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On Maximal Finite Irreducible Subgroups of GL(n, Z)
IT1. The Nine Dimensional Case

By Wilhelm Plesken and Michael Pohst

Abstract. All maximal finite absolutely irreducible subgroups of GL(9, Z) are deter-
mined up to conjugacy in GL(9, Z).

1. Introduction. We determine all maximal finite irreducible subgroups of
GL(9, Z) up to Z-equivalence. (Here and in the following, irreducible means C-irre-
ducible.)® There are 20 Z-classes, a set of representatives of which is described in Sec-
tion 4, Theorem (4.1). The quadratic forms fixed by these groups are listed in Sec-
tion 3.

We employ the methods developed in Part I [7]. In Section 2 the minimal irre-
ducible finite subgroups of GL(9, Z) are determined up to Q-equivalence; there are
only three classes. The Z-classes of the natural representations of the three groups,
respectively the <-maximal centerings of the corresponding lattices, were electronically
computed on the CDC Cyber 76 at the Rechenzentrum der Universitit zu Koln. They
are listed in Section 3.

In Part V of these series of papers we shall present a full set of representatives
of the Z-classes of the maximal finite irreducible subgroups of GL(n, Z) for n <9 by
listing generators of the groups, the corresponding quadratic forms fixed by these
groups, and the shortest vectors of these forms.

2. The Minimal Irreducible Finite Subgroups of GL(9, Z). The minimal irre-
ducible finite subgroups of GL(9, Z) which are solvable will turn out to be rationally
equivalent to a monomial group. Therefore (see Theorem (3.2) in Part I [7]) we need
the minimal transitive permutation groups of degree 9. These are conjugate in S, to

P, = (123456789) = C, and

P, = ((123)(456)(789), (147)(258)(369)) = C5 x C;
as one easily sees from the following lemma.

(2.1) LEMMA. A minimal transitive permutation group P of prime power de-
gree p* is of prime power order.
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*For n = 9 Q- and C-irreducibility of finite subgroups of GL(n, Z) coincide, as can be seen
by standard arguments using the results in [1].
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Proof. Let S be a p-Sylow-subgroup of P and P, the stabilizer of an element of
the set £ on which P acts. We must only show that S also acts transitively on
which is tantamount to SP, = P. By counting cosets one obtains

1511, |

SP,.| = ——
ISPl = 5o By

Since |S N Py divides |S| as well as |P,|, we get |[SP,| = |P|; hence SP, = P. Q.E.D.
The methods employed in Parts I and II [7], [8] now yield:

(2.2) LEMMA. The solvable minimal irreducible finite subgroups of GL(9, Z)
are rationally equivalent to

G, = (diag(-1,1,1,-1,1,1,1,1, 1), D), |G| =2° orto
G, = (iag(-1,1,1,-1,-1,1, 1, -1, 1), D(B,)), |G,| =2%9.

Here and in the following D denotes the natural permutation representation of
Sq, D: Sg — GL(9, Z) with D(m)e; = €nci) form€S8y,i=1,...,9, €, ..., e the
standard basis of Z° *1.

Proof. Let G be a minimal irreducible subgroup of GL(9, Z), A the natural
representation of G, and N a maximal abelian normal subgroup of G. As in Part II [8]
we apply Theorem (3.1) of Part I [7]. Thus, we may assume that the restriction Aly,
is equal to T'; + 4 I,, where I';, ..., I, are integral representations of N satisfying
Ty ~q k4, @i=1,...,k€N)and ';(N)=+--=T,NV). The A;(i=1,...,r)are
inequivalent Q-irreducible integral representations of NV all of the same degree m.

Since the Q-enveloping algebra of A;(V) is a cyclotomic field, m has to be even
or equal to 1, hence m = 1 because of m|9. There remain three possible solutions of
the degree equation 9 = krm, namely () k=m=1,r=9,(i)k=r=3,m=1,
()ym=r=1,k=09.

Case (i). According to Theorem (3.2) in Part I [7] and Lemma (2.1) G is a sub-
group of the group generated by all diagonal matrices and D(P,) or by all diagonal
matrices and D(P,). Moreover, by the Schur-Zassenhaus Theorem G must split over
N. Again by Theorem (3.2) in Part I, N is minimal with the properties (a) N C
{diag(ay, ..., ag)le; = £1,((=1,...,9)} and N is invariant under conjugation by
D(P,) or D(P,), respectively; (8) the projections N — {+1}: diag(a,, ..., ag) —>a;
@i=1,...,9) are pairwise unequal. Then G can be chosen as (N, D(P,)) or (N, D(P,)),
respectively. For D(P;) C G one easily sees that there is only one possibility for &,
whereas for D(P,) C G there are six possible candidates for N. These, however, are all
conjugate under the normalizer of D(P,) in GL(9, Z). Hence, we end up with two
groups in Case (i).

Case (ii). Here N must be a subgroup of index 1 or 2 of {diag(+I;, *15, +13)}.
Therefore, the nonzero quadratic forms which are fixed by G have matrices
diag(A4,, A,, A3) with symmetric definite 4; € Z3*3 (i =1,2,3). G can be chosen
in such a way that 4; = A, = A5 and that G is a subgroup of H v §3, where H is
the automorphism group of 4; [2]. Since G is minimal irreducible of odd degree, it can-
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not have a normal subgroup of index 2, hence G <H ~v C,. But all finite irreducible sub-
groups of GL(3, Z) are isomorphic to subgroups of C, x S,. Thus, N cannot be a
maximal abelian normal subgroup of G; and there is no group in Case (ii).

Case (iii). Either N must be trivial and G, therefore, nonsolvable or N = 1y,
and G has a normal subgroup G N SL(9, Z) of index 2 and, hence, has a proper irre-
ducible subgroup. Q.E.D.

For the determination of the nonsolvable groups G we use the classification of

the primitive finite subgroups of SL(9, C) by Feit [3] and Huffman and Wales [4].

(2.3) LemMA. The nonsolvable minimal irreducible finite subgroups of
GL(9, Z) are rationally equivalent to

G3 = ((84, eS’ e6’ eS’ e7’ e9’ eO’ e3’ e2)’ (eO’ e9’ €y e8’ €y €2 e6’ e3’ es))
= A, = PSL(2,9).
As in Lemma (2.2) ey, ..., eq denote the standard basis of AR ey =" E,?=l e;.

Proof. We use the terminology of the proof of Lemma (2.2). Clearly, only
Case (iii) can occur. Since G must be contained in SL(9, Z), we have N = (1).

We assume that G has a minimal normal subgroup M # (1). Then M is charac-
teristically simple, and Al becomes (C-)reducible with 3-dimensional (C-)constituents.
A comparison with Blichfeldt’s list of primitive subgroups of SL(3, C) [1] shows that
this is impossible because of rationality conditions for the characters. Therefore, G
must be simple and, hence, quasi-primitive. By [3] and [4] G has to be isomorphic
to Ag or A;,. But the 9-dimensional irreducible representations of 44 and 4, are
both obtained by reducing their permutation representations of degree 10 (note that
Ag = PSL(2,9)). So G =A,, is not minimal irreducible. Since PSL(2, 9) does not
have any doubly transitive subgroups acting on 10 points, 4 ¢ yields a minimal irreduc-
ible subgroup G, of GL(9, Z). Q.E.D.

3. Computation of the Z-Classes in the 9-Dimensional Case. The centerings of
the minimal irreducible subgroups G,, G,, G5 of GL(9, Z) yield 20 quadratic forms
F, whose automorphism groups are the maximal finite irreducible subgroups of GL(9, Z).
Let J,, denote the n x n matrix with all entries equal to 1. Then the forms are given
by the following matrices F;, their determinants by d@i=1,...,20):

210000000
121000000
012100000
001210000

F,=1I, d,=1, F,=/000121000]|, d,=4
000012100
000001211
000000120
000000102
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d; =48,

)

\
|

400000002
040000002
004000002

|

000400002
000040002
000004002
000000402

0000000O042
222222229

\

Fy=

I, ® (I3 +J3), d, =43

F, =

’ d6=42;

\

211000000
121000001
112000001
000211000
000121001
000112001

|
\
|
\

|
\

000000210
000040020 ,d7=47;
000004022
000000422
000222261

000000121
011011013

Fg=1,® (4, —J;), ds =45

F, =

400000002
040000002
004000002
000400020

0 0 0-1
0 0 O
0 0 O

3 -1-1

222002216

F, =

3 -1-1

, dg =44;

-1 1

1
1

-1

3

1 -1

3

0 0 O

3 -1-1

0 0 0 -1

3

0 0 0-1-1
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MAXIMAL FINITE IRREDUCIBLE SUBGROUPS OF GL(n, Z).

Fio=WU3+J3)® Uy +J3), d,=4%16;

Fip =4, -J)® (4, -J3), d;, =4*16%

/.0.,
—
0
<
Il
N
—
=
\‘l\ ———
— e N e e e NN AN \O
[
N v e e e N0 A
| |
N ™ = e e — \O AN O
(|
N AN AN O e e
[ (I
N = AN O N e e e
| (I |
N ™ = O AN AN v e -
(| [
AN AN O — = N —= = N
[ (I [
AN O AN~ N = = N
| [ [ 1
O AN AN N — = N v
[ [ [
e ——— "
I
N
—
3

= 45167,

d13

b

|

484000004

4
448000004

84400000

|

000844004
000484004

000448004

|

000000844
0000004 84
4444444409

\

Fi3=

U3 +7T3)® (4, —~T3), d,, =4%16%

14 =

F

Fis=10l, - J,, d,s= 108,

Fig=1Iy+1Jy, dyg=10;
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Fiq =

=2710;

d18

H

|

422222220
242222220
224222220
222422222
222242222
222224222

|

|

222222422
222222242
000222225

\

Fg =

3 3-3-2 3
3 3 -2

-3

12

= 5310 - 20%;

dl9

-3

2
2

2 12 -3
2 -3 12

-2

|

3 -3-3

-2 2 12
3

3

3/

3 -3 2 3 12 =2
3 3 2-3-212 -3
3 -2-2 3 2-3 3-312

\i

0 -1
0

4 0 -1

0 4 -1

4 -2 -1 -1
0 0-1-1

-2 4 2
-1 2
-1

2-43.20.

d=

b

0
0

1

/

2

0-1-1

4

2 0 0 4

0

1 -1 -1

-1

Fyo =

1 -1 -1
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Now we describe the <-maximal centerings of the minimal irreducible groups G,, G,,
G5 which were computed by machine. If L is an irreducible ZG-representation module
and H a <-maximal centering of L, then M¥ denotes the unique <-maximal centering
of L which belongs to the inverse transposed representation coming from M [7].

Lattice of centerings for G, :

L{=r,Lf=L,Lt=1L,
Li=Lg LY =L,.

Read@D=1L,(=1,...,9))
Bases of the centering (numbers in brackets refer to the corresponding quadratic form
F):
(1) B(L,) = Is,
(@) B(L,) = (xy, hyxy, ..., h]x,, y) withxT = (1, 1,0,...,0),yT =
©, ..., 0,1,-1) and h; = D((123456789)),

"

(6) B(L,) =

OO~ OO0~ 0O OO
OO~ O OO O O =
OO OO0 OO~ OO -
_ O O~ O O O O O
- O O O O O~ O O
o oo~ OO0 = OO0
O - 0O 0O~ 0O O o O
o - O O O O O~ O
O O O O O O = = =

(5) B(L,) = D((24)(37)(68)) (I3 ® (J; — 213)),

(4 B(Ls) = D(24)(37)(68)) (I3 ® (J3 — 13)),

(7) B(Lg) = (2e,, 2e,, 2e,, 2e5, 2¢4, 2e,, 2e5, x,, ¥,) With xg =
©,1,1,0,1,1,0,1, 1), y{ =(1,1,0,1,1,0, 1,1, 0) (the ¢, are defined in
(2.3),
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3) B(L,) = (2ey, ..., 25, —¢y),

1-1-1 0 0 0 1-1-1
0 0 0 1-1-1-1-1-1
-1 1 1-1 1 1 0 0 0
-1 1-1 0 0 0-1 1-1
(12) Bly)=] 0 0 0-1 1-1-1-1-1
1-1 1 1-1 1 0 0 0
-1-1 1 0 0 0-1-1 1
0 0 0-1-1 1-1-1-1
1 1-1 1 1-1 0 0 0

(13) B(Lg) = (2e; + e4), 2ey + e7), 2ey + €4), 2e, + e5), 2(e, + eg),
2es + eg), 2(e3 t eg), 2(e; + ey), —eg).

We proceed to the <-maximal centerings of G, : Mf =M, M2# =Mj,, M_f =My,
Mf = M3, Mf = My, Mf = Mg, M# =My, M;#:Mzs’M;# =My, M#o =M,3,
Mfl =M,,, Mfﬁz =M, Mfs =My, M#4 =M, M#s =M,g M#s =M, M2#7
= My, M}, = Myg, M, = My, M3, = Myq. (See figure on next page.)

Because of the large number of centerings we do not give a list of all bases but
describe how to obtain them.

(1) B(M,) = Iy,

(2) B(M,) = B(L,),

(6) B(M3) = D((2734) (5896))B(L ), BIM,) (i = 4, 5, 6) are given by D(m)B(M3,),
where 7 is a suitable element of the normalizer of P, in Sy,

(3) B(M,) =15 ® (J3 —15), BMM;) (i = 8, 9, 10) are obtained as in (6),

8) BM,;,)=(-e, te, +e3 e, —e, tes ete,—e; —e, +es +eg
e, —es teg ey tes—eg e tes teg e, tegte,e;+e, +eg), for B(M,)
(i =12,..., 16) compare (6),

©) BM,,) = , for B(M,) (i = 18, ..., 22)

compare (6),

O = = = = O O O O

_ = O O O O O — =
— O - 00O~~~ O
O = = O O O = O =
O O O~ O~ O = =
O O O O = = = = O
©C OO~ = O~ O =
— _ 0O = O = O O O
- O = O = = O O O

(10) B(M,,) = D((123)(798))((J53 — 13) ® (/3 — 13)),
(5) BM,¢) =13 ® (J5 — 2I3), for B(M,) (i = 23, 24, 25) compare (6),
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ReadD=M,(G=1,...,39))

(7) BM5,) = (2ey, 2e,, 2e3, 2e4, 2e5, 2e4, 2e4, X3, y3) with xg =
0,0,0,1,1,1,1,1,1), 3T =(1,1,1,0,0,0, 1, 1, - 1), for B(M,) (i =28, 29, 30)
compare (6),

(3) B(M3,) = B(L,),

(12) B(M,;) = B(Lg), B(M5,) = T, B(M,3;) for a suitable monomial matrix T,
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0 -1 -1
B(M36)= 1 0 1 ®(J3_213),
(14) -1 -1 0

B(My5) =T, - B(M;4) for a suitable monomial matrix T,

B(My5) = B(Ly),
13) 38 9
B(M,,) = T - B(M3g) for a suitable monomial matrix T73.

At last we describe the <-maximal centerings of Gj: N:"E = N, Nf =N, Nf = Ng,
N¥ =N,

ReadD=N,;G(=1,...,8))

(15) B(Vy) =1,
(17) BV,) = (e, t ey ey teg ..., e ey, —e; —€3),
(18) B(N3) =(—e, +e, —e; tes ..., —e teg €5 tegte, teg+ ey),

|

(19) BWV,) = ,  B(WVs) = D((1475)(2698))B(N,),

O~ O~ OO0 O =~
-0~ 0000 = —
O~ OO =0~ O =
— 00 O = =0 0~
_ O O O R = = =
O~ ~ OO = ==
—_——_ 0 00O =~O0Oo
Y YN =
—_ O e = O = O

(16) B(Ng) =1y t+Jy,
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000 0 0 0 1 1 2
1 00 01 0 1 0 1
-1 1. 0 0 0 0 0-1 2
0-1 0 0-1 0 0 0 1
(20) BW)=| 1 0 0 0-1 0 0 1 1|
-1 1 1 1 0 1 0 0 1
0-1-1-1 1 1-1 0 0
0 0-1 1 0-1 0-1 1
0 0 1 -1 0-1-1 01

B(Ng) = D((1475)(2698))B(N,).

4. The Irreducible Maximal Finite Subgroups of GL(9, Z). There are—up to Z-
equivalence—20 such groups. They fall into eight Q-classes. Fourteen of these groups
(belonging to six Q-classes) are rationally equivalent to a monomial group and nine (be-
longing to three Q-classes) are nonsolvable.

(4.1) THEOREM. The irreducible maximal finite subgroups of GL(9, Z).are Z-
equivalent to the Z-automorphism groups of the quadratic forms F,, ..., F,,.

() Aut(F,), Aut(F,), and Aut(F,) are Q-equivalent. They are isomorphic to
the wreath product C, ~v S of order 2991, Aut(F 1) is the full monomial group of
degree 9.

(i) Aut(F,), Aut(Fs), Aut(Fg), and Aut(F,) are Q-equivalent and isomorphic
to the wreath product (Cy v S3) v S5 (=(C, x S4) v S;) of order (2331)331.

(iii) Aut(Fg) ~q Aut(Fy). Both are isomorphic to a split extension of an ele-
mentary abelian group of order 2° by a wreath product (S 3~ C,). The order is
2°(3N322.

(iv) Aut(F,,) ~Q Aut(F,,). They are isomorphic to C, x (S, " C,) of order
2(41)22. (The groups can be considered as crown products of C, x8, by Cy)

(v) Aut(F,,) ~Q Aut(F, 3). The groups are isomorphic to C, x (S4 v S3) of
order 2(41)331.

(vi) Aut(F,4) is isomorphic to C, x S, x S, of order 2(4!)%.

(vii) Aut(F,s), Aut(F, ¢), Aut(F, ,), and Aut(F,g) are Q-equivalent and iso-
morphic to C, x S, of order 2(10!).

(viii) Aut(F,,) ~Q Aut(F, ). Both are isomorphic to C, x S¢ of order 2(6!).

For a better understanding of the cases (ii), (iv), and (v) we note that the irre-
ducible maximal finite subgroups of GL(3, Z) are all rationally equivalent and iso-
morphic to C, Vv S3 (=C, x §,).

Proof. Ad(i). Compare Theorems (6.1), (6.2) in Part I [7].

Ad(ii). We have 4F; ' = F4 and 4F;' ~, F,. Hence, by transposing the
matrices of Aut,(F,) (Aut,(F)) one obtains a group which is Z-equivalent to Aut,(Fs)
(Aut,(F,)). Since F, = (I3 +J3) ® (I3 +J3) @ (I3 +J3), Aut,(F,) is the wreath
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product of Auty (/3 +J3) with S3 [2], Aut, (75 + J;3) being isomorphic to C, ~v 5.
It remains to show that Aut,(F,) and Aut,(F) are rationally equivalent. In the lat-
tice of centerings for G, the centerings M, M5 belong to the forms F,, F, respectively.
Let G be the biggest subgroup of Aut(M,) which fixes the quadratic form belonging to
M, (ie. G = Aut,(F,)). We prove that G is rationally equivalent to a subgroup of
Aut,(F,) by showing that G leaves M, invariant. Clearly, G leaves M, ; = M invari-
ant and, hence, also M; = M, + Mf . But even the maximal finite subgroup of

GL(9, Z) belonging to M, and F, (i.e. the full monomial group of degree 9) leaves
M, invariant. Hence, G leaves M; = M., + M, invariant. Similarly, one sees that
Aut,(Fy) is rationally equivalent to a subgroup of Aut,(F,) (note M, = M, N Mj,).

Ad(iii). The forms 4Fg ! and F, are integrally equivalent. Therefore, the corre-
sponding automorphism groups are Q-equivalent. We determine Aut,(Fg). In the
lattice of centerings for G, for instance M, , belongs to Fyg; hence, the biggest sub-
group G of Aut(M,,) fixing the corresponding form is isomorphic to Aut,(Fg). G
also leaves M}, = M, ,, hence, M; = M,; + M,, invariant. Thus, G is Q-equivalent
to a subgroup G of the full monomial group, more precisely to the biggest subgroup
of Aut(M,) which leaves M, and the form belonging to M, invariant. Clearly, G
contains the minimal irreducible group G,, if we identify Aut(M,) with GL(9, Z) via
the canonical basis. Furthermore, G contains all diagonal matrices of GL(9, Z), since
they fix M, [2M, pointwise. It follows that the diagonal matrices form a normal sub-
group of G of order 2°, having a transitive permutation group P of degree 9 as com-
plement. Considering the vectors of shortest length in M, , we find that P has to be
the maximal subgroup of S, permuting the sets {1, 2, 3}, {4, 5, 6}, {7, 8, 9},

{1, 5,9}, {2, 6,7}, {3, 4, 8. By a short computation P acts faithful and imprimi-
tive on these six sets and is isomorphic to §; v C,.

Ad(iv). The forms 16F; ) and F,, are integrally equivalent, hence, Aut,(F,,)
~q Autz(F;). We determine the automorphism group of F;, = (I3 + J3) ®
(I3 +J3). Clearly, Aut,(F, ) contains all g ® h with g, h € Aut,(I; +J3)=C, xS,
as well as an involution interchanging the components of the tensor product. But
these elements already generate Aut,(F,,). This is shown by similar arguments as in
(ii) or (iii); in particular, it follows easily that Aut,(F, ) is rationally equivalent to a
subgroup of Aut,(Fg). The index can be computed as in case (v) below.

Ad(v). Again the forms 16F,) and F, , are integrally equivalent; hence,
Autz(F),) ~q Auty(F, ;). We determine Aut,(F,,). In the lattice of centerings for
G, the centering M, belongs to F';,. Let G be the biggest subgroup of Aut(M;;)
fixing the corresponding form, G = Aut,(F,,). Then G leaves M, 3 = M, + M3,
invariant. Hence, G is isomorphic to a subgroup of Aut,(Fs) = (C, x ;) v §;5. Let
G be the maximal subgroup of Aut(M 33) fixing F. The group G acts on {gM;,|g € G}
=: §, transitively. The set S consists of four elements. Then G is isomorphic to the
stabilizer of M55 in G. The latter turns out to be isomorphic to C, x (S4 v S3).

Ad(vi). The automorphism group of the form F,, = (I3 +J3) ® (4153 — J3)
certainly contains the elements g ® & with g € Aut, (I3 +J3)=C, x §4,h €
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Aut, (43 —J3) = C, x S,. These form already the full automorphism group as can
be seen similar to the previous cases.

Ad(vii). Tt is 10F§ = F, s and 10F]) ~; Fyq. Therefore, Aut,(F,5) ~q
Aut,(F¢) and Aut,(F,,) ~q Autz(F,g). Since the representation module N, of
G3 has—up to sign—only ten vectors of minimal length with not any two of them being
orthogonal, the group Aut,(F, ) is easily seen to be isomorphic to C, x S, (com-
pare also [6]). To prove that Aut,(F, ) is rationally equivalent to a subgroup of
Aut,(F, ;) we consider the lattice of centerings of Aut,(F, 5) viewed as a subgroup
of Aut(V,). It consists of the multiples of N;, Ny = Nf, N, = N¥ + 2N, N, =N}
([6], [7]). Therefore, N, is invariant under Aut,(F,5). On the other hand N, =
N, + N2# holds and Aut,(F,,) is rationally equivalent to a subgroup of Aut,(F,s),
hence to Aut,(F, ) itself.

Ad(viii). The forms 20Fy and F,, are integrally equivalent; and hence,
Aut(F)9) ~q Autz(F,,). In the lattice of centerings for G5 the centering N be-
longs to the form F, 4. Because of Ny + Nf =N, and N, + Nf = N, the group
Aut,(F,,) is rationally equivalent to a subgroup of Aut,(F,s) = C, x S,,. There-
fore, Aut,(F, ) is isomorphic to C, x P, where P is a subgroup of §,, maximal with
the properties:

(&) P contains PSL(2, 9) acting on the ten points of the projective line over Fgy;
compare Lemma (2.3).

(8) The natural permutation representation of P has two constituents unequal 1
modulo 2, each of degree 4.

From the list of primitive permutation groups up to degree 20 [9] P has to be a
subgroup of Aut(PSL(2, 9)) = PT'L(2, 9), since 4, and S, violate property (). The
decomposition numbers modulo 2 of S, show that the subgroup of PT'L(2, 9) which
is isomorphic to S still fulfills («) and () [S]. To prove S = P it remains to show
that (B8) does not hold for PT'L(2, 9). But () implies that P is isomorphic to a sub-
group of GL(4, 2), and the assumption P = PT'L(2, 9) would lead to a primitive per-
mutation representation of GL(4, 2) of degree |GL(4, 2)|/|PTL(2, 9)| = 14 which does
not exist by inspection of Table I in [9]. Q.E.D.
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