MATHEMATICS OF COMPUTATION, VOLUME 34, NUMBER 149
JANUARY 1980, PAGES 235-236

Generating Random Variables With a ¢-Distribution

By George Marsaglia

Abstract. Let RNOR and REXP represent normal and exponential random variables
produced by computer subroutines. Then this simple algorithm may be used to gen-
erate a random variable T with t,, density c(1 + t2/n)"1/2”_%, for any n > 2:

Generate A = RNOR, B = A2/(n — 2) and C = REXP/(%sn — 1) until e B C < 1
— B, then exit with T = A[(1 — 2/n)(1 — B)] .

Discussion. This note gives a simple algorithm for computer generation of ran-
dom variables from the ¢, distribution—Student’s z-distribution with n degrees of free-
dom. With an efficiency greater than 1 — 1/n, the above rejection technique provides
a method for ¢, variates that is simpler and faster than those of Kinderman, Monahan
and Ramage [1], recently published in this journal. It is simpler but not as fast as
methods based on the exact-approximation method [4]. Comparison of methods de-
pends on the computer used, the random variables and subroutines required, the set-
up time and so on. The above procedure is so simple that potential users can readily
try it themselves, and it has the additional advantage that the time for each ¢, variate
is virtually constant, even with n changing from call to call.

The claim that such a simple algorithm is faster than published ones is premised
on the availability of very fast subroutines for RNOR and REXP, which the algorithm
is designed to exploit. Most large computer installations have, or should have, such
very fast RNOR and REXP. Users who do not have such might want to consider get-
ting them and using the above algorithm rather than implementing more elaborate and
slower published methods for the ¢-distribution. References [2] and [3] describe fast
procedures for RNOR and REXP, and a random number package “Super-Duper” con-
taining them is available from the author.

Proof That the Method Works. The idea behind the method is to use an inter-
mediate density function, ¢'(1 —x2)”""!, =1 < x < 1, chosen because it is close to
a normal density and because a variate X with that density is readily converted to the
required variate T: If X has density ¢'(1 —x2)%"~!, then T = n”X(1 - X?)~ " will
have the ¢, density ¢(1 + 2 /ny n%,

The problem then is to generate such an X. Using the elementary inequality
1-x2< e""2, we see that

a _x2)1/zn——1 < e—x2(‘/zn—l)
+ .

Received February 9, 1979; revised April 24, 1979.
AMS (MOS) subject classifications (1970). Primary 65C10, 62E25.

© 1980 American Mathematical Society
0025-5718/80/0000-0014/$01.50

235

236 GEORGE MARSAGLIA

Except for normalizing constants, the right side is the density of RNOR/(n — 2)”* and
the left side is our intermediate density. This provides the basis for the rejection tech-
nique: generate X = RNOR/(n — 2)* until

(1) Ue X2 (hn—1) < (1 — X2yhn—1

where U is a uniform variate. This amounts to choosing a point (X, Y) uniformly un-
der the curve y = e=*2(*n—1) until we get one under the curve y = (1 — x2)”""1,

To avoid taking the %n — 1 power of the right side of (1), we use the fact that
¢ REXP is 3 uniform variate, and thus inequality (1) is equivalent to the one given in
the algorithm. A small calculation shows that the efficiency of the rejection technique
is (1 — 1)T'(%n)/T(¥n + %), which is slightly greater than 1 — 1/n.

The parameter n of the algorithm need not be an integer, and the average run-
ning time may be improved for small n, say 2 < n < 6, by using this version:

Generate A = RNOR, B = A%/(n — 2) and C = REXP/(%n — 1) until 1 =B >0
and ¢ B7C < 1 — B, then exit with T = A[(1 - 2/n)(1 - B)]*~.

Rejecting for 1 — B < 0 will save the need to generate and test with an REXP.
For small n the cost of the additional test is justified.

Computer Science Department
Washington State University
Pullman, Washington 99164

1. A.J. KINDERMAN, J. F. MONAHAN & J. G. RAMAGE, “Computer methods for sam-
pling from Student’s #-distribution,” Math. Comp., v. 31, 1977, pp. 1009—1018.

2. M. D. MACLAREN, G. MARSAGLIA & T. A. BRAY, “A fast procedure for generating
exponential random variables,” Comm. ACM, v. 7, 1964, pp. 298—300.

3. G. MARSAGLIA, K. ANANTHANARAYANAN & N. J. PAUL, “Improvements on fast
methods for generating normal random variables,”’ Information Processing Lett., v. 5, 1976, pp. 27—
30.

4. G. MARSAGLIA, “The exact-approximation method for generating random variables in
a computer.” (To appear.)

