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Majorizing Sequences and Error Bounds
for Iterative Methods

By George J. Miel

Abstract. Given a sequence {xn}::=0 in a Banach space, it is well known that if there
is a sequence {tn }:::O such that llx,  —x,1 <t,,, —¢,and lim ¢, = t* < o,
then {xn }::0 converges to some x* and the error bounds llx* —x, Il < ¢* —¢, hold.
It is shown that certain stronger hypotheses imply sharper error bounds,

t—t, " -1,
I = x| S ————— = X 1Y < ———lx = xol¥, w>o0.
(ty = 1) (1~ %)

Representative applications to infinite series and to iterates of types x, = Gxn_1 and
x, = H(x,, X,—1) are given for p = 1. Error estimates with 0 < u < 2 are shown to
be valid and optimal for Newton iterates under the hypotheses of the Kantorovich
theorem. The unified convergence theory of Rheinboldt is used to derive error bounds
with 0 < u < 1 for a class of Newton-type methods, and these bounds are shown to be
optimal for a subclass of methods. Practical limitations of the error bounds are de-
scribed.

1. Introduction. A majorizing sequence for a sequence {x,},_, in a Banach
space is a sequence of real numbers {¢,},_, such that lx, ., —x,I1<¢,, , —¢t,. If
lim ¢, = t* <o then {x,},_, converges to some x* in the space and the error
bounds

(1.1) IIx*—xnII St*-t,

are valid. This principle was used by Ortega [16], to present an elegant proof of the
Kantorovich theorem for Newton iteration, and more generally by Rheinboldt [22], to
establish a unified convergence theory for Newton-related methods. The principle was
used earlier by Rall [19, Section 9], with x,, and ¢, as partial sums of infinite series,
to solve approximately quadratic operator equations.

This paper shows that under certain conditions, a majorizing sequence implies
error bounds of type

t* -t t —

(1.2) fx* = x, | K ——"—llx, —x,_ I <—— lx, —x,I*, u>o0.

@, —t,- > @ —t

If u = 0 then (1.2) reduces to (1.1). For u > 0, the two bounds in (1.2) are sharper
than the bounds in (1.1). The estimates (1.2) provide exit criteria applicable during
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186 GEORGE J. MIEL

automatic computation, namely, methods of stopping the calculation when an approxi-
mant x,, has a prescribed accuracy. A study of bounds of the form lx* —x, Il <
allx, —x,_, I, a constant, based on the behavior of successive errors x* — x, and x*
—X,41,1s given in [11]. The approach taken here, which yields the convergence and
the estimates (1.2) concurrently, is based on the behavior of successive backward dif-
ferences x, —x,_, and x,,,, — x,,.
Conditions under which a majorizing sequence implies (1.2) are presented as two
simple lemmas in the next section. No attempt is made to give a comprehensive list
of consequences, but representative applications of general importance are included.
An example involving the series approximation of complete elliptic integrals is given
in Section 2. Section 3 presents results for iterates of types x, = Gx,_; and x,, =
H(x,, x,_,); examples involving linear iteration and a projection iterative method are
given. Section 4 derives optimal error bounds for Newton’s method under the hypoth-
eses of the Kantorovich theorem; a particular case yields a simple proof of the Gragg-
Tapia estimates [5]. Section 5 uses the unified convergence theory of Rheinboldt [22]
to derive error bounds for a class of Newton-type methods; it is shown that these
bounds are optimal for a subclass of methods, including certain processes for nondiffer-
entiable operators. Section 6 gives a numerical example and discusses the practical dif-
ficulties inherent in the use of error bounds generated by majorizing sequences.

2. Basic Lemmas. In what follows, X is a Banach space and Vx,, denotes the
backward difference x,, — x,,_;.

LEMMA 2.1. Let {x,},—, C X. If there is a sequence {t,},_ of real numbers
such that to, = 0,t; = llx, —xgl, ¢,_, <t,,lim¢, =t* <o, and
t -t
"—*_it—" Ix, = x,_, I,

n—1

Ix,,, —x,I < n=1,
tn
then {x,},_, converges to some x* € X and the error bounds
t*—t tF—t,
Ix, —x,_; | <—lx; —x,ll, n=>1,
n n—1 1

21)  lx*-x,I< -

are valid.

Proof. 1f m > n then lvx, I <vt, Ivx,|I/vt,. Hence

Ix,yp =X, W< Wox, 0+ 10x, I+ Hox,
vVt + vVt o, +-- 4Vt
22 -1t nrel 221 ) yx,
vt "

n

tayp — 1 tayp 1
<R R gy, I < " fx, I,
In vt

From (2.2), we get that

(23) -t

1%, 4p =X, 1 < 2,4, — 2,
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From (2.3), since {¢,} is a Cauchy sequence so is {x, }. The estimates (2.1) follow
from (2.2).

If a sequence {¢,} satisfies the hypotheses of Lemma 2.1 then by (2.3) it is a
majorizing sequence and the standard bounds (1.1) hold; however, the bounds in (2.1)
are sharper. Not every majorizing sequence satisfies the hypotheses of the lemma. For
example, the sequences

1
Xog =1t =0, X, = P t, =x, + = 0<r<s<i,

are such that Vx,,, < V¢t,,, and Vx,, /Vx, > Vt,, ,/V¢,.

We point out that in (2.1) the error bounds
*
Ei(n)=—" lx, —x
n " It

n—1

can be considerably sharper than the bounds

t* -1,

E,(n) = lx, = xqll.

1

For example, Lemma 2.1 applied on the sequences

1 1
— - i =l
Xg =1ty =0, xn—1+2r+ +n"" ,

t,=1+r+---+771,  re(1l),

yields E,(n) = nE(n). In practice, the use of £, (n) rather than E,(n) as an exit
criterion may very well result in a substantial saving of computational work.

Example: Infinite Series. Consider a series 2:=0 Y, with elements y, € X. If
there is a series 2:::0 u,, of positive real numbers, convergent to u* < o, and such
that

Up+1
Iyol <ug,  Mypa < Iy,I, n>0,
u

n

then the series Z°_, »,, converges to some y* € X and

u* —(ug + -+ +u,)

||y* _(yo ER +yn)“ < Ilynll
u
(24) PR
u* —(u, +- - +u
< (4 n) Iy, n=o0.
Uy

To prove this, apply Lemma 2.1 with x, =0, x, =y, + -+, andt, =0, ¢,
=uytoctu, .

If the series £°_ ¥, passes the ratio test, Iy, I <rly,ll,r <1, then the
geometric series ly I Z7_, 7" yields the error bounds

+1

r
2.5) Iy* = g+ +p)l Sy, 1 < Iyl

1-r
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The sharper bounds were used by Knopp [8, Section 34] to get error estimates for
the series calculation of roots and logarithms.

We now give another application. Consider the series expansion for a complete
elliptic integral of the first kind [6, p. 26]:

y* =zfrr/2 do _ Z°°: y
770 1-Ksin0 =0 "

1-3---@2n-1|?

Kn kK2 <.
2-4---(2n)

y0=1’ Yn =

The estimates (2.5) hold with r = k%. However, sharper bounds can be obtained by
using (2.4) with the binomial series,

13 @n=D) ,,

wr= (=K"= w, uw=1, u,=
n=0

2:4---(2n)
One thus finds that
Yot ) <
where the bounds a, can be computed recursively with
2n — 1
— 2% —
ap=0~-k)y"-1, a,= - ay_ 1 ~V,

One can show that analogous bounds hold for a series expansion [6] of 1 — (2/m)E(k),
where E(k) is a complete elliptic integral of the second kind, by using the binomial
series converging to 1 — (1 — k%)%,

LEMMA 22. Let {x,},_, C X. If there is a sequence {t, Yp=o Of real numbers
such that ty =0,¢, | <t,, lim¢, =¢* <o,

> *n—1

t -1
n+1 n
Ix,,, ~x I <———=lx, —x

A >
(tn ~ tn_l)}\ n " . n =z 1,

A

lx —x 1<t —t

n n—1 n n—1> n—1

for some constant \ > 1, then {x,},;_ converges to some x* € X and

*—t t*—t
(2.6) Ix* —x, | < ————lIx,, —x,_, I* <
_tn~—1) tl

n

hx, —x, I, n>1,
n

for every u € [0, 7A].

Proof. The convergence of {x, } is immediate, since {¢,} is assumed to be a
majorizing sequence. If m > n then

—n
lox, I |2 lvx, I} * lvx, I']*
< V¢, :

v, I < vt < Vvt,, o

vt, vt,, i

m



SEQUENCES AND BOUNDS FOR ITERATIVE METHODS 189

Thus for p > 1,

Ixyyp =X, I << WV, I+ B0,y I+ 1V,
Ihwx, I {*
2.7) <(th+p + vtn+p—l tooodt vz‘n+1)
vt,,
Ly +p ~ [ t -t
S ———— Ivx, I* < " lyx I,
(Vt,) i
To obtain the last inequality, we used the conditions
n—1
lox, 1] v, |
lvx, I < vt, < Vt, and u=0.
vt vt,

Finally, the estimates (2.6) follow from (2.7) as p —> o°.
Observe that when u = 0, (2.6) yields the standard bounds (1.1) and that the
best bounds in (2.6) occur with u = A.

3. Successive Approximations. In this section, we use Lemma 2.1 to obtain the
convergence and error bounds for iterates of types x,, = Gx,_, and x,, = H(x,, x,,_;)-

THEOREM 3.1. Consider a mapping G: D C X — X such that

(3.1) 1G(Gx) — GxIl < y(IGx = x1)-1Gx —xll, x, Gx €D,

where y: [0, <) — (0, ) is a nondecreasing function. Assume that for some x, € D
the iterates x, = Gx,_, remain in D and that the sequence {t,},_, defined by

(32 to=0, lx, —xoIl <t; #0, t,,,=1t,+ Vt,¥(Vt,),

converges to t* < oo Then the sequence {x, };’;’:0 converges to some x* € X and the
error bounds (2.1) are valid.

Proof. Consider the condition

L1 78
A

hx. —x. |

x, ) —x; 1 < s~ X L

This condition is true for i = 1. Suppose that it holds for i <n — 1. This hypothesis
implies that
t, —t, _
L, —x I <2, -t
ty ~ 1ty
Thus (3.1), the monotonicity of ¥, and (3.2) imply that

x, —x,_, I < 1

th+1
vVt

lx, —x

Ix, . —x, 0 <ylvx, Dlx, —x, I <yt )lx, —x, ;I < = Xp—1

n
The result follows from Lemma 2.1.
The above theorem, which is related to 12.4.3 in [17], can be extended for
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more general functions ¢ involving several parameters. This is done implicitly in the
proofs of Theorems 4.1, 5.1, 5.2 in the sequel.
If, in Theorem 3.1, x* €D and G is continuous at x* then x* = Gx*. If G
is contractive with contraction factor » <1 then Y(#) = r and ¢, =
t;(1 +r+ -+ 7"71); we thus get the standard estimates
|

r
% _ —_ —
Ix* - x, 1 < —— lx, —x

1-r n-1

(3.3)

<

= llx, —xql.
The example below shows that it is sometimes useful to change norms in order to find
a majorizing sequence.

Example: Linear Iteration. Given a € X and a bounded linear operator 4: X —
X, consider the equation x = Ax + a. If 14Vl <s € (0, 1) for some positive integer
N, then for any x, € X the iterates x, = Ax, _, + a converge to a unique solution x*
= Ax* + g and

r hatl I4N-1|
B4 Jx* -x,l <1—:—r<1 + ——r— + -+ 1 > lx, —x,_, I, r= sV,

To prove this, define a new norm

el = AV el + A2 1dx ) + -« + 14V 1xl.

This norm is equivalent to -l since
(3.5) Al < lxel S EV L+ A2040 + -+ 14D lx.
We have

lAx! = r(lxl =V Uixl) + 14Vx 1 < rlxl.

Thus (3.3) holds with the norm |-}. Now use (3.5) to get (3.4).

We note in passing that the theory of partial orderings can also be used to derive
exit criteria for linear iterations; see [12].

Let H: D x D — X, where D C X, and consider the equation

(3.6) x = H(x, x).
We define successive approximations x,, to a solution of (3.6) as solutions of equations
(3.7) x,=Hx, x, ), n=>1,
where x, is some element of X.

THEOREM 3.2. Assume that each equation (3.7) has a solution x,, in D and that
3.8) lHx, »)—Hp, D)l <rlx -yl +y(y—-zl)-ly-zI, x,y z€ED,

where r < 1 and {: [0, =) — (0, =) is a nondecreasing function. If the sequence
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{t, )= defined by
vt,
to =0, lx, —x,I<t, #0, ¢,,,=t¢, +i—— Y(Vt,),
-r

converges to t* < oo, then the sequence {x,},_, converges to some x* € X and the
error bounds (2.1) are valid.

Proof. Condition (3.8) implies that

Ix, ., —x, 0 <rlx,, , —x, I +yx, —x, ;1) lx, —x

n—1 "’
y(lx, —x,_, 1D
!
An induction argument similar to that for Theorem 3.1 yields the result.
If x* € D and H is continuous at (x*, x*) then x* is a solution of (3.6).
Example: Projection Iterative Method. Given an operator T: X — X, consider
the equation

(39) X =,Tx.

lx,, q —x, I < N

X, =X

Define
H(x, y) = PTx + QTy,
where P is a linear projection mapping X onto some subspace Y, Q =1 — P, and [ is

the identity operator. The successive approximations to a solution of (3.9) are solu-
tions of the equations

(3.10) x, = PTx, + QTx,_,, n>1.

Each approximant x, may be obtained by first solving an equation over the subspace
Y and then translating the solution: at the nth step, when x,,_; is known, solve for
Y € Y in the equation

y =PIy +PTa, a=0QTx,_,,

and then let x, =y ta.
If PT and QT are contractive operators on X such that

I1PTx — PTyl <rlx —yl, 1QTx - QTyl <slx-yl, r+s<1,

then for any n and x, € X the equations (3.10) are uniquely solvable for x,,, the se-
quence {x,},_, converges to a unique solution x* of (3.9), and the estimates

"
n n—1 " <

s
I —x | < —— lIx, —x,_, I <
1-r-s a-n"t1-r-s

e, — x|
are valid.

The proof is straightforward. The unique solvability of (3.10) follows from the
hypothesis that PT is contractive. Apply Theorem 3.2 with y(¢) = s, thus obtaining
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the majorizing sequence

f = [1+<1>+<1__>]

Finally, a standard argument shows that lim x,, = x* is a unique solution of
(3.9).

The above result is contained in Theorem 9.1 of Kurpel' [9]. Similar results for
other projection iterative methods hold. Theorem 3.2 with Y(¥) =s <1 —r is a spe-
cial case of Theorems 8.1 and 14.1 in [9].

4. Newton Iteration. This section uses Lemma 2.2 to derive optimal error
bounds for Newton’s method under the hypotheses of the Kantorovich theorem [7],
[16]. In what follows, X and Y are Banach spaces, D is an open convex subset of X,
F: D — Y is Fréchet differentiable on D and such that

IF'(x) - F'O)l <Klx—yll, x,y€D.

The open ball {x: llx — x4 <r} and its closure are denoted by S(x,, r) and S(xq, 1)
respectively.

THEOREM 4.1. For some x, € D, assume that F(x,) "' is defined on all of Y,
and that

IF(eg) 'Fxgl <a, IFGxoy I <b, 8(x,, t¥)CD,

where t* = 2a(1 = /1 — h)/h, h = 2Kab < 1. Then the iterates x,,, | = X, —
F'(xn)"lFx exist, remain in S(x,, t*), and converge to the only root x* of F in D N
S(x o, t**), where t** = 2q(1 + \/1 = h)/h. Moreover, the constants defined recursive-

ly by

4.1) 4, =5Bl, A=A Q2-A0A,), A=t —p*
t* t*
“4.2) Bl=7—1=;, B,., =B,
C
(4.3) C,=B,, Cpp, = m,

are such that the error bounds,

449 lx*-x,1<4,lx, - 12 <B,lx, —x,_, I <C,lx, —x,l,

Xn—1
are valid and best possible.

Proof. First, we outline a standard proof [16] of the convergence. If x €
S(xq, 1*) then Gx = x — F'(x)”! Fx exists. If also Gx € S(x,, t*) then
(4.5) bKIGx — x| /2

1G(Gx) — GxIl < I1Gx — x|
1 = bKIGx — x|l
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Consider the scalar function

f@ = ad 2 ! P ad @* - D@e** -1

2 b b 2
and its Newton iterates
(4.6) tg =0, ty =ty g ~f(tyy) fltpy)-
The sequence {1, } satisfies the conditions llx, —x,I <t, =4, 1, , <t,,lim¢t, =
t*, and
bK[2  lyiq Tl

1-bKt, (t,—t, )"

@.7)

An induction argument shows that {x, } exists and that {¢,} is a majorizing sequence.
Hence

4.8) IIxn+p - x, I < In+p ~In

and {x, } converges to some x*. That Fx* = 0 follows from the continuity at x* of
F and F'. The uniqueness statement follows by consideration of the simplified Newton
method.

At this point, use (4.5) with x = x (4.8), and (4.7) to get

n—1>
bK/[2 bK/2
Ix,,, —x,I< Ix, =x,_, I? < ————lx, —x,_, I?
1 —bKlx, — x| 1 - bKt,
t -t
< T x, = x, 12,
t, —t,-1)

Thus the sequence {¢,} satisfies the hypotheses of Lemma 2.2 with A\ = 2. Taking
u = 2and u = 1, the bounds (4.4) are valid with

t*—t t*—t t* -t
(4.9) 4, = _____”__2, B, =_____n__, C, = =
(tn - tn—l) tn - tn—l tl

The second inequality in (4.4) follows from the inequality Il vx, /v, < 1.
We now show that the constants defined in (4.9) satisfy the recurrence relations
(4.1), (4.2), (4.3). Lete, =t* —t, and E, = t** — ¢ ; then (4.6) yields

2 2
enE n n E n

4.10 vt = € =—- E =
( ) n+1 en +En n+1 en +En n+1 en +En

Since A, , = €,,.,1/(Vt,, ) =E; !, andE, = EZ/(2E, ~ A), (4.1) follows. Since B, ,
=€,,1/Vt,., =€, /E, and e, /E, ., = (e,/E,)*, we get (4.2). Relation (4.3)
follows from C,, = e, /a and e, ., = eﬁ /(2e,, + A). The bounds (4.4) with constants
(4.9) are optimal since they are clearly attained with F = f, x, = t,. This completes
the proof.

It is possible to derive concurrently the convergence of {x, } and the two right-
most error bounds in (4.4) by an induction argument and the use of Lemma 2.1.
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Note, however, that the bounds A4, llx,, — x,,_, I* are sharper than the other two
bounds in (4.4). The recurrence relations (4.1), (4.2), (4.3) provide a very convenient
way of calculating the error estimates during on-line computation. The following corol-
lary gives explicit forms for the constants.

COROLLARY 4.2. Under the hypotheses of the theorem, the constants in (4.4)
are given by

2! +1
A, = , B,=1, C,=2""",
a
if h = 1 and by
_ Ww1-hn 9" t*
An=“‘_h"“(1‘92n), B, = 06" LoG= n 2n T
4a\/1-h 1-6
ifh<1.
Proof. As before, let e, = t* —¢,. From (4.10),
2
en
(4.11) ep =1t% e A= -t

ne1 T m’
If h = 1, then A =0 and

(4.12) e, =2""a.
Ifh<1,lete,= A, — 1)/2to gets,,, = (2 + 1)/2s,. Asin [5],

—_1\2 _ _1\2"
4.13) S,01 1 =< s, 1> , s, 1= s — 1 _ g2n.
Speq T1 s, +1 s, +1 §o T 1

and consequently,

_4/1-n 0¥

(4.19) e, :
ho1-¢%"

a.

The explicit form for C, follows since C, =\en/a. Used,,, =E, _: G +A)7!
and (4.12), (4.14) to obtain the explicit form for 4,,. Finally, solve directly the dif-
ference equation (4.2) to get B, = g2n1,

An interesting background of the Kantorovich theorem is given in [17, p. 428].
The convergence argument outlined in the proof of Theorem 4.1 is due to Ortega [16] .
Under hypotheses different from the usual ones, Ostrowski [18] proved the optimality
of bounds llx* —x, | <D, llx, —x,|l. Gragg and Tapia [5] derived the explicit forms
of the optimal constants B, and C,, stated in Corollary 4.2. These explicit expressions
follow from their explicit solution of the nonlinear difference equation (4.6). We used
their argument in (4.13) in order to solve (4.11). Their derivation of B,, relies on the
original recurrence relations of Kantorovich [7]. A simpler argument, which works di-
rectly with the majorizing sequence, is given in [13]. The above proof based on Lem-
ma 2.2 is even simpler and it also yields the sharper bounds 4, lx,, — x,,_, I? and the
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inequalities in (4.4) between the bounds themselves. These inequalities, as well as the
optimal error estimates presented below, seem to be new.

COROLLARY 4.3. Assume that the conditions of Theorem 4.1 hold. Let

Sn(l") — (2—n+la)l—u, Tn(“) — 2—n+ lal—l.l,

ifh=1and
I—u ———
4a\/1 = h - 4W1-n 6*"
S, () = — g(2—m)2" 1, T,(1) = v . cqlTH,
n(1 - 6%") h 1-62"
if h < 1. Then the error bounds
(4.15) Ix* = x, I <S,Wlx, —x,_, I* <T,wlx, —x,1*

are valid and best possible for each u € [0, 2].

Proof. From Lemma 2.2, S, (u) = (t* —¢t,)/(t, — t,_ ) =e,/(e,_, —€,) and
T,(u) = (t* — t,)/t} =e,/a". Use (4.12) and (4.14) to obtain the desired expressions.
Observe that if 4 = O then (4.15) yields the standard bounds in (1.1) with the
closed forms (4.12) and (4.14) for e, = t* — ¢t,, that the sharpest bounds in (4.15)
occur with u = 2, and that the constants in Corollary 4.2 are given by 4, = S,(2),
B, =S§,(1),and C, = T,(1).

5. Newton-Type Iterations. The results of Section 2 are used to derive error
bounds for a class of Newton-related methods studied by Rheinboldt [22, Theorem
4.3]. In what follows, the operator F is as in Section 4 and L(X, Y) denotes the
Banach space of bounded linear operators with domain X and range in Y.

THEOREM 5.1. Assume that D: D — L(X, Y) and x, € D are such that | I(x) —
Dx)l < Llx = xoll, 1F @) = Dx)l <Mlx —xoll +¢,x €D and M, ¢ > 0, Dixy)!
€ L(Y, X) exists, | D(xy) I < b, 1D(xy) 'Fx,ll < a, and S(x,, t*) C D where

2a —_— 20Kab
tr=—-—(1-y1-h), h=—-<I,
(1 = bc)h (1 - be)?

L+M
oc=max|(1l, —— ], bec<]1.
Define

\
2a — n 2 ’
t**=m(l+\/l—h), t=(—l—g%'5'h<l+ 1+%), A = p¥¥ — g%,
— DC - bC

Then the iterates x,,, | =X, — D(xn)_lFxn exist, remain in S(x,, t*), and converge
to the only root x* of F in D N S(x, 1). Moreover, the following error bounds are
valid:

(5.1) Ix* = x, I <B,lx, —x,_, 1 <C,lx, —x,l,
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where the constants are defined recursively by

(5:2) gt _(LQ-PR)B} + QUL ~P)B, —PQ
63 cp o GGt
’ 1 =By n+1 = ,
alC, + R
with
oK oKA 1
P=L-—, Q=R-——  R==—0Lt.
2 2 b

If K = L + M then these error bounds are best possible.

Proof. First, we outline and rearrange slightly the proof of the convergence in
[17, Section 12.6]. If x € S(x,, t*) then Gx = x — D(x)"! Fx exists. If also Gx €
S(xg, t*) then
54 1G%x = Gxll < Y(IGx = xI, 1Gx = x, I, Ix = x4 1) - 1Gx — x],

where

v y=—2 K o tc+ (oK L)
u, v, w) = — - .
( o\ ttetC v

Consider the scalar functions

oK (1-be)t a oK 1
5.5 =2 T D % — )RR — =Lt—=,
5.9 1o St ; + L= @t* - (** — 1), d@) =Lt ;

and the iterates

(5.6) ty =0, t,., =t,—dt,) 1,

The sequence {¢,} satisfies the conditions llx, —x, I <?¢, =4, ¢,_, <t,,lim¢, =
t*, and

(5-7) lIJ(th’ tn’ tn—l) = vtn-l-l/vtn'

An induction argument shows that {x, } exists and that {¢,} is a majorizing sequence.
Thus

(5.8) I, =X, 0 <t,,,—t

p p ‘n
and lim x,, = x* exists. A standard argument shows that x* is a unique root of F in
the indicated domain.

Now, use (5.4) with x = x,,_,, (5.8) and the monotonicity of ¢ in each variable,

and then (5.7) to get

Ving1

Ix, ., —x,1< Ix, —x,_, 1.

In

Hence, the sequence {, } satisfies the hypotheses of Lemma 2.1 (or Lemma 2.2 with
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A = 1), and so, the estimates (5.1) are valid with

-t 1+ -
(5.9) gt L _TTh

If K = L + M then these estimates are optimal since they are attained with F = f,
D=d, x, =t,.

We now show that the constants (5.9) satisfy the recurrence relations (5.2) and
(5.3). Lettinge, =t* — ¢, in (5.5) gives

oK
ft) = ) e,(e, +A) and d(r,) = —(Le, + R);
(5.6) then yields
(5.10) e, = e,(Pe, +Q)(Le, +R).

Relation (5.3) follows since C,, = e, /a. Use (5.10) to get

e, Pe, , +0
B = = ¥
n en—l —_ en (L - P)en__l + (R - Q)

and then

(Q-RB,+Q P, , +Q B,
[ s = .
"1 @w-PB,-P’ Le, ,+R B, +1

(5.11)

From (5.10) and (5.11), we obtain

(5.12) , @-RB,to B,
" W-PB,-P B,+1

Finally, put (5.12) in
Pe, +Q
By =7 ’
L —-Pe, +R-0Q)

to get the desired relation (5.2). This completes the proof.

The use of Lemma 2.2 in the above proof yields the estimates

t*_ n t*_
(5-13) Ix* = x, I <————llx, —x,_, I* <
@, -t

n n—1 1

n

x, —xol*, 0<u<1i,

where the majorizing sequence is defined by (5.6). The sharpest case occurs with u =
1 and the constants defined by (5.2) and (5.3) correspond to this case. The sharper
bound in (5.13) with u = 1 was originally derived [14] by extending the argument
given in [13] for Newton’s method. The above proof of the more general estimates
(5.13) is considerably simpler. The recurrence relations (5.2) and (5.3), which provide
convenient means of calculating the error estimates during automatic computation, also
appear to be new.

Important special cases of Theorem 5.1 include the Newton, simplified Newton,
parallel chord, Newton-Jacobi, and Newton-SOR methods [17]. It turns out that the



198 GEORGE J. MIEL

error bounds are best possible for the first three methods. Practical aspects of the im-
plementation of the bounds in computer programs are discussed in [14, Section 6] .
For the Newton case, when I(x) = F'(x), we have L =K, M=¢c=0,0=1,P =
K/2, R = AP, Q = 0 and the recurrence relations (5.2) and (5.3) reduce to (4.2) and
(4.3) respectively. Hence Theorem 5.1 contains Theorem 4.1 with the two rightmost
bounds in (4.4).

ZinSenko [25] has shown that the differentiability condition on F assumed in
Theorem 5.1 can be replaced by corresponding conditions on D. His result was proved
with majorizing sequences by Rheinboldt [22, Theorem 4.5]. Our last theorem in-
corporates optimal error bounds in this result. Suppose now that F: D — Y is contin-
uous and let Z: D — Y be Fréchet differentiable and such that

1Z'x) - Z’0)I <Klx—-yll, 1H(x)-H»)I <clx —yl,
H=F-2Z, x,y€D.
THEOREM 5.2. Assume that x, € D is such that
Z'Gy €LY, X)exists, NZ'(xg) 'Fxoll <a  1Z'(xg) 'I<b, bc<l.
Define h, t*, t**, A, P=K/2,Q =c, R = AP + Q as in Theorem 5.1 with 0 = 1 and
L =K. If S(xg, t*) C D, then the iterates x,,, | = x,, — Z(x,,)” ' Fx,, remain in
S(xq, t*) and converge to the only root x* of F in D N S(x,, t**). Moreover, the

error bounds (5.1), with B, and C, defined by (5.2) and (5.3), are valid and best pos-
sible.

Proof. From [22, p. 57], if x and Gx € S(x,, t*), then

1G*x - Gxll < Y(IGx —xM, 1Gx —x, 1) - 1Gx — x1,

where

‘1’ ——b._._ 1K+
) ke \2 T

The sequence defined by
tO = 0’ tn+1 = tn - z,(tn)_lf(tn):

@ X ? (1 = be)t +2 X @* - D(** - 1) ((3) X £ ! '+
== - -== - - 1) z == -7 )
2 b b 2 2 b b
is a majorizing sequence which satisfies the hypotheses of Lemma 2.1. The recurrence

relations for B, and C, follow as before.

6. Limitations. This section illustrates and discusses shortcomings inherent in
the use of the error bounds given by the semilocal convergence theorems resulting
from Lemmas 2.1 and 2.2.

Recall that a parallel chord method has iterates of the form

(6.1) Xppq =X, —A 'Fx,,
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where A is a fixed operator. Using Theorem 5.1 with D(x) = 4 and IF'(xy) - Al <¢
we get |F'(x) — Al <Klx —x,ll + ¢, and so, L = 0 and M = K. Hence, provided
that the pertinent hypotheses are satisfied, the iterates (6.1) converge to a root x* and
the error bounds lx* —x,I <B,llx, —x,_, I are valid and optimal with

t* B2+(1-§%@B,+1)
(6.2) By=—-1, B, =— -

a 1+&B, +¢
where £ = (1 — bel/1 — h.

We now use the simplified Newton method in order to find a solution to

b

6.3) Fx=@2r-s>-1,r3-s-4=0, x=(59).

The I -norm is used. A preliminary graphical analysis shows that the two curves inter-
sect inside the square S = S(x,, 1), x, = (1, 2).
The operator F"(x) is represented by the pair of matrices

12 0 0 3s°
A = s A = .
1®) 0 -2 2() 32 6rs

IF" Gl < max(14, I, 14,()Il) = max(2, 12171, 3s* + 6rs).

Hence

For x € S, the maximum is reached at the corner point (2, 3). Thus we take K = 63.
The iteration has the form (6.1) with

=(1,2) A=F(x,) =
X ,2, ! .
0 ( (0) 11

The results of the computation, done in double precision on a CDC 6600, are shown
below.

m n r s B lx, —x,_ I lIx*-x,|
1 1.255 102 041 1.632 653 061

3 0 1.235228 392 1.660 232 811

4 1 1.234 074 961 1.661 758 476 83 x 1072 23 x 1073
8 5  1.234 274 104 1.661 526 930 18 x 1074 46 x 107°
13 10 1.234 274 484 1.661 526 467 79 x 1078 19 x 107°
18 15  1.234 274 484 1.661 526 467 34 x 10711 75 x 1071

llx

At steps m = 1, 2, 3, 4 the program calculated 2 = 2Kab/(1 — bc)?, where a =
=x,_4I,5=147"1,and ¢ = IF'(x,,_;) — All. The conditions bc < 1 and

h <1 were satisfied at step m = 4. At this point, the program renumbered x; as x,
and x, as x,, and it kept fixed the values 4, ¢, and k. The recurrence relation (6.2)

was then used to compute the error bounds B, llx, — x

Ix* — x, Il are indicated in the last column.

w1 I. The exact values of

The above numerical example illustrates three shortcomings associated with the
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error bounds generated by majorizing sequences. Although the iterates of the example
converge, the stringent hypotheses of the theorem do not take hold initially. In gener-
al, the iterates must be in the vicinity of a root before a semilocal theorem will
guarantee convergence and provide error bounds. The second disadvantage is the
amount of work involved in computing the required constants, especially the Lipschitz
constant K. For most problems, the calculation of X is extremely difficult, and usually
results in conservative values. For finite systems of equations, when F"(x) exists, an
automatic estimation of K is in principle possible with the use of interval arithmetic
[20, p. 163], but such procedures are considered too prohibitive by most people in-
volved in programming efforts. The third shortcoming is that the values of ‘
By, lx, —x,_; I, although sharper than those of C, llx, — x, Il are usually very pessi-
mistic error bounds and get worse as 7 increases.

For Newton iterates, Lancaster [10] and Rockne [23] presented bounds which
include the effects of rounding errors; an example involving the solution of (6.3) by
Newton’s method is given in [10]. Their analysis is generalized in [15] for the class
of methods engendered by Rheinboldt’s theorem. In view of the severe shortcomings
of the theoretical bounds just described, and the huge effort needed to account for
roundoff, such analyses are of limited practical interest.

Rheinboldt’s hypotheses in Theorem 5.1 include the condition Il D(x) — Dixy)ll
<Llx- x, I, which turns out to be restrictive, as there is a type of efficient iteration
which violates the condition. Dennis [1, Theorem 3.2] used a majorizing sequence to
extend Rheinboldt’s theorem for methods based on certain derivative approximations,
which have in some sense bounded deterioration. Contrary to the gloomy note in [17,
NR 12.6-4], this result includes generalized secant techniques, as well as algorithms due
to Broyden for systems of equations, and to Davidon for the minimization of function-
als. Such algorithms initiated the considerable research that led to the so-called quasi-
Newton methods recently surveyed in [2], [4].

To be competitive an algorithm should be superlinearly convergent. A character-
ization of this important property is given by Dennis and Moré [3]. A trait of super-
linearly convergent sequences is that

Ixp —2xp—y I

64) lim = b

ne Ix* —x, |
provided that x,, # x*. The asymptotic relation (6.4) provides some justification for
stopping criteria involving llx, —x, _, I. Gragg and Tapia [S] point out that, under

the hypotheses of the Kantorovich theorem, Newton iterates satisfy

(6.5) 2602 = Dllx, ) —x, I < Ix* —x 1< Ix, —x,_ |

n—1"*

We note that (6.5) refines the bounds of Dennis [1, p. 457], and that the upper bound
in (6.5) follows immediately from (4.2). Rall [21] has shown that if x* is a simple
root, then there exists an open ball centered at x* such that any X, in that ball satis-
fies the Kantorovich conditions. Thus, any Newton sequence converging to a simple
x* will satisfy (6.5) after a finite number of terms.
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In addition to the local nature, the difficult evaluation of the pertinent constants,
and the pessimistic values of the associated error bounds, majorizing sequences have

the disadvantage of usually not providing the traditional order of convergence. This
is perhaps not surprising since orders of Q-convergence are stated in local theorems
which assume the existence of a solution x*, whereas majorizing sequences are used
in a semilocal setting, and are hampered by the task of establishing the existence of
x*. For Newton iterates, the argument outlined in the proof of Theorem 4.1 gives
only quadratic R-convergence, not the stronger quadratic Q-convergence. It is interest-
ing to note that the latter does follow from the original Kantorovich recurrence rela-
tions proof; the distinction is subtle and depends on the difference between right and
left inverses. In the general case, if a majorizing sequence {¢,} is Q-convergent to *
with order p, then the related sequence {x, } is R-convergent to x* with same order
p. If

— tr—t,

lim ————— < oo,
6.6) et —x, |

then R- and Q-convergence for {x,,} are the same. If condition (6.6) does not hold
then the error bounds t* — ¢, become infinitely bad.

Acknowledgement. The author is grateful to the referee for raising the points,
indicated in the last section, on the shortcomings of majorizing sequences.
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