Solution of Linear Equations With Rational Toeplitz Matrices*

By Bradley W. Dickinson

Abstract. We associate a sequence of Toeplitz matrices with the rational formal power series T(z). An algorithm for solving linear equations with a Toeplitz matrix from this sequence is given. The algorithm requires O(n) operations to solve a set of n equations, for n sufficiently large.

1. Introduction. In this paper, we present an algorithm for solving a system of N+1 linear equations with special Toeplitz structure:

$$(1) T_N x = y.$$

For every $n \ge 0$, let $T_n = \{t_{i-j}, 0 \le i, j \le n\}$ be a Toeplitz matrix. We assume that T_n^{-1} exists for $0 \le n \le N$ and that the formal Laurent series

(2)
$$T(z) = \sum_{k=-\infty}^{\infty} t_k z^k$$

is a rational function of z. Then, for sufficiently large N, our algorithm requires O(N) operations to compute the solution to (1). The algorithms of Levinson [5], Bareiss [1], and Zohar [13], which exploit only the Toeplitz structure of T_N , require $O(N^2)$ operations to solve (1).

This problem is motivated by an important special case of (1) arising in linear least squares estimation theory. When T(z) is rational and matrices T_n are symmetric and positive definite for all n, T_N is the covariance matrix of N+1 samples from a wide-sense stationary autoregressive moving-average stochastic process. Trench [10], in a somewhat overlooked paper, outlined an algorithm for solving the linear equations associated with certain estimation problems; his algorithm requires O(N) operations but, as noted in [10], the details are "tedious to write out" except in the banded case when T(z) in (2) is a finite series. For the banded case, alternative algorithms can be developed using the result that the (banded) Cholesky factors of T_N can be obtained in O(N) operations; see Morf [6] and Rissanen [7].

Coupling Trench's work on inversion of nonsymmetric banded Toeplitz matrices [11] with Zohar's results [13] leads to an efficient algorithm for solution of general banded Toeplitz systems in O((p+q)N) operations, where $t_i = 0$ for i > p and i < -q

Received August 4, 1978; revised January 30, 1979.

AMS (MOS) subject classifications (1970). Primary 65F30; Secondary 15A57.

Key words and phrases. Toeplitz matrix, linear equations.

^{*}Supported in part by the National Science Foundation under grant ENG77-28523.

- [3]. In this paper we will generalize the solution algorithms of [3] and [13] to a class of "almost-Toeplitz" systems, leading to an algorithm for solving the special Toeplitz systems defined above.
- 2. Solution of the Toeplitz System. We first present a decomposition of T_n which follows from the rationality of T(z). By separately considering the upper and lower triangular parts of T_n we obtain a representation in terms of banded, triangular Toeplitz matrices. Let

(3)
$$T(z) = T_{\perp}(z) + T_{\perp}(z),$$

where by rationality

(4a)
$$T_{+}(z) = t_{0}/2 + \sum_{k=1}^{\infty} t_{k} z^{k} = c(z)/d(z),$$

(4b)
$$T_{-}(z) = t_{0}/2 + \sum_{k=1}^{\infty} t_{-k} z^{-k} = \gamma(z)/\delta(z),$$

and c(z), d(z), $\gamma(z)$ and $\delta(z)$ are polynomials given by

(5a)
$$c(z) = \sum_{i=0}^{p} c_i z^i, \quad c_p \neq 0,$$

(5b)
$$d(z) = 1 + \sum_{i=1}^{q} d_i z^i, \quad d_q \neq 0,$$

(5c)
$$\gamma(z) = \sum_{i=0}^{r} \gamma_i z^{-i}, \quad \gamma_r \neq 0,$$

(5d)
$$\delta(z) = 1 + \sum_{i=1}^{s} \delta_i z^{-i}, \quad \delta_s \neq 0.$$

For notational convenience, we write $L_n(\mathbf{w})$ for the lower triangular Toeplitz matrix whose first column is the (n+1)-vector \mathbf{w} ; $U_n(\mathbf{w})$ is the upper triangular Toeplitz matrix whose first row is \mathbf{w}' , where prime denotes transpose. We define (n+1)-vectors of the coefficients of the polynomials in (5) by

(6a)
$$\mathbf{c}_n = (c_0 c_1 \cdots c_p \ 0 \cdots 0)',$$

(6b)
$$\mathbf{d}_{n} = (1 \ d_{1} \cdots d_{n} \ 0 \cdots 0)',$$

(6d)
$$\boldsymbol{\delta}_{n} = (1 \, \delta_{1} \, \cdots \, \delta_{s} \, 0 \, \cdots \, 0)'.$$

These vectors are suitably truncated when n is less than p, q, r, or s.

The desired representation of T_n follows from the natural isomorphism between the ring of formal power series in z and the ring of semi-infinite (towards the southeast) lower triangular Toeplitz matrices; the coefficient of z^0 is associated with the

diagonal element, the coefficient of z with the first subdiagonal element, etc. Polynomials in z correspond to banded matrices, and power series multiplication corresponds to matrix multiplication. Similarly, power series in z^{-1} are naturally isomorphic to semi-infinite (towards the northwest) upper triangular Toeplitz matrices with polynomials in z^{-1} corresponding to banded matrices. In both cases, a power series with a nonzero coefficient of z^0 is invertible in the ring; this corresponds to the fact that an invertible triangular Toeplitz matrix has a triangular Toeplitz inverse. (In the finite case, Traub [8] has given an expression for the (Toeplitz) inverse of a triangular Toeplitz matrix.)

Applying the isomorphisms to the power series equations (4a) and (4b) and taking the first n + 1 rows and columns of the corresponding matrix products, starting at the northwest and southeast corners, respectively, and combining the lower and upper triangular Toeplitz matrices gives the desired representation of T_n .

LEMMA 1. With the notation defined above, for $n \ge 0$

(7)
$$T_n = L_n^{-1}(\mathbf{d}_n)L_n(\mathbf{c}_n) + U_n(\gamma_n)U_n^{-1}(\delta_n).$$

Since power series multiplication is commutative, we have chosen a convenient ordering of the factors. Now, treating (7) simply as a matrix identity for the class of Toeplitz matrices considered here, we see that T_n can be reduced to a band matrix by cross multiplication, giving

(8)
$$R_n = L_n(\mathbf{d}_n) T_n U_n(\delta_n) = L_n(\mathbf{c}_n) U_n(\delta_n) + L_n(\mathbf{d}_n) U_n(\gamma_n).$$

Since T_n is Toeplitz, $L_n(\mathbf{d}_n)$ is lower triangular, and $U_n(\delta_n)$ is upper triangular, the first equality in (8) shows that for $n \ge 1$, R_{n-1} is the n by n principal submatrix of R_n . However, using the second equation in (8) and the Toeplitz structure of the triangular matrices, we obtain the following important structural property of R_n .

LEMMA 2. For $n \ge 1$, the matrix R_n defined in (8) satisfies

(9)
$$R_{n} - \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & R_{n-1} \\ 0 \end{bmatrix} = c_{n} \delta'_{n} + d_{n} \gamma'_{n}.$$

From (6a)-(6d), the nonzero elements of the matrix on the right-hand side of (9) lie in the northwest corner but generally extend beyond the first row and column, so R_n differs from Toeplitz only in its northwest corner. When the degrees p = r = 0 so that $\mathbf{c}'_n = \gamma'_n = (1 \ 0 \cdots 0), R_n$ is Toeplitz.

A general theory for the inversion of matrices which can be expressed as sums of products of lower and upper triangular Toeplitz matrices is given by Friedlander et al. [4]. Efficient, recursive algorithms for determining the inverses of such matrices are derived, generalizing the Trench algorithm [9], [12]. The particularly simple form of (9) leads to additional simplifications of the approach in [4]. Furthermore, as in [11], the band structure of R_n may be exploited to reduce the computational complexity by an additional order of magnitude.

We propose a three step approach to solving the original system of equations (1):

- (a) Compute $L_N(\mathbf{d}_N)y = \widetilde{y}$.
- (b) Solve $R_N \widetilde{x} = \widetilde{y}$.
- (c) Compute $x = U_N(\delta_N)\widetilde{x}$.

Thus in the following, we only describe an algorithm for the second step. Some additional notation will be required. We define for each $n \ge 0$ the vector

(10)
$$A_n = (a_{n0} \cdot \cdot \cdot a_{nn})'; \quad a_{nn} = 1,$$

as the solution to the system

$$(11) R_n A_n = (0 \cdots 0 \alpha_n)',$$

where the scalars $\{\alpha_n; n \ge 0\}$ are defined recursively below. Similarly, vectors P_n and Q_n are defined by

$$(12) R_n P_n = c_n,$$

$$R_n Q_n = \mathbf{d}_n.$$

Next we let

$$\widetilde{\mathbf{y}}_{n} = (\widetilde{\mathbf{y}}_{0}, \dots, \widetilde{\mathbf{y}}_{n})'$$

and define X_n by

$$(15) R_n X_n = \widetilde{\mathbf{y}}_n.$$

The matrix R_n has elements $\{r_{ij}, 0 \le i, j \le n\}$. Now we are ready to derive our major result. We proceed in the usual way, obtaining the quantities A_{n+1} , P_{n+1} , Q_{n+1} , and X_{n+1} from A_n , P_n , Q_n , and X_n . Using the structure of R_{n+1} , (9), we find

(16)
$$R_{n+1}[0 A'_n]' = (0 \cdots 0 \alpha_n)' + c_{n+1}e_n + d_{n+1}f_n,$$

where the first term is an (n + 1)-vector and the scalars e_n and f_n are given by

$$e_n = [0 A_n'] \delta_{n+1},$$

$$f_n = [0 A_n'] \gamma_{n+1}.$$

Since R_n is a principal submatrix of R_{n+1} , we obtain

(18a)
$$R_{n+1}[P'_n \ 0]' = [c'_n \ g_n]',$$

(18b)
$$R_{n+1}[Q'_n \ 0]' = [\mathbf{d}'_n \ h_n]',$$

(18)
$$R_{n+1}[X'_n \ 0]' = [\widetilde{\mathbf{y}}'_n \ \Delta_n]',$$

where the scalars g_n , h_n , and Δ_n are given by

(19a)
$$g_n = [r_{n+1,0} \cdots r_{n+1,n}] P_n,$$

(19b)
$$h_n = [r_{n+1,0} \cdots r_{n+1,n}] Q_n,$$

$$\Delta_n = [r_{n+1,0} \cdots r_{n+1,n}] X_n.$$

We let $c_{n+1,n+1}$ and $d_{n+1,n+1}$ denote the last elements of the vectors \mathbf{c}_{n+1} and \mathbf{d}_{n+1} , respectively. Then P_n and Q_n can be used to update A_n :

(20)
$$A_{n+1} = [0 A'_n]' - [P'_n \ 0]' e_n - [Q'_n \ 0]' f_n,$$

(21)
$$\alpha_{n+1} = \alpha_n + (c_{n+1,n+1} - g_n)e_n + (d_{n+1,n+1} - h_n)f_n.$$

Now that A_{n+1} is available, it may be used to update the values of X_n , P_n , and Q_n so that (12), (13), and (15) are satisfied. The required steps are given by

(22a)
$$X_{n+1} = [X'_n \ 0]' - A_{n+1} (\Delta_n - \widetilde{y}_{n+1}) / \alpha_{n+1},$$

(22b)
$$P_{n+1} = [P'_n \ 0]' - A_{n+1} (g_n - c_{n+1,n+1}) / \alpha_{n+1},$$

(22c)
$$Q_{n+1} = [Q'_n \ 0]' - A_{n+1}(h_n - d_{n+1,n+1})/\alpha_{n+1}.$$

This completes the updating calculations.

The initial conditions for the algorithm are quite simple:

(23)
$$A_0 = 1$$
, $\alpha_0 = r_{00}$, $Q_0 = 1/r_{00}$, $X_0 = \widetilde{y}_0/r_{00}$, $P_0 = c_0/r_{00}$,

where c_0 is obtained from (5a). In verifying the correctness of this algorithm, only the division by α_{n+1} at each stage requires additional justification. Here the assumption that T_n^{-1} exists for every $0 \le n \le N$ is used. From the first equation of (8), R_n^{-1} exists for every $0 \le n \le N$ because $L_n(\mathbf{d}_n)$ and $U_n(\delta_n)$ are unit triangular matrices. Since R_n is a principal submatrix of R_{n+1} , from Eqs. (10) and (11), $\alpha_{n+1} = \det R_{n+1}/\det R_n$; and this justifies the divisions required in the algorithm.

No use of the banded structure of R_n has yet been made; the algorithm of Theorem 1 applies to any matrix R_N having the structure in (9) and with R_n^{-1} defined for each n. This includes some Toeplitz matrices, for example. With $\gamma_n = \mathbf{c}_n = (1\ 0 \cdots 0)'$, $f_n = 0$ in (17b) for all n and Q_n in (13) is not required so the algorithm reduces to the Levinson-Trench-Zohar algorithm [13]. To exploit the banded nature of R_N , we make a minor assumption that $\rho = \max(p, q)$ is the lower bandwidth of R_N ; that is we assume $r_{\rho+j,j} \neq 0$ and $r_{\rho+k,j} = 0$ for k > j. This is not a limitation because from (5), (6) and (8)

(24)
$$r_{\rho+j,j} = \begin{cases} \gamma_0 d_q = t_0 d_q/2 \neq 0 & \text{for } q > p, \\ c_p \neq 0 & \text{for } p > q, \\ c_p + \gamma_0 d_q & \text{for } p = q, \end{cases}$$

so this condition can be assured by modifying the fraction of the constant term to that which is assigned to T(z) in (4b) if necessary. Some observations now follow directly:

- (a) Computing (17a) and (17b) requires only the first s and r components of A_n , respectively. Let $\sigma = \max(s, r)$; σ will ordinarily be the upper bandwidth of R_N .
- (b) Only the last ρ elements of P_n , Q_n , and X_n are needed to compute (19a)–(19c).
 - (c) Consequently, in (20), (22b), (22c) only the first σ and last ρ elements of

 A_{n+1} , Q_{n+1} , and P_{n+1} need to be computed for n larger than $\rho + \sigma$. In (22a) only the last ρ elements of X_{n+1} need to be computed. When n+1 reaches N, the remaining elements of X_N are computed by back substitution.

We define

$$(25) X_N = (X_{N0} \cdot \cdot \cdot X_{NN})'.$$

Then for $N - \rho \ge j \ge 0$ we take

(26)
$$X_{Nj} = (1/r_{j+\rho,j}) \left(\widetilde{y}_{j+\rho} - \sum_{i=j+1}^{j+\rho+\sigma} r_{j+\rho,i} X_{Ni} \right),$$

where $X_{Ni} = 0$ for i > N.

Together with the algorithms of Theorem 1, these modifications provide an algorithm for solving $R_N \widetilde{x} = \widetilde{y}$; as discussed earlier, this is the only nontrivial step in the solution of (1) when T_N is rational. An operation count (of multiplications) shows that solution of (1) requires $(10\rho + 5\sigma + 6)N + O((\rho + \sigma)^2)$ operations. Notice that because R_N is Toeplitz except in its upper $(\rho + 1)$ by $(\sigma + 1)$ corner, all of its elements can be computed in $O((p + \sigma)^2)$ operations. This is still true if T(z) is given in factored form

(27)
$$T(z) = (b(z)/d(z))(\beta(z)/\delta(z))$$

as is often the case in applications such as the linear estimation problems considered by Trench [10].

3. Discussion. Our algorithm differs from Trench's [10] in the following way. By extracting triangular Toeplitz factors of known form from T_N , namely $L_N^{-1}(\mathbf{d}_N)$ and $L_N^{-1}(\delta_n)$, we are left with a banded nearly-Toeplitz system to solve. It appears that Trench removes nearly-Toeplitz factors from T_N in order to be left with a banded Toeplitz system to solve. His motivation for so doing was the availability of an efficient algorithm for such systems. We have shown that a very similar algorithm can be used to solve the banded nearly-Toeplitz system.

If the rational power series T(z) converges for some annulus centered on the origin in the complex plane, then subject to some minor assumptions, the existence of T_n^{-1} for $0 \le n \le N$ can be expressed as a constraint on the poles and zeros of T(z). The additional assumptions are that with T(z) = N(z)/D(z) for relatively prime polynomials N(z) and D(z), $N(0) \ne 0$ and N(z) has distinct zeros. Under these circumstances, Day [2] gives an explicit formula for the determinant of T_n in terms of the zeros of N(z) and D(z), and a nonzero determinant is equivalent to the invertibility of T_n .

Department of Electrical Engineering and Computer Science Princeton University Princeton, New Jersey 08540

- 1. E. H. BAREISS, "Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices," *Numer. Math.*, v. 13, 1969, pp. 404-424.
- 2. K. M. DAY, "Toeplitz matrices generated by the Laurent series expansion of an arbitrary rational function," *Trans. Amer. Math. Soc.*, v. 206, 1975, pp. 224-245.

- 3. B. W. DICKINSON, "Efficient solution of banded Toeplitz systems," IEEE Trans. Acoust. Speech Signal Process., v. ASSP-27, 1979, pp. 421-423.
- 4. B. FRIEDLANDER, M. MORF, T. KAILATH & L. LJUNG, "New inversion formulas for matrices classified in term of their distance from Toeplitz matrices," J. Linear Algebra Appl. (To appear.)
- 5. N. LEVINSON, "The Wiener rms (root mean square) error criterion in filter design and prediction," J. Mathematical Phys., v. 25, 1947, pp. 261-278.
- 6. M. MORF, Fast Algorithms for Multivariable Systems, Ph. D. thesis, Stanford University, 1974.
- 7. J. RISSANEN, "Algorithms for triangular decomposition of block Hankel and Toeplitz matrices with application to factoring positive matrix polynomials," *Math. Comp.*, v. 27, 1973, pp. 147-154.
- 8. J. F. TRAUB, "Associated polynomials and uniform methods for the solution of linear problems," SIAM Rev., v. 8, 1966, pp. 277-301.
- 9. W. F. TRENCH, "An algorithm for the inversion of finite Toeplitz matrices," SIAM J. Appl. Math., v. 12, 1964, pp. 515-522.
- 10. W. F. TRENCH, "Weighting coefficients for the prediction of stationary time series from the finite past," SIAM J. Appl. Math., v. 15, 1967, pp. 1502-1510.
- 11. W. F. TRENCH, "Inversion of Toeplitz band matrices," Math. Comp., v. 28, 1974, pp. 1089-1095.
- 12. S. ZOHAR, "Toeplitz matrix inversion: the algorithm of W. F. Trench," J. Assoc. Comput. Mach., v. 16, 1967, pp. 592-601.
- 13. S. ZOHAR, "The solution of a Toeplitz set of linear equations," J. Assoc. Comput. Mach., v. 21, 1974, pp. 272-276.