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Quadrature Error Functional Expansions
for the Simplex When the Integrand Function
Has Singularities at Vertices*

By J. N. Lyness and G. Monegato

Abstract. In a previous paper by Lyness, an asymptotic expansion for the quadrature
error functional for the n-dimensional simplex, valid when the integrand is an analytic
function, was given. In this paper we develop the analogue of this result to cover the
cases in which the integrand function has singularities of a specified nature at one or
more vertices of the simplex.

1. Introduction. In Lyness (1978) a particular subdivision S of an n-di-
mensional simplex S, into m” subsimplices of equal #-volume is described; and the
m"-copy quadrature rule Q("‘)(Sn) is defined in terms of a set {Q} of n! distinct sim-
plex quadrature rules, one for each type of subsimplex occurring in the subdivision.
The principal result of that paper is an asymptotic expansion of the form

1B(S,; :1)
ay o™y F@ans + L~ + 0D,

valid when f (x) and its derivatives of total order p or less are integrable over a region
containing the closure of S,. This expansion provides a basis for Romberg integration
over a simplex.

In this paper we develop the analogue of this result which applies when the inte-
grand function has singularities of a particular nature at one vertex or at several vertices
of the simplex S,. Our results are based on and bear a strong resemblance to corre-
sponding results reported in Lyness (1976) for integration over a hypercube.

As an example of these results, suppose that the integrand function f (*) has a
singularity at a vertex (the origin) of S, and can be expressed in the form

1.2 fGE)=r%(®), o>-n,

where g('a_c)) is analytic within the closure of §,, in all variables, a is not an integer and
(1.3) rt=x}4+x3 4 +x2

Then (1.1) is not valid, but may be replaced by the asymptotic expansion

Ay in+t(S,5 05 1) iy B(S,; 0; f) '
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214 J. N. LYNESS AND G. MONEGATO

Tt is also shown that when there are singularities at several vertices, the valid asymptotic
expansion is obtained by concatenating the several expansions obtained for the re-
spective cases in which only one singularity is present.

2. Simplex Subdivision. In this section we reintroduce some of the definitions
given in Lyness (1978). We use the n-dimensional Cartesian coordinate system
9
(x,, X5, ... ,x,) and define unit vectors i, j=1,2,...,n,along the respective
coordinate axes. In terms of these unit vectors, we define a subsidiary set of vectors

-> -> - > >

@1 ey =1, e€=4-6_,, j=2,3,...,n
Clearly,
>_- -> ->
li—el+e2+--~+ej.

A point of the form
-
2.2) x=(nl;: +n2i2 +n 1), nl.=integer,i=1,2,...,n,

is termed a grid point. We treat a simplex S, , defined by

n
2.3) S: x>0, i=1,2,...,n Y <L

n 1

This is contained in the hypercube H,, defined by

2.9 H: 0<x;<1l, i=12...,n

n

The closure of the simplex and hypercube are denoted by S and H ,» Tespectively;
and R(D; €) denotes an e-neighborhood of D, i.e. a set which contams all points within
a distance € of some point of D.

In what follows, (u, , ;12, e M) = u] stands for one of the n! permutatlons
of (1,2,...,n)= ﬁl Let 2 be a grid point, then the simplex T(a u) is one which
has vertices v(%) at
T =T+Y e,

1

M

2.5)

-~
I

1

We refer to ﬁ)] as the orientation index of the simplex\T(Z), ﬁ)f). In Lyness (1978),
Section 5, a subdivision of all space was introduced. Let

P . . .
(2.6) l'[,.'].(x)=xl.+xl.+l+-~- +x;, 1<i<jsm
then the set of (n — 1)-dimensional hyperplanes

2.7 m,(x)=k;, 1<i<j<n,V integerk,,
may be employed to form a subdivision of all n-dimensional space; that is, every point
X either lies on one or more of these (n — 1)-dimensional hyperplanes or lies within a
unique simplex T(;l), Ti), for some 7 and Iz), which is bounded by sections of some of

these hyperplanes. We refer to this subdivision as S or simply S. The subdivision
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S subdivides the hypercube H, into n! distinct simplices; we denote by T(,u]) the
unique simplex of the form T(a, ;1]) which lies within H,; in particular, S, = T(pl)
These n! simplices are not congruent to one another but each has n-volume 1/n!.

Associated w1th each orientation index u = (My> My, - - - » M) is an opposite
orientation index A = (7 TR yl)

Deﬁnmon 2.8. A pair of simplices T(a ;1) and T(b )\) are termed opposite
simplices when [.l and X are opposite orientation indices.

It is straightforward to show that T(ﬁ) and T(K) are inversions of one another
about the centroid of H,. That is,
(Q9) Cxy,%y, ..., %) ET(W) = (1 -x;,1 = x,,...,1—x,)€TX).

Subsequently, the following characterization of opposite simplices is useful.

LeEmMA 2.10. Given grid points Z 3‘, given orientation index 71) and denoting by
7\>its opposite, then

@ ifxe T(Z ﬂ), there exists a unique point }) € T(Z, 3\)) such that x + ¥ is
a grid point;

(_)ii) if?c> € T(Z z) and % + 7 is a grid point, then }) S T(f;, 3\)) for some grid
point b.

The subdivision S(™) is a scaled version of the subdivision S pased on
(n — 1)-dimensional hyperplanes

(2.11) () = k;;/m, 1<i<j<n, V integer k,;.

This subdivision S may be constructed in two stages. First the hypercube H, is
subdivided into m" equal subhypercubes by the (» — 1)-dimensional hyperplanes

(2.112) 0, =x =—= i=1,2,...,n, Vintegerki'i,
then the subdivision is completed using the hyperplanes

k.;
(2.11b) I;; = 7;-]—, <i<j<n, Vinteger k; ;

-which subdivide each of these subhypercubes into n! subsimplices in a manner precisely
similar to the subdivision of H, using S described above. Thus, the simplex S, is
subdivided into m” subsimplices each of which has one of n! distinct orientation indices.
When m > n, there is at least one subsimplex having any specified orientation index
within S,

For the purpose of constructing an m"-copy rule, Lyness (1978) defined a quad-
rature rule set for the simplex denoted by

(2.12) @), i=1,2,...,n}.

This consists of a set of n! distinct quadrature rules each component rule Q(ul) being
exact for integrating the constant function over T(u])
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The m"-copy of this quadrature rule set is another quadrature rule set denoted
by {Q(m)(u) j=1,2,...,n'}. The component rule Q('”)(u) is the one obtained
by employing the properly scaled version of Q(uk) on each subsimplex of T(u]) which
has orientation index uk, fork=1,2, , nl.

Definition 2.13. A quadrature rule set has polynomial degree d if each compo-
nent Q(ﬁ:.) has this degree with respect to integration over T(ﬁj). In this case it follows
that the m"-copy of the quadrature rule set is also of this polynomial degree.

Definition 2.14. The quadrature rule set (2.12) is symmetric if each pair of com-
ponent rules Q(ﬁ)) and Q(—)\)), where 71) is opposite to 7:, satisfies

(2.14) o f=0(X)e

forall g(x,, %y, .. ., X)) =f(1—x;, 1 =Xy, ..., 1=x)).
In terms of weights and absassas a symmetric quadrature rule set assigns identical
welghts to any two abscissas x and x whose rmdpomt (x +x )/2 is the centroid of
> these abscissas being assoclated w1th simplices T(u) and T()\) which are linear
inversions of one another through the centroid. Associated with a quadrature rule set
for a simplex S, is a quadrature rule Q(H,)) for the hypercube H,, defined by

\ n!

(2.15) QH)f =3 oS
=1

From the definitions given above, it follows that
n!

(2.16) omMH =Y Q"”’(ﬁ’j)ﬁ
=1

Furthermore, if the quadrature set (2.12) is of degree d or is symmetric, so also is the
associated rule Q(H,).

In this paper we shall deal extensively with asymptotic expansions of form (1.1)
above. These will involve coefficients B(D; Q; f) where s is a positive integer, f is a
given function and Q is either a quadrature rule set (when D is a simplex) or a quadra-
ture rule when D is a hypercube.

Definition 2.17 (The SSP conditions). The entities B(D; Q; f) satisfy the stand-
ard symmetry and polynomial degree conditions if

(a) When Q is symmetric

(2.17a) B(D; Q;f)=0 Vs odd.
(b) When Q is of polynomial degree d(Q)

(2.17b) B(D;Q:f)=0, s=1,2,...,dQ).

The definitions given in this section are taken directly from Lyness (1978) or are
trivial and compatible extensions of those given there.

3. Subdivision Preserving Transformations. In Section 4 we shall derive the
analogue of (1.1) for an integration domain T(ﬁj) by means of an affine transformation



QUADRATURE ERROR FUNCTIONAL EXPANSIONS 217

of the coordinate system. In this section we discuss a subclass of such affine transfor-
mations termed subdivision preserving transformations. These will be used also in
Section 5.

A general affine transformation of the coordinate system has the form

(3.1) X=A%+ B,

where A is an n x n nonsingular matrix and 77) is an n-vector. A grid-preserving trans-
formation is one of form (3.1) which induces a (1, 1) correspondence between grid
points in the two coordinate systems. Clearly, the condition for (3.1) to be a grid-pre-
serving transformation is:

32) Each element of 4, A~ ! and B is an integer.

In general, there is no problem in finding a grid-preserving transformation which takes
an individual simplex T(z, 1) into another specified simplex T(@', 1'). Once the corre
sponding vertices have been assigned one obtains n + 1 linear equations for 7; and the
rows of 4 which can be solved. However, when n > 2, it is generally unlikely that
this transformation will transform other simplices T(Z 3\)) into simplices which are
members of the subdivision S.

We shall be interested in a subclass of grid-preserving transformations which we
now define.

Definition 3.3. An S-preserving affine transformation is one for which the set
of hyperplanes

I (¥)=k;;, 1<i<j<n, Vk,, integer,
and the set

- -
Hi’].(Ax +b) = li’j, 1<i<js<n VI; ; integer,

coincide.

It is selfevident that such a transformation also preserves the subdivision S(")
for all positive integer m. That it is a grid-preserving transformation follows directly
from the circumstance that the grid points are characterized uniquely as the points of
intersection of n(n + 1)/2 hyperplanes. An S-preserving affine transformation induces
an automorphism between the onentatlon indices u] G=1,2,...,nY) of the sub-
division. This follows since, g1ven 7 and u] which define the s1mp1ex T(a u]) there
exists a unique simplex say T(c u]) such that

(34) Y€ T(a 1) = XeT@ -

Moreover, II] depends only on K] and not on 7. Since the inverse transformation exists
and is also S-preserving, it follows that (3.4) defines a (1, 1) correspondence between
- >

u; and M-

=
LEMMA 3.5. For a given_S-preserving transformation, when \ and ﬁ) are oppo-
site orientation indices, so are \ and 71) (defined by (3.4)).
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This follows from Lemma 2.10. In view of part (i) of this lemma when xe
T(Z ﬁ)), there exists a point 3; € T(Z'), \) for which X+ }) is a grid point. We de-
1ote this grid point by 7. Applying the transformation gives
X+P=AF+7) +2b=An +2b;
and since the elements of A and of 77) are integers, we see that —;:+ _J—z) is a grid point.
Then application of part (ii) of Lemma 2.10 shows that ¥ and }) are points in opposite
simplices, i.e. ﬁ) and X are opposite orientation indices.
An S-preserving transformation may be used to define a new quadrature rule set
{(—2(;_1:.),]’ =1,2,...,n!} interms of a given quadrature rule set {Q(ﬁ)i),j =1,2,
, n!'}. Specifically, one defines first the function f by
3.6) FG) = Fd% + B) = £(%)
and sets
—> —>
1Gyf= | G
2 f (i)
and

0N F= 3 wfGD).
i=1

If the transformation takes T(ﬁ)j) into T(_a)j, —;)j) by a simple change of variable, we
find that

(37) 1) = 1, B)F
and
38) 06T = X w FE®) = 0G, 7,

this relation defining a rule element Q( u]) The rule Q(y ) is s1mply a translated
version of this. Since the set u] is snnply a reordering of the set u], this procedure

may be used to define each element of a set of quadrature rules Q(u]) i=1,2,...,n
Recalling the (geometric) definition of an m-copy rule, from (3.8) it also follows
(3.9) Q") f = 0™ (a;, BHf:

The following theorem is required for establishing the first major result of Section 4.

THEOREM 3.10. Given any orientation index '[1) there exists an S-preserving
tffine transformation which transforms T(ﬁ) into S, = T(ﬁ’l).

This is a corollary of Lemma 3.11 below.
LEmMMA 3.11. Let ﬁ= (KysMys - - -5 My,). The transformation defined by

— —> -
x; =11 x)—1I X), i=1,2,...,n—1,
3.11) e

— —>
x, = Hun,n(x)
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(a) is an S-preserving transformation,
—> —>
(b) transforms the simplex T(O0, ;—1)) into the simplex S, = T(0, I‘)l)-

The proof is based on straightforward but tedious manipulation. First, we show
from (3.11) that

> >
0, ,(x) = n"r“m+1“‘(x) when . ., >y, 1 <I<m<n,

_)
=—n"‘m+1’“l'—1(x) when u,, , <pp 1 <I<m<n,

and
nl:n(})) = H“[:”(?)’ Vl < l <n,

which in view of Definition 3.3, establishes part (a) of the lemma. Part (b) is estab-
hshed by showing in turn that each vertex 2 of T, p) is transformed to v(k) =
zk, a vertex of §,. To do this we note that

k) 2 > R g
v el_tl + e#z + + euk,
where
- > >
e#j = luj ’u,-—l’ K # 1.

Since ?”j has at most two nonzero coordinates, these being x, = + 1 and when u; #1
i

x, = —1, it follows that
#]._1

- .
l'luk’n(e#j) =L k=i
=0, otherwise,
giving

k
(k)N — > .
n“j,,,(u( )) = I=Zl O (=1 Jj=12....k

=0, j=k+1,...,n
Thus, when j # n, we find
(v("))= 1, k=j,

=0, otherwise;

(k) _ k
Uj(k) = Hui,n(v( )) 1, e1om
and i’t_)is readily verified that the same result holds when j = n. This identifies :!;)(k)
with i, establishing part (b) of the lemma.

The validity of Theorem 3.10 1s now evident since there is a trivial S-preserving
transformation taking T(y) into T(O u) in cases in which they are different.

4. Expansion for the Error Functional. The following theorem is a minor gener-
alization of the principal theorem of Lyness (1978).

THEOREM 4.1. For all quadrature sets {Q(u]) i=1,2, ,h'} and for all
functions f (x) whose partial derivatives of total order d + n — 1 or less exist within
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an e-neighborhood of T(Zk) for some € >0

-
: N N d+n—1 By Q; f) _
“. QM) f =Mk f + Y, e + 0™ ™),
§s=1
where the coefficients By satisfy the SSP conditions. Moreover, when f (?) is a poly-
nomial of degree d, the term in (4.1) denoted by O(m~4* 1)) is zero.

Proof. In the case in which f (3c>) is an analytic function and k = 1, i.e., T(zk)
=S, this theorem is a restatement of Theorems 5.25, 6.2 and 6.6 of Lyness (1978).
Examination of the proof of Theorem 5.25 shows that the proof given there stands as
long as f (})) has partial derivatives of total order d + n — 1 or less within an e-neigh-
borhood of S, . This establishes the validity of the theorem when k = 1. We use this
in extending the proof to cover other values of k.

The steps of the proof are these. We consider the transformation of Theorem
3.10 with ﬁ = ;_Ik and apply it to some of the results in Section 3. This transforma-
tion can be used to define f in terms of f by (3.6). It takes T(ﬁk) into T(ﬁ)l). Thus,
in terms of the notation defined in (3.4)

re -
Mp = My,

and (3.7) and (3.9) with j = k take the form

42)

—> —= — — -
(43) ) f=1u)F: 0™ (@)= 0 W,)F
We have already established (4.1) with k¥ = 1. This is valid for a general quadrature
rule set and any function satisfying the conditions stated in the theorem. Applying
(4.1) with k = 1 to the rule set {Q(zj), j=1,2,...,n'} and function f(x) gives
- p— p—

_ _ _ d+n-1B(u;;0, 1)

@49 0N -IE)f= Y

s=1

—— + O(m—@+ 1),
Substituting relations (4.3) into this gives (4.1) as written, the coefficients on the right
being defined by

(4.5) By(t; O, f) = By(iy; O 7).

The final part of the theorem, which states that the coefficient on the right of (4.1)
satisfy the SSP conditions, follows simply from (4.5). Clearly, the polynomial degrees
of Q and f coincide with those of Q and f, respectively. And in view of Lemma 3.5,
the circumstance that Q is symmetric implies that Q is symmetric.

We now proceed to derive an expansion similar to (4.1) but valid when the inte-
grand function f (})) has a singularity of a certain type at a vertex of the simplex. The
derivation depends heavily on corresponding results for integration over a hypercube
which are given in Lyness (1976).

Definition 4.6. A function f (-;) is homogeneous of degree y with respect to a
point -5 when

(4.6) FOG - 7)) = NF(x - p), VX# pand real X # 0.
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Note that if such a function has a singularity at }’s, then it has singularities at all
points a)_c: +(1- a)_;; for all real a.

Definition 4.7. The set H,;F includes all homogeneous functions of degree 7y about
the origin which have no singularity in the principal quadrant x, > 0,i=1,2,...,n,
other than the one at the origin.

THEOREM 4.8 (LYNESS (1976), THEOREM 4.17). Let 5 (S'c)) € HY, and let
Q™(H ) be the m"-copy of Q(H,), a quadrature rule for the hypercube H,. Then

A, Hy 05 f)  Cppf(Hy3 05 1)
QU(H, ) £, = U, f, ~—" e B iy

(4.8)
B(H,;Q;f,)

s=1 m

and B (H,; Q; fy) and C, . (H,; Q; fy) satisfy the SSP conditions (see Definition
2.17).
Incidentally, there are many circumstances in which some of these coefficients are

zero. Most important is

“49) Cory =0 unless y = integer.

n

This theorem is also valid when Q(™) is replaced by 0™ 1 which is identical
with Q(™) except that the function value at the origin is omitted.
Corresponding results for the simplex S, are given by the following:

THEOREM 4.10. Let f, € H;. For all quadrature rule sets {Q(I—IJ-), i=1,2,

.,n'}
A, S50 ) Coyn (S, 0if)
Q(m)(Sn)f7 - I(Sn)fy ~ +7mn+7 - + - mhtr L Inm
(4.10)
By(S,; 0 f,)

s=1 m® '

where the coefficients B (S, ; Q; fv) and C, 7(S s @5 fv) satisfy the SSP conditions
and C, by = 0 unless v is an integer.

Proof. We recall from (2.15) that
(@.11) 0(H,) = 0(S,) + X O(T(&x,)),
k=2

from which it follows that

n!

-
(4.12) oS, f, = QM) - z QUI(T( ) 1,
Since fy(})) € H, it is analytic in T(u), k=12,3,...,n!. Thus, we may expand

each term in the summation over k using (4.1). We may expand the first term on the
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right-hand side using (4.8). Doing this gives (4.10) as written, the coefficients being
given by
An+'y(Sn; Q’f'y) = An+’y(Hn; Q’ f}y),
Cn+fy(Sn; Q; ffy) = Cn+fy(Hn; Q, ffy)»
n!

By(S,: 0, f,) = B{H,; 0 £,) = Y. B(T(1); O: f,)-

k=2

(4.13)

Since each term on the right-hand side of the third relation individually satisfies the
SSP conditions, so does B(S,,; Q;fy). The same result holds for CnM(Sn; Q;fy),
which furthermore is zero unless v is an integer.

We may now apply the previous theorems to prove the following:

THEOREM 4.14. Let

- -1 —> —>
@14) FE =Y furi@) +e@),
i=0

where f, ,; € H; +; and g(?) is a function all of whose partial derivatives of total

order 1 or less are integrable over an e-region of S,. Then, for all quadrature rule sets
> .

{Q(uj),] =1,2,...,n!}

0"™(S,)f - IS,)f = e mrari

-1 An+a+i(Sn; ;1) n Cn+a+i(Sn; Q1)
i m

(4.15) =0
1-1 B(S,; Qs )

Y T
s=1

where B(S,; Q; f) and C,,, , . ;(S,; Q; [) satisfy the SSP conditions, and C, ., .; = 0
unless o = integer.

+ o(m™"),

Proof. Since Q(m)(Sn) is a linear operator,

(4.16) OIS 1= T QM) s + OGS,

i=0
Replacing the terms on the right of (4.16) by the expansions given in Theorems 4.10
and 4.1 with k = 1 gives (4.15) directly with

An+a+i(Sn; Q’f) = An+a+i(Sn; Q;fa+i)’

(4.17) Cn+a+i(Sn;Q;f)= Cn+a+i(Sn;Q;fa+i)’

d-1
By(S,; 0; f) = B((S,; 0:8) + X By(S, Qs foy)-
i=0

This theorem establishes expansion (4.15) for a wide class of integrand functions having
a singularity of the origin. For example, let

(4.18) f(X) = 1°*h(g ey, Xy, - - - 5 X,),
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where
(4.19) r=|¥|=(x?+x§+.. +x3’)'/2
and A(r) and g(x,, x,, . . . , x,,) are analytic functions of their stated variables. This

function may be expressed, using multivariate Taylor expansion, in form (4.14) with
any value of d and so (4.15) applies as written to this function.

A more thorough description of the classes of functions to which this and similar
theorems may be applied is given in Lyness (1976).

5. Singularities at Other Vertices. The result in the previous section gives the
error functional expansion for the case in which the integrand function has a singularity
at one specified vertex of S, , namely the origin. In this section we first extend the
theory to establish the corresponding result when the singularity is at some other vertex.

An extension of this sort for the corresponding result for the hypercube is trivial
to establish. For example, if the singularity is at ?1 =(1,0,0,...,0), one may
simply apply coordinate transformation

5.1 x'1=1-x1, x]f=x]., i=2,3,...,n

This takes the hypercube into itself, the hypercube subdivision into itself, moves the
singularity to the required point, and alters the quadrature rule in an obvious manner.

For the simplex, one can proceed in this way only if the transformation is S-pre-
serving. It turns out that the simplest transformation, one which interchanges two
vertices leaving the others unaltered, is not S-preserving.

THEOREM 5.2. The transformation

— —
x, = 1 — Hl’n(x),

(5.2)
X =X_q, i=2,3,...,n,
.. g - ..
(1) transforms the origin to the point i,, transforms i, to the origin and trans-
= ->
forms ijto i,y fori=1,2,...,n—1;

(2) transforms S, into itself
(3) is an S-preserving transformation.

Proof. 1t is trivial to verify item (1); and item (2) follows from item (1) im-
mediately.
To establish that the transformation is S-preserving, one need verify only that

— 1
— - ->
0,E=1-T,G+ x5, =1-1,(x), [=23....n
(5.3) =2
-1

> _ -
M (x) =3 X = > Xj_y = 2 =0 _,, ,(x), 2<k<I<n
=k =k j=k—1

This transformation may be applied in the first instance to the result (4.10) using
the same procedure as is used in the proof of Theorem 4.1. This leads to a result of
precisely the same character as Theorem 4.10 except that f,, (})) is now replaced by
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f (x) a homogeneous function of degree v about (1 0,0, , 0). Moreover, the
condltlon ‘that f (x) €EH) + implies only that f (x) has no smgularlty, other than the
one at ’1 within the closure of S,

Successive applications of this same transformation move the singular point to
successive vertices of S, giving the corresponding result for each. This establishes the
following generalization of Theorem 4.10.

THEOREM 54. Let fk(x) be a homogeneous function of degree y about zk,
this being a specified vertex of S,, and let f k (x) have no other singularities within

the closure of S,,. Let {Q(I_Ij), j=1,2, , n'} be a quadrature rule set. Then
QUmN(S, ) [k = IS LY
-4 Ay G Gy G m - B(S0F)
~ mhtY mh Y = ms

where the coefficients By and C,, . satisfy the SSP conditions and C,, ., is zero unless
v is an integer.

Using this generalization of Theorem 4.10, the theory of the remainder of Section
4 may be extended to cover cases where the singularity is at any specified vertex of
S,. For example, the result stated mvolvmg integrand function (4.18) is equally valid
when r given by (4.19) is replaced by Ix - g I

None of the theorems or implied generalizations obtained above are valid when
the integrand function has a singularity at more than one vertex. Such functions are
excluded by the stated condition that the integrand function and its early derivatives
should be integrable except at the vertex under consideration. However, in cases
where an integrand function has singularities at two or more vertices of the simplex,
the appropriate asymptotic expansion is obtained by concatenating the expansions
which are valid for integrand functions having only one vertex singularity. We con-
clude this paper by outlining the proof of this result, which is in fact an elementary
application of Darboux’s theorem. Let f (3:’) have singularities at some or all of the
vertices v(¥) of the simplex S, but suppose f (}’) can be expanded about each individ-

ual vertex 3("), k=1,2,...,n,in the form

(5:3) G = z 9, ) + 8P,
=0

where:

(6] f(k)(x) is homogeneous of degree v about v(k)

(ii) g(k)(x) together with all its partial derivatives of total order [, or less are
integrable in a region containing v(k),

(iii) g®)(x) is regular within S, but may have integrable singularities at other
verticesg(j), j#Fk

We define G(?c)) by
(5.6) =3 T FO ) + 6@

k=1 i=0
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and examine the nature of G(})) in a neighborhood of the vertex ‘;(j)_ It follows that

n d—1

1) 6F) =g - X X 159,

k=1i=0

k#j
Each term in the double summation is regular at v, Thus, the nature of the singu-
larity of G(?) at v coincides with the nature of the singularity of g¢ f)(})) at
¥ which is specified in (ii) above. Since G(?c)) is regular, except at the vertices, it
follows that G (})) together with all its partial derivatives of order /, with / = min; /,
are integrable over S,. Consequently, G(x) is a function to which we can apply Theo-
rem 4.1 with/=d + n — 1. Since we may apply Theorem 5.4 to each of the indi-
vidual terms in the double summation in (5.6), we may obtain from (5.6) an expression
for Q('")(Sn)f— I(S,)f. As mentioned above, this turns out to be a concatenation
of the individual expansions one would obtain if each singularity were the only one
present.
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