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Solution of Linear Equations With
Rational Toeplitz Matrices*

By Bradley W. Dickinson

Abstract. We associate a sequence of Toeplitz matrices with the rational formal power
series 7(z). An algorithm for solving linear equations with a Toeplitz matrix from

this sequence is given. The algorithm requires O(n) operations to solve a set of n equa-
tions, for n sufficiently large.

1. Introduction. In this paper, we present an algorithm for solving a system of
N + 1 linear equations with special Toeplitz structure:

1) Tyx =Y.

For every n >0, let T, = {ti_i, 0 <i, j <n} be a Toeplitz matrix. We assume that

T, ! exists for 0 <n <N and that the formal Laurent series

oo

@) T@) = 3 t,z*

k=—o0
is a rational function of z. Then, for sufficiently large N, our algorithm requires O(V)
operations to compute the solution to (1). The algorithms of Levinson [5], Bareiss
[1], and Zohar [13], which exploit only the Toeplitz structure of T, require O(N?)
operations to solve (1).

This problem is motivated by an important special case of (1) arising in linear
least squares estimation theory. When 7/(z) is rational and matrices T,, are symmetric
and positive definite for all n, T, is the covariance matrix of N + 1 samples from a
wide-sense stationary autoregressive moving-average stochastic process. Trench [10],
in a somewhat overlooked paper, outlined an algorithm for solving the linear equations
associated with certain estimation problems; his algorithm requires O(V) operations
but, as noted in [10], the details are “tedious to write out” except in the banded case
when T(z) in (2) is a finite series. For the banded case, alternative algorithms can be
developed using the result that the (banded) Cholesky factors of T, can be obtained
in O(N) operations; see Morf [6] and Rissanen [7].

Coupling Trench’s work on inversion of nonsymmetric banded Toeplitz matrices
[11] with Zohar’s results [13] leads to an efficient algorithm for solution of general
banded Toeplitz systems in O((p + q)N) operations, where ¢; =0 for i > p and i < —q
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[3]. In this paper we will generalize the solution algorithms of [3] and [13] to a
class of “almost-Toeplitz’”” systems, leading to an algorithm for solving the special
Toeplitz systems defined above.

2. Solution of the Toeplitz System. We first present a decomposition of T,
which follows from the rationality of 7T(z). By separately considering the upper and
lower triangular parts of T, we obtain a representation in terms of banded, triangular
Toeplitz matrices. Let

(3 T(@) = T.(2) + T_(2),

where by rationality

(42) T,(2) =ty/2 + i t,2* = c(2)/d(2),
k=1
(4b) T =2+ 3 142 =1@)50),
k=1
and ¢(z), d(z), y(z) and §(z) are polynomials given by
p
(5a) cz) =Y 7, ¢, #0,
i=0
q .
(sb) d2)=1+ Y dd, d, #0,
i=1
(5¢) 1@ =3 17t 1, #0,
i=0
(5d) 5@ =1+3 8770, 5, #0.

i=1
For notational convenience, we write L, (w) for the lower triangular Toeplitz matrix
whose first column is the (r + 1)-vector w; U, (w) is the upper triangular Toeplitz ma-
trix whose first row is w', where prime denotes transpose. We define (n + 1)-vectors
of the coefficients of the polynomials in (5) by

(6a) ¢, =(coc; "¢, 0---0),
(6b) d,=(1d,---d,0---0),
(6¢) Y=oy~ 7,0+ 0),
(6d) 8, =18, ---8,0--0).

These vectors are suitably truncated when # is less than p, g, r, or s.

The desired representation of T, follows from the natural isomorphism between
the ring of formal power series in z and the ring of semi-infinite (towards the south-
east) lower triangular Toeplitz matrices; the coefficient of z0 is associated with the



LINEAR EQUATIONS WITH RATIONAL TOEPLITZ MATRICES 229

diagonal element, the coefficient of z with the first subdiagonal element, etc. Polyno-
mials in z correspond to banded matrices, and power series multiplication corresponds to

matrix multiplication. Similarly, power series in z~?

are naturally isomorphic to semi-
infinite (towards the northwest) upper triangular Toeplitz matrices with polynomials
in z7! corresponding to banded matrices. In both cases, a power series with a nonzero
coefficient of z° is invertible in the ring; this corresponds to the fact that an invertible
triangular Toeplitz matrix has a triangular Toeplitz inverse. (In the finite case, Traub
[8] has given an expression for the (Toeplitz) inverse of a triangular Toeplitz matrix.)
Applying the isomorphisms to the power series equations (4a) and (4b) and tak-
ing the first n + 1 rows and columns of the corresponding matrix products, starting at
the northwest and southeast corners, respectively, and combining the lower and upper

triangular Toeplitz matrices gives the desired representation of T,.

LEMMA 1. With the notation defined above, for n = 0

@) T, = L' (d,)L,(c,) + U,(1,)U, ' (3,).

Since power series multiplication is commutative, we have chosen a convenient
ordering of the factors. Now, treating (7) simply as a matrix identity for the class of
Toeplitz matrices considered here, we see that T, can be reduced to a band matrix by
cross multiplication, giving

®) R, =L,d,)T,U,(,) = L,(c,)U,5,) + Ln(d,)U,(7,)-

Since T, is Toeplitz, L,(d,,) is lower triangular, and U,(8,) is upper triangular,
the first equality in (8) shows that for n > 1, R, _, is the n by n principal submatrix
of R,,. However, using the second equation in (8) and the Toeplitz structure of the
triangular matrices, we obtain the following important structural property of R,,.

LEMMA 2. For n = 1, the matrix R, defined in (8) satisfies
0 o e 0
R,-|: R
0

6)) ' )
n—1 = cn'an + dn7n‘

From (6a)—(6d), the nonzero elements of the matrix on the right-hand side of
(9) lie in the northwest corner but generally extend beyond the first row and column,
so R,, differs from Toeplitz only in its northwest corner. When the degrees p =r = 0
so that ¢, =, = (1 0 - - - 0), R,, is Toeplitz.

A general theory for the inversion of matrices which can be expressed as sums of
products of lower and upper triangular Toeplitz matrices is given by Friedlander et al.
[4]. Efficient, recursive algorithms for determining the inverses of such matrices are
derived, generalizing the Trench algorithm [9], [12]. The particularly simple form of
(9) leads to additional simplifications of the approach in [4]. Furthermore, as in [11],
the band structure of R, may be exploited to reduce the computational complexity
by an additional order of magnitude.
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We propose a three step approach to solving the original system of equations (1):
(a) Compute Ly (dy)y = ¥.
(b) Solve Ryx = .
(c) Compute x = Up(8,)%.
Thus in the following, we only describe an algorithm for the second step. Some addi-
tional notation will be required. We define for each n = 0 the vector

(10) I S
as the solution to the system
1n RA,=0"""0a,),

where the scalars {a,; n 2> 0} are defined recursively below. Similarly, vectors P, and
Q,, are defined by

12) RP,=c,,
@13) R,0,=4d,.
Next we let

(14) Vu=00 > ¥n)

and define X,, by
(15) RX,=7,

The matrix R,, has elements {r;;, 0 <i, j <n}. Now we are ready to derive our major
result. We proceed in the usual way, obtaining the quantities 4, ,, P, ., @, and
X, ., from4,, P, Q,,and X,. Using the structure of R, , ;, (9), we find

(16) R,.,[04,]'=0"--0a,) +c,1e, +dyi1fn

where the first term is an (n + 1)-vector and the scalars e, and f,, are given by
(17a) e, =[04,18,,,,

(l7b) fn = [0 A;]7n+l'

Since R,, is a principal submatrix of R, , ;, we obtain

(18a) R, [P 0] = [c, g,]
(18b) R,, 10,0]"=1[d, &k,
(18) R, [X, 0= [y, 4,1,

where the scalars g,,, 4, and A, are given by

(192) 8= [Mus1,0 " Tut1,n1Pns

(19b) By = ns1,0 " Tt 1,n1Cns
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(19¢) An = [rn+1,0 o 'rn+1,n]Xn'

We let ¢, 1 p4q and dyy; nyq denote the last elements of the vectors ¢, , and
d,, ,, respectively. Then P, and @, can be used to update 4,,:

(20) Ayyr = [04)) = [P, 0)e, ~ [}, 01,

(21) 0£n+1 = 0tn + (cn+1,n+l _gn)en + (dn+1,n+l _hn)fn‘

Now that 4, , is available, it may be used to update the values of X, P, and 0, so
that (12), (13), and (15) are satisfied. The required steps are given by

(22a) X, 1= [X,01"-4,,,4, 2T e
(22b) Pn+l = [P;l 0]’_An+lcgn_cn+1,n+1)/an+1’
(22¢) Qni1 = 10,01 =4, (hy, —dyiy s 1) gy

This completes the updating calculations.
The initial conditions for the algorithm are quite simple:

(23) Ay =1, ag=roe Qo =1/rge. Xo=¥o/To0r Po = colTo0>

where c,, is obtained from (5a). In verifying the correctness of this algorithm, only
the division by @, at each stage requires additional justification. Here the assump-
tion that T, 1 exists for every 0 <n < N is used. From the first equation of (8), R;l
exists for every 0 < n < N because L,(d,) and U, (8,,) are unit triangular matrices.
Since R,, is a principal submatrix of R, , ;, from Eqgs. (10) and (11), &, ; =

det R, ,/det R, ; and this justifies the divisions required in the algorithm.

No use of the banded structure of R,, has yet been made; the algorithm of Theo-
rem 1 applies to any matrix R, having the structure in (9) and with R;,'l defined for
each n. This includes some Toeplitz matrices, for example. Withy, =c, =(10"--- 0),
f, = 0 in (17b) for all # and Q,, in (13) is not required so the algorithm reduces
to the Levinson-Trench-Zohar algorithm [13]. To exploit the banded nature of Ry,
we make a minor assumption that p = max(p, q) is the lower bandwidth of R,;; that
is we assume 7, ; ; # 0 and Totkj= 0 for k >j. This is not a limitation because
from (5), (6) and (8)

Yody = todq/2 #0 forqg>p,

(24) Totjj= 3¢ #0 forp >q,

¢, T Yod, forp=gq,

so this condition can be assured by modifying the fraction of the constant term to that
which is assigned to T (z) in (4b) if necessary. Some observations now follow directly:

(a) Computing (17a) and (17b) requires only the first s and r components of 4,
respectively. Let o = max(s, 7); o will ordinarily be the upper bandwidth of Ry.

(b) Only the last p elements of P,, Q,, and X, are needed to compute (19a)—
(19¢).

(c) Consequently, in (20), (22b), (22¢) only the first o and last p elements of
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A1 Qpyq-and P, need to be computed for n larger than p + 0. In (22a) only
the last p elements of X, , ; need to be computed. When n + 1 reaches N, the re-
maining elements of X, are computed by back substitution.

We define
(25) Xy =Xyo " Xyn)-
Then for N — p =j = 0 we take
jteto
(26) _ ~
Xy = (g o D\ Yjwo = i=§-l i+ p,iKni |

where Xp,; =0 for i > N.

Together with the algorithms of Theorem 1, these modifications provide an algo-
rithm for solving R N; = 7; as discussed earlier, this is the only nontrivial step in the
solution of (1) when T, is rational. An operation count (of multiplications) shows
that solution of (1) requires (10p + 50 + 6)N + O((p + 0)*) operations. Notice that
because R, is Toeplitz except in its upper (o + 1) by (¢ + 1) corner, all of its ele-
ments can be computed in O((p + 0)?) operations. This is still true if T(z) is given
in factored form

(27 T(z) = (b(2)/d(2))(B(2)/5(2))

as is often the case in applications such as the linear estimation problems considered
by Trench [10].

3. Discussion. Our algorithm differs from Trench’s [10] in the following way.
By extracting triangular Toeplitz factors of known form from T, namely L;,l (dy)
and L;,l (6,,), we are left with a banded nearly-Toeplitz system to solve. It appears
that Trench removes nearly-Toeplitz factors from T, in order to be left with a banded
Toeplitz system to solve. His motivation for so doing was the availability of an ef-
ficient algorithm for such systems. We have shown that a very similar algorithm can
be used to solve the banded nearly-Toeplitz system.

If the rational power series T(z) converges for some annulus centered on the
origin in the complex plane, then subject to some minor assumptions, the existence
of T, ! for 0 < n < N can be expressed as a constraint on the poles and zeros of
T(z). The additional assumptions are that with T(z) = N(z)/D(z) for relatively prime
polynomials N(z) and D(z), N(0) # 0 and N(z) has distinct zeros. Under these
circumstances, Day [2] gives an explicit formula for the determinant of T, in terms
of the zeros of N(z) and D(z), and a nonzero determinant is equivalent to the invert-
ibility of T,.
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