rankin proved the existence of the limit
?) A= lim Mr)<Nn), n=2,

n—>oo

and also showed that A > 0.304. Later Diananda [3] improved this lower bound to
An) > 04612 ... .

Upper bounds are simply obtained from numerical examples, e.g.,

A< o(111) = 0.49656
given by Daykin [1].
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176 B. A. TROESCH

In this note we investigate a possible behavior of o(n) for large n and obtain by
elementary means (Section 5) an improvement on the upper bound for A:

3) A < 0.494566817.

The vector x chosen for this result is suggested by a quite effective numerical approach,
described in Section 2, namely a recursive approach, based on the well-known shooting
method for two-point boundary value problems in ordinary differential equations.
Throughout, we restrict ourselves to a certain class of x,’s: it is assumed that the
x;’s contain only one string of contiguous alternate zero terms (see, for instance,
Figure 2). Although there is no proof that this class of x;’s leads indeed to the lowest
o(n) for large n, we note that Daykin’s solution for n = 111 [1] has also this structure.
The upper bound of Eq. (3) is independent of this assumption.
The computational results are discussed in Section 3. There is a heuristic argu-
ment concerning the value of A presented in Section 4. It leads to the conjecture that

“ A > 0.49438.

Although the problem of the cyclic inequality is essentially a minimization
problem, a direct minimization would lead to serious numerical difficulties. Some
comments on this question are presented in the Appendix.

2. Recursion Relation. We are attempting to make the cyclic sum as small as
possible. Clearly, no vector x with two vanishing consecutive components is a conten-
der [6, p. 446]. A necessary condition for a minimum is therefore

x;08/0x; =0 for all i,

Xi2 Xi_1 1
xi > + 2 — n =0.
Gt xy) Ce; +x;00)% Xigr T Xipo

ie.,

It follows that either x; = 0 or

a x_
©) Xppg =" Xppp ¥ 1/ = 2 T = 2 g
Gy Tx)* O X))

Now, it is permissible to use the normalization x; = 1 and to set x, = 0, since
Nowosad [6] has shown that among the minimizing vectors there is always a vector
with at least one zero component. If we make some choice for x; and x,, the values
of x;, , (i = 3) can be computed recursively from Eq. (5), provided that x; # 0. For
a fixed n, the guesses x5 and x, would then be adjusted until Eq. (5) were also
satisfied for i = n — 1 and i = n. However, we are not trying to minimize o(n) for
any particular n; we are simply aiming at making n as large as possible. The recurrence
relation (5) is therefore used until the two end conditions are essentially satisfied.
This turns out to be quite easy, if we make use of our assumption stated above: if,
say, X, , , is the first term to become zero or negative, then x, , , and all subsequent
alternate terms, X, , 4, Xz 4 ¢, - - - » X, X, are also assumed to vanish.
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Good starting guesses for x; and x, are not hard to obtain. From the known
results for odd n from 25 to 31 and for even n from 14 to 26, and 38 [8] an
extrapolation to large n indicates that x; =1.17, x, = 0.15 is a good choice. Daykin”
values for n = 111 [1] are about the same. (Actually, this initial guess is an interpola-
tion between even and odd » values (see Figure 1).)
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FIGURE 1
Curve of initial conditions x5, x, for minimum of o(n).
P(x; = 1.1613, x, = 0).

From the initial guesses the values Xg, Xg, - - - are computed in turn until the
k is reached for which x, ,, < 0. Then, with Xgy2p 7 =1,2,. .., all vanishing,
Eq. (5) leads to (n — k + 2)/2 equal ratios

6) b=xp 3%y y = Xpyslpps="""=x/x,_, =X4/x,.

Therefore, we have
@) X Xppq = p(n=1)/2 = (x3/x1)("_k)/2,

and
(n—k)2=m=-logx;,,/logx;.

Normally, m will not turn out to be an integer as required (for this reason the last
equal sign in Eq. (6) is only approximate), but it furnishes an approximation to a
suitable integer M. In the computation, several values were tried for the determination
of the x; +2j+1> and it was found that the best M, leading to the smallest o(r), exceeds
m by about 2 or 3. Hence, for n = k + 2M we obtain an admissible upper bound

A®) < o(n) = S, (x)/n.

The shooting computation is very fast, even in double precision (28-digit numbers).
Since we attempt to make n large, k should also be as large as possible (ideally,
infinite). In order to approach the “boundary condition at infinity”, Xppp =0, we
adopt a bisection method based on the following observation: it is well known that
alternate x; values combine to a curve (see, for instance, Figures 2 and 5); if the
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curves intersect, then k will be odd, if they do not intersect, then k is even. Therefore,
we keep x, fixed and bisect x; on the parity of k, a procedure which is both safe

and simple. (In exploratory computations the curve in Figure 1 was determined both
by a vertical and by a horizontal search.)

3. Results of the Numerical Computation. The results of the numerical compu-
tations are shown in Figure 1, and one might hope that on this curve a certain point
would furnish a distinctly lowest o(n). But the results in Table 1 show that, for
comparable 7 values, this is not the case. The value of o() does not depend strongly
on the initial conditions x5, x,, as long as they lie on the curve in Figure 1 to, say,
nine significant digits. On the other hand, a(n) is quite well determined by » or by k.
Over a wide range of k values we observe that o(n) = a(=°) + c/k, where ¢ = 0.080.
If we extrapolate the data to k — oo, we obtain as the limit

A < 0o(=) = 0.49455 * 0.00005,

in good agreement with Eq. (3) above.

It is conjectured that this represents indeed the true value of A, even though its
‘determination is based on the class of x,’s with only one contiguous string of zeros
in alternate terms.

It is of interest to observe which x;’s lead to a small o(n) for large n, since this
information is used in Section 5 below. First, we note that it makes a significant
difference for small n, whether n is odd or even. If we connect the two groups of
alternate x;’s to form two curves, then these curves must intersect for odd n, whereas
they need not intersect for even n. This means that for odd n there is actually one
curve closing on itself after 2n steps. On the other hand, for even n there are two
curves of length n, each one closing on itself (see Figure 2). This would explain why
the cyclic inequality is violated for odd n > 24, but for even n > 12, only half that
number.

R4

FIGURE 2
Basic difference between odd and even n
- for n = 26 (noncrossing curves)
— — — — for n = 25 (crossing curves).
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As n gets larger, the distinction disappears gradually (see Table 1, where both
odd and even entries appear). The two curves are shown, in part, in logarithmic scale
in Figure 3. They flow together with the nearly constant ratio ¢ = Xjy l/xj = 0.90447
(namely over 150 points to this accuracy), and then, after one curve dips to Xpyo <

0, the other curve rises with the constant ratio (see Eq. (6)) b = Xjpo/x; = 1.16811.
I
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FIGURE 3

Values of x; for x5 = 1.168, x, = 0.1492.
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FIGURE 4
Values of S =X/ + X040),

= F = (5 T 25 s )2

The terms s; = x;/(x;, , + x;,,), again connected to form two curves, are
shown in Figure 4, where, in addition, §; = (5;_, +2s; +5;,,)/2 is also plotted.
This leads to a single curve with two long stretches of constant values. Since o(n) =
S(x)/n = (1/2n)Z5;, it is clearly the second segment from Xj 42 Up to x, which
causes 0(n) to become less than %. Furthermore, we confirm the empirical fact [8]
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that the s; exhibit a symmetry; for instance, in the case shown in Figure 4

3) $1054j = S105—; forallj,

although the x; are very asymmetric.

TABLE 1
Upper branch in Figure 1
X3 X4 k n o(n)

1.16700 0.1567 198 436 0.494849
1.16800 0.1492 208 462 836
1.16900 0.1403 196 424 854
1.17000 0.1288 202 434 846
1.17100 0.1083 197 419 856
1.17114 0.0970 199 421 855
1.16789 0.1502 244 538 796
1.16789 0.1502 255 565 785
Lower branch in Figure 1

1.17103 0.0865 198 416 858
1.17002 0.0646 197 417 858
1.16901 0.0522 197 425 853
1.16801 0.0425 195 423 856
1.16700 0.0343 193 421 0.494859

We have tacitly assumed that, as i increases, the terms decrease until x; , , <O.
However, sometimes both parts of the coalescing curves turn upwards. It then appears
that the curves repeat the same pattern, only scaled down as shown in Figure 5.

Since this situation did not lead to a smaller o(r) value in preliminary runs, the lower
curve was set to zero at the minimum. Again, the symmetry in the s;-curves in
Figure 5 is rather striking.

b x;, S,

FIGURE 5
Repeated pattern
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The shape of the curve in Figure 1 of initial values x5 and x, which lead to a
large number of terms seems surprising: for one x, value there are two different x,
values furnishing about the same o(n). But this is actually not so. If the x,’s are
scaled and the numbering shifted by one, then the lower branch from P on and the
corresponding segment of the upper branch represent the same solution except for the
first few points. This is shown by the curves (a) and (b) in Figure 6.

-

o | I I I [ oi
T 51 107 15T 2017 25 1 for (a)
[ 5 10 15 20 25 for (b)
FIGURE 6

Comparison of upper branch (a) and lower branch (b) of Figure 1:
(@) x3 = 1.167, x, = 0.156;
(b) x; = 1.167, x, = 0.034, but all x; scaled by 1/1.167 and
the subscripts shifted by one.

4. A Conjectured Lower Bound for A. Upper bounds for A are obtained by
exhibiting suitable examples for o(n). A heuristic argument for a lower bound for A can
be based on the computations in Section 2. But the result would be conclusive only if
the assumption about the x;’s having a single string of contiguous alternate zeros could
be proved. InSection 2 we have inserted (m — 1) nonvanishing terms between x; |
and x, (see Eqgs. (6) and (7)), so that 1/x, , ; =b™ =x"’, where we assume for
simplicity that m is an integer. If we denote the first part of the sum S(x) by

i=k
So = Zl Xl i1 + Xi12),

l=

then S(n) = S, + m/b.
Now we argue that for very large n it should make no appreciable difference, if
two more terms (one of them vanishing) are inserted; in other words, o(r + 2) — o(r)
should go to zero for n — o=, Therefore, we insert two terms, set
l/xk+l — l;(m+l),
where the new ratio is denoted by 5, and obtain
S(n +2) = Sy + (m + 1)/b = S(n) + (m + 1B/ +1 — /b,

We assume that S(#) corresponds to the infimum of o(n), so that
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ofn +2) ~ Nr) = —— {(m + 1)/B™/™+1 = mjb — 20)}.

There are all indications that this difference decays slower than 1/(n + 2), so that we
obtain for n — o0

AN=1% lim {(m+ 1)p™/™m+! — m/pb}

m-—»oco

or, setting m + 1 = 1/z with z — 0,
) A= (1 + log b)/2b.

Of course, b = x5 is not exactly known, but the computation and Figure 1
indicate strongly that x5 < 1.17114. Hence, we conjecture that A > 0.494381.

TABLE 2

b=1x, 1.167 1.168 1.169 1.170 1.171  1.17114
(1 + log b)/2b 0.494617 0.494560 0.494503 0.494446 0494389 0.494381

5. An Upper Bound for A. The argument just presented can be made indepen-
dent of any computational result and it furnishes then an upper bound for A. We
exhibit a long vector x by choosing the n = k + 2j — 1 vector components (with
slightly changed numbering) as

x;=a""! fori=1,2,...,k,
x; =0 fori=k+1,k+3,...,k+2 -1,
x; =d* P2 fori=k+2,k+4,...  k+2-2.

The (n + 1)st term agrees with x, , so that
=1 or j=-(k-1)ogaflogb
and
n=(k—-1)Q — 2log a/log b).

For the cyclic sum we obtain

_ k=2 1]
S(x)_a(l+a)+a+b
and

- 1  loga 1 _
o) = {a(l +a) blogh + *k-1Q + a)}/(l 2 log a/log b).

A straightforward minimization with respect to @ and b and letting k — oo leads to

b =a(l + a)*/(1 + 2a),

o 2)- (5 ) - i
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with the solution
a = 0.90447055, b = 1.167885645.

The values furnished by the numerical computation in Section 3 for n = 565 are in
close agreement.
From the equation

o(=) = { agg f D logbd }/log(b/az)
or, by eliminating a,
0() = (1 + log b)/2b,
we obtain the result A < 0.494566817.

It is not surprising that the equation for o(e°) agrees with Eq. (9) above, since
the underlying idea is the same, although here the value for b is available.

Appendix. A Minimization. The pairs of initial conditions X3, X, that lead to
a small o(n) lie on the curve shown in Figure 1. Any values that deviate only slightly
from the curve result in a considerable increase of o(n), so that the level curves form
a canyon. The Figure 7 shows a cross section of it. The canyon walls are steep, but
the bottom is very flat (cf. the results listed in Table 1).

yo(n)
0.496}
H
1 ! I *a
4 -
0.494 0.14920 0.14930
0.14925
o (n)
0496
_W‘”
[
]
941 ! "
0.14924 0.14925
FIGURE 7

Minimization of a(n) for x; = 1.168 in two scales,
computed values
— — — — extrapolated to n — oo,
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It is hopeless to minimize S(x) as a function of over 500 variables x;. But it is
even difficult to find the minimum o = f(x;, x,) for two variables. This problem
should represent a challenge to the existing minimization routines. The function

f(x5, x,) is easily evaluated, since it takes fewer than 25 short FORTRAN statements.
An explicit function which exhibits a similar behavior is for instance

fx, y) = oo he +1(2 el 10{1og(y B r— (lle — 5)4>2}_2.

The exact maximum is f(%, 1) = 1, but it is located at a bend of a canyon with steep
walls. Standard minimization routines might not find it easy to solve this problem.
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