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Very High Accuracy Chebyshev Expansions for the
Basic Trigonometric Functions

By J. L. Schonfelder

Abstract. Chebyshev expansion coefficients, accurate to forty decimal places, for
the functions sine, cosine, and tangent, are tabulated. The methods used to gener-
ate the expansions are outlined and the ways in which accuracy of the tabulated

coefficients were checked are noted.

1. Introduction. Sets of Chebyshev expansion coefficients for a number of func-
tions have been available in the literature for some time. The most notable such pub-
lished compilations are those due to Clenshaw [1] and Luke [2], both of which in-
clude expansions for the elementary trigonometric functions to be considered here.
Most of these published sets of coefficients are for accuracies of up to twenty decimal
places. Although this precision is adequate for most purposes, there are in existence a
number of machines with floating-point systems which work to significantly higher
accuracies; for instance double precision on ICL 1900 (22D) and CDC 6000 and 7000
(28D) and extended precision on IBM 370 and ICL 2900 (35D). Also, a number of
micro-codable mini machines exist which for special applications may have floating-
point arithmetics provided for accuracies higher than 20D. It was, therefore, considered
desirable that some of the more basic expansions should be updated to provide for
higher precisions. In this paper we present Chebyshev expansions for the basic trigo-
nometric functions, sine(x), cosine(x) and tangent(x) for accuracies up to 40D.

In the next sections we present tables of \the coefficients for the Chebyshev ex-
pansions for these functions, and the methods by which the expansions were generated
and checked will be outlined. The results presented here arose out of the work being
done by the author on the provision of transportable special function routines for the
NAG library [3].

2. The Expansions. Five expansions will be tabulated, two each for sine and co-
sine and one for tangent.
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@ Cos(0) = Z,_, a,T,(1),* —n/2 <0 <mf2,t=200/m)* — 1

Y=COS(X) ¥=(li,PI/2) T=2(2X/P1)s2 -1
MAX . ORD. 1€ MAX.ACC. 40

+9,L46002463153646953489533677574500192472858-1
=4.9964(32582704C708740091362811966985733858~-1
+2.799207961754761751229529518577064254038-2
~5.9669519654884649927535184675307155898-4
+6.70639486991684015008648822996830988-6
=4.653229589731952901092964414475958-8
+2.1934576589567331746541210814368-10
-7.4816487010336457622637231408-13
+1.9322978458633275820681890&-15
=3.9101701216325903348848&-18
+6.36704011583380047588-21
-8.52288604173263398-24
+9.54466303405768-27
-9.07448124528-30
+7.41591648-33
-5.26538-36
+3.38-39

- d b b b o -
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() Sin@0) =0 Z,_, a,T,(t), —m/2 <0 < n/2, t = 2(20/m)* — 1

Y=SIN(X)/X X=(0,PI/2) T=2(2X/P1)e2 -1
MAX.ORD. 16 MAX.ACC. 40

0 +1.6250088450446126R246160080720022676536320084+0
1 -1.816C0315523725020186383031615800475425318&-1
2 +5.8(C470927459863355942734172285792096018-3
3 -8.69543117793407571132123163531781403&-5
4 +7.543701480888514810068399270)295877&-7
5 -4 .2671296650559611071268299(1591338§~-9
6 +1.698042294548816818182479201308-11
7 -5.01205788899618709295242R558 -14
8 +1.1410102668001067562825208-16
9 -2.06437504625478313395358-19
10 +3.0396959591870577668-22
11 -3.7135773415658098 =25
12 +3.8248612324658-28
13 -7.3662263448-31
14 42.5607298-34
15 “+1.701&-37
16 +1.08540

* The notation Z),',__o is used for the summation with the zeroth order coefficient divided by
2. The Chebyshev polynomials denoted by Tr(t) are defined on the range —1 < ¢ < +1 such that
T, () = Cos[r arccos()]. The polynomials defined on 0 < ¢ < 1 are denoted by T,’," (7), however
this form has not been used except in passing. The two forms are related T: (f) = T 2t—1). It
should be noted that in each case the function actually expanded is an even function of 6 and so
as a polynomial in 6 the expansions involve only even powers. In order to avoid using the zero
odd order coefficients the expansion variable ¢ has been used such that ¢t = 2(0)2 — 1. This map-
ping is suggested by the relations T,,0)= T;‘ (€] 2) = T’,(2E)2 — 1). It should also be noted that in
the case of sine and tangent which are odd functions the zero at 6 = 0 is extracted explicitly by

use of an auxiliary function of 6. This enables relative accuracy to be preserved for very small
arguments.



HIGH ACCURACY CHEBYSHEV EXPANSIONS 239

(i) Cos(0) = Z,_, a, T,(), — m/4 <0 < /4, t=2(40/m)?* — 1

Y=COS(X) X=(0,PI/4) T=2(4X/PI)e2 -1
MAX .ORP. 13 MAX _ACC. 4C

+1.70326382740961602540081203012185213640068+0
-1.4646326644L39083686332079636013999324968928&-1
+1.92164931181464679690714543745079416508-3
-9.9669684898292NVD0686691U618423658398-6
+2.75765956U718739518643283975301798&-8
-4.7399498081648440376442295103218-11
+5.549548541485182740827264168-14
-4 .709704906517555956603858-17
+3.029897608079373133898-20
-1.528414934214615348&-23
10 +6.20765154357838-27
11 -2.0733307230&-30
12 +5.7952858-34
13 -1.3768-37

O NV~ WN 2O

(v) Sin(®) =0 =,_, a,T,(r), — n/4 <0 <m/4,t = 2(49/m)* — 1

Y=SINC(X)/X X=(0,PI/4) T=2(4X/PI)s2 -1

MAX.0RD. 13 MAX.ACC. 4O
+1.89954088313748955273653822645148783086038+0
-4.98640611337C366646014692982618964244477068-2
+3.8771343615282730902866766382776348598-4
-1.43058009193208963350475510075733618~6.
+3.073651155644856723967730393351278&-9
-4.31836597422905892032432448928&-12
+4,27564995057781106694051888&-15
-3.14360719958006941446658-18
+1.78399682964586130808-21
-8.0505140257439678-25
10 42.9578185388458-28
1 -9.019320358-32
12 +2.319218-35
13 -5.18-39

VXNV UWN=2O

These expansions may be used to obtain values for the functions for any argument by
use of the following range reductions. In the case of expansions (i) and (ii) we may
calculate Cos(x) or Sin(x) by letting x = Nm + 6, where N is an integer and — /2 <
6 < m/2. That is N = ROUND(x/m)** and 6 = x — N7.*** Thus,

Cos(x) = Cos(Nm)Cos(8) — Sin(Nm)Sin(8) = (—1)VCos(6),
Sin(x) = Sin(V7)Cos(8) + Cos(Nm)Sin(8) = (— 1)V Sin(9).

For expansions (iii), (iv), and (v), use a similar technique but with a smaller final range.

** The operation ROUND(X) is used in the Algol 68 sense meaning the nearest integer to X
(the method of breaking ties is not important but is usually round up).

*** These steps are critical in preserving accuracy for x outside the primary range (N = 0).
See W. J. Cody and W. M. Waite, Argonne National Laboratory Report TM-321 (1977).
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() tan(0) =0 Z,_, a,T,(t), —m/4 <0 < n/4, t = 2(40)[m)* —

Y=TAN(X) /X X=(0,P1/4) T=32%xX*X/PISQ-1
MAX.ORD. 325 MAX.ACC. 40

0 +2.253821698564514100295594751085294457882198+0
1 +1.359233234116407934002090174115536118299&-1
2 +9.65892451927736936408002057935443170028-3
3 +6.9285924900047896405225771090983834948-4
4 +4.9760846576329239906236827005644636928-5
5 +3.571202820568564301188224092401716418-6
6 +2.564006211463115523187713982408853&~7
I4 +1.840873490919409256632901085067818-8
8 +1.32168769102702474921296805901868-9
9 +9.489290672876806280147425567288-11
10 +6.81300417238877665386106050978&-12
11 +4.8915169169344160815217121158-13
12 +3.51195113688341538866343880&-14
13 +2.52146747058464724141576888-15
14 +1.8103321935335902294977148-16
15 +1.299760036239634501338208-17
16 4+9.3318572018992882900158-19
17 +6.699972026265944895848-20
18 +4.81036348730346244708-21
19 +3.4536855958902534198-22
20 +2.479634694289234048-23
21 +1.78029761146742348-24
22 +1.2781961765158768-25
23 +9.17703565480358-27
24 +6.5888151566148-28
25 +4.730556445578-29
26 +3.39638671798-30
27 +2.4384959518-31
28 +1.750761328-32
29 +1.25699018-33
30 +9.024788&-35
31 46 .47958-36
32 +4 .6528-37
33 +3.348-38
34 +2.48-39
35 +2.08-40

Let x = Nm/2 + 6, where N is an integer and —7/4 < 9 < n/4. That is, N =
ROUND(2x/m), 8 = x — Nr/2.T Then,

Cos(x) = COS( )Cos(@) Sm sm(e)

—Sin(9) 1
— Cos(0)
Sin(9)

Cos(6) as N Modulo 4 0(
Sin(x) = Sin (N %) Cos(8) + Cos (N %) Sin(9)

Cos 6
—Sin 0

Sin 6 as v modulo =0
1 >
2
—Cos 0 3

+See footnote ***.
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tan (.1%7_7) + tan(6)

1 — tan (Z_V_27_T.> tan(0)

tan(x) =

_ \tan(6) as N even %
~ | —1/tan(8) odd ’

3. Generation and Checking of Expansions. Two methods were used to gener-
ate the four expansions for sine and cosine. The first and simplest of these “‘economizes”
the power series, the second obtains a Chebyshev expansion solution to the appropriate
differential equation.

If we have a function y(u) which is represented to within our required accuracy
by a truncated power series (note —1 <u < +1), then the resulting simple polyno-
mial can be simply rearranged expressing it in terms of the Chebyshev polynomials.
That is, we say

N N ,
1) yw) =3 bu'= 3" aT ().
r=0 s=0

It is relatively easy to show that the Chebyshev coefficients a, can be calculated from
the power series coefficients as

N
(2) a = E brCrs’
r=s

where the factors C, can be generated recursively from the relation
3 G = %Gy 541 TGy 1s-1i]s Coo =2.

This recursion and summation is extremely straightforward to program and provided
arithmetic working and truncation accuracies for the power series are chosen to allow
a reasonable margin for error (a few decimal places over the required accuracy)tt the
resulting a; provide accurate estimates of the Chebyshev expansion coefficients. As is
well known, the Chebyshev expansion coefficients will normally be much smaller for
large order than the corresponding power series coefficients (g, ~ by/2° ~1 or better).
Therefore, in order to represent the required function the number of terms that need to
be retained in the Chebyshev form is usually very much smaller than for the original
power series. Turning to the actual functions in question, the actual expansion vari-
ables used were of the form ¢ = 2(8/X)? — 1 where 6 was allowed to range from — \
to +A. This expansion form is used because all the functions actually expanded are

even functions of 6 and, hence, involve only even powers or orders of polynomial. It
should be noted that

@) Zo' 0, T () =3 a,TrO*/\*) =3 a,T,,0/N.
r= r=0

r=0

t+The conversion of a simple polynomial to Chebyshev form is a numerically stable process
so being ultra cautious and working to accuracies and tolerances a few decimal places better than
actually required should achieve results of sufficient accuracy.
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Thus taking the expansion variable u as 8/\ we would obtain for Cos(), say
(=D)2(\r) reven
0 r odd

[his will generate a set of Chebyshev coefficients a, in which the odd orders are zero
ind the even, s = 2r, may be equated with the required a, in (4). This process can be
serformed for any value of X. The values used, for obvious reasons were m/2 and 7/4.

The whole process was programmed in Algol 68 using the facilities for multiple
ength arithmetic provided by Mlaritha [4]. The working accuracy used was 48
lecimal figures and the power series was truncated at N = 50 with a truncation error
»f order 10~55 for the cosine series A = 7/2. Similar accuracy criteria were used for
‘e other series which follow similar patterns. The resulting expansion coefficients

3) b, =

vere rounded to forty decimal places and written to permanent file storage.

The solution of differential equation“technique was outlined in [5]. It is easy to
show that for the cosine and sine the functions actually being expanded satisfy the follow-
ing linear differential equations in terms of the expansion variable ¢ = 2(8/\)* — 1.

For cosine
. 2
6) 21 + 05 + 3 +4)\—4y=0, y=1) = 1,7 (~1) = \/4.
For sine
2
7 21+ 05 +35 2y =0, p=1)=1,5(-1) = - A2/12.

4
These differential equations can be used to find the Chebyshev expansion coefficients
for the solution y(¢) in each case. The basic method is essentially that outlined in Fox
and Parker [6]. Assuming that y(#) can be represented by a Chebyshev expansion,
then from the differential equation it can be shown that the coefficient 4, satisfies an
infinite set of linear equations, 4a = b. The first two rows of the matrix A and vector
b arise from the boundary conditions and the differential equation determines the sub-
sequent rows. This set of equations may be solved approximately by assuming that all
coefficients a, with r greater than some N are negligible and, hence, may be approxi-
mated by zero. This reduces the infinite set of equations to an easily solved finite set.
In fact, the required value of NV can be determined as part of the solution process. The
matrix 4 is normally diagonally dominant, except for the first few rows and a simple
Crout LU decomposition technique will provide a sufficiently accurate solution.

The LU decomposition is independent of any increase in order of the system,
and so the process can be performed iteratively. At any order NV the next partial row
and column can be formed, and the decomposition extended from order ¥ — 1 to V.
The forward substitution can also be similarly extended. The first step of the back-
ward substitution, which is trivial, then gives an estimate of the value of the coefficient
ay included in the nonzero set. The process can be terminated when ay is sufficiently
small; in fact, the process is normally terminated when two successive coefficients are
less than the required tolerance. At this point the full solution set is generated by
backward substitution.
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This differential equation solving technique has been programmed as a general
package called CHEBEXP [7], using Algol 68 and the multiple precision arithmetic
capability provided by Mlaritha [4]. The differential systems (6) and (7) were solved
using a working accuracy of 48 decimal figures and a termination tolerance of 10745,
The resulting coefficients were rounded to 40D and stored in permanent file storage.

The use of these two independent methods for obtaining the same expansion
coefficients gives an excellent check on the accuracy of the final expansions. The
expansions tabulated in the previous section were those actually produced by the first
technique but in all cases the results from the differential equation method were identi-
cal. As a further check the Chebyshev expansions were summed for selected values of
t where the sum is known exactly, or at least to accuracies greater than 40D. In all
cases the resulting sums were correct to within a few parts in the fortieth decimal place,
the error being entirely due to the effects of rounding to 40D [8].

Basically neither of the above techniques is practical for the tan(x) expansions.
The expansion function tan(6)/6 does not satisfy a simple linear differential equation
and hence the second of the two techniques is not possible. The power series of
tan(6)/6 has coefficients which involve the Bernoulli numbers; and hence, this does
not provide a practical method owing to difficulties in obtaining accurate values for the
high order Bernoulli numbers involved. The method actually employed made use of
the fact that we already had high accuracy values for the Chebyshev expansion coef-
ficients for Sin(6)/0 and Cos(6) for the same expansion range and variable.

If
= v _ _ Sin(9)/6
8) »(@) = r}:_jo a,T,(t) = tan(9)/0 = s )
then we can write
©) Cos(6) ¥(¢) = Sin 6/6,
that is,
(10) ,g C,T, () = rg S, T, (1),

where C, and S, are the Chebyshev expansion coefficients of Cos(6) and Sin(6)/6,
respectively. It is again easy to show that this implies that the a, satisfy an infinite
set of linear equations. This set of equations can then be “solved” by techniques
similar to those outlined above. This was in fact done. The coefficients C, and S,
were taken from runs of the previous techniques which were designed to produce
coefficients accurate to about 50D. The tangent expansion coefficients were then
generated using a working accuracy of 48D and termination tolerance of 10~45; and
as before, the resulting coefficients were rounded to 40D and stored. In this case we
did not have the luxury of a second method for the expansion; but again, check sums
were calculated at selected points, and the sums were found to be correct to the ex-
pected accuracy.

Computer Centre
University of Birmingham
Birmingham B15 2TT, England
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F++This book gives FORTRAN programs which use an efficient backward recursion technique
for expanding various hypergeometric functions as Chebyshev series. These techniques could be
used for Sin and Cos and probably also with some modification for tan. However, the FORTRAN
programs can only be used to give coefficients accurate to something less than the greatest work-
ing precision available. (REAL *16 on IBM or ICL 2900.)



