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On Maximal Finite Irreducible Subgroups of GL(n, Z)
IV. Remarks on Even Dimensions
with Applications to n = 8

By Wilhelm Plesken and Michael Pohst

Abstract. The general methods for the determination of maximal finite absolutely
irreducible subgroups of GL(n, Z) developed in Part I of this series of papers [6]
are refined for even n. Applications are made to n = 8 in view of Part V [7], where

a complete classification is obtained.

1. Introduction. The general procedure for the determination of the Z-classes
of maximal finite irreducible (i.e. C-irreducible) subgroups of GL(n, Z) suggested in
Part I [6] consists of three steps: finding representatives of the Q-classes of the mini-
mal irreducible finite subgroups of GL(n, Z), calculating the Z-classes of these groups
by the centering algorithm, and computing the Z-automorphism groups of the quadra-
tic forms fixed by the minimal irreducible finite subgroups of GL(x, Z). These methods
turned out to be very effective for odd dimensions such as n = 5, 7, 9, where we had
to consider only two, respectively three, Q-classes of minimal irreducible subgroups of
GL(n, Z). On the other hand, for n = 6 this number is already 33 and a cautious es-
timate yields more than a hundred Q-classes for » = 8. The main reason for these big
numbers is that there exist many possibilities for the decomposition scheme of normal
abelian subgroups of irreducible matrix groups in GL(#n, Q), if » has many even divi-
sors. Moreover, if n is a power of two, a lot of 2-groups occur. Therefore, it is de-
sirable to have a method which allows us to avoid the determination of all minimal
irreducible finite subgroups of GL(n, Z) in case n = 2r, r € N. In Section 2 we de-
scribe a method which provides all quadratic forms fixed by a finite irreducible sub-
group G of GL(2r, Z), where G has a Q-reducible subgroup of index 2. Note that
these groups include all 2-groups in case 2r is a power of 2. The method requires in-
formation about the finite irreducible subgroups of GL(r, Z).

In Section 3 we carry out the computations for 2r = 8 and obtain 17 of 26
primitive positive definite integral quadratic forms the automorphism groups of which
are the maximal finite irreducible subgroups of GL(8, Z). The remaining discussions
for n = 8 and a complete description of the results for dimensions less than 10 appear
in Part V [7].
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2. Irreducible Subgroups of GL(2r, Z) Derived from Subgroups of GL(r, Z) and
Associated Forms. As we already mentioned in the introduction it is desirable to
avoid the computation of all Q-classes of minimal irreducible finite subgroups of
GL(n, Z), n = 2r. Therefore, we discuss the following two types of these groups G
separately.

Type (a): G has a Q-reducible subgroup of index two.

Type (B): G has no Q-reducible subgroup of index two.

For n = 8 the majority of the groups belongs to Type (a), for instance all those groups
G the order of which is a power of two. In the cases already treated we computed all

centerings of G and the corresponding quadratic forms. Since only the forms are used

to determine the maximal finite subgroups of GL(n, Z), we shall develop a method for

groups of Type (@) to find the forms without computing all centerings. Moreover, the

method allows us to treat many groups simultaneously.

Let G be an irreducible finite subgroup of GL(2r, Z) (r € N) with a Q-reducible
subgroup NV of index two. Since NV is normal in G, the restriction Aly; of the natural
representation A of G to N can be assumed to be of the form Aly =T, + T, where
I';, T', are rationally inequivalent irreducible integral representations of N with I'; (V)
=TI',(N) (Corollary (6.19) in [3] and Theorem (3.1) in [6]).

A short calculation shows that G can be chosen as G =N U (}’ R)N, where N con-
sists of block diagonal matrices and # € I';(V) = I',(V). If X denotes the integral
positive definite matrix representing a form fixed by I'; (V), then I, ® X represents
the corresponding form of G. We are interested in the integral forms which are in-
duced on the centerings of G. Let M = Z2" *! be the natural representation module
of G and L a centering of M. We use a description of M as ZN-module given in [5].
M splits into a direct sum, say M = M, ® M, with associated projections 7, m,

I 0
M, :=§<3>€MIZIEZ’XI M, = <l2>EM|l2€Z’Xl .

We define N-centerings of M;: L, := my(L), L; == M; N L, (i = 1, 2) and the finite
ZN-module 4 := (L, ® L,)/L. Then A = L,/L; (i = 1, 2) holds, and there exist ZN-
epimorphisms ;: L; — A such that the kernel of u; ® u,: L, ® L, — A: (4, 1)
— u,(7;) + uy(l,) is equal to L. Furthermore, L is not only an N-centering but also
a G-centering. Therefore, (}’r ")L = L and (}’r "L, = L, holds. Hence, u,, i, can
be chosen in such a way that u, © u, is a ZG-epimorphism. Now, let us assume
L, =M,.* Then L, = M, follows. Clearly, A can be generated by m < r elements.
Therefore, homomorphisms of L; (i = 1, 2) into A, respectively endomorphisms of 4,
can be described by m x r, respectively m x m, matrices over Z/aZ with a := exp(4).
The matrix of such a mapping § is denoted by 8. Since 4 is a ZG-module there is a
homomorphism a: G — Aut,(4) with (u; © u,)g = a(g)(u; © p,) forallg €G.

In partlcular we obtain (u; ® #2)(}) = x(4; ® p,) with x = a((}’ ")). Hence,

W, = Xi, and g,k = Xf,. Note that x2 € a(V) because of( hy? EN

*Compare discussion in the second paragraph following (2.1).
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LioLl,

In our later computations we want to deal with all groups G just discussed which
simultaneously fix the same quadratic form. This can be done because of the consid-
erations of this paragraph and especially because of the following lemma.

(2.1) LemMA. Let G, uy, iy, X as above and k, k, € Aut,(X). Then the
quadratic form belonging to the centering L = ker(u, ®© u,) is equal to the one in-
duced by X on ker(u,k, ® u,k,).

Proof. Let S be the matrix of the basis transformation from M to L. The form
belonging to M is S’diag(X, X)S. Then diag(k; ", k; 2)$ is the matrix of a basis
transformation from M to ker(u,k; © u,k,). Therefore, the form induced by
diag(X, X) on ker(u,k; ® p,k,) is given by

(diag(k; !, k5 1)S)" diag(X, X )(diag(k; ", k5 1)S)

which is equal to S” diag(X, X)S, since k]!, k; ! are elements of Aut,(X). Q.ED.

We explicitly describe the form induced by I, ® X on L = ker(u; ©® p,). Let
B € Z" " be the matrix of the basis transformation from L, to L. Since y, is an
epimorphism there is a matrix C € Z" *" which satisfies g, C+Xit; =0. Then § :=
é fr) is the matrix of the basis transformation from M to L. The form induced on
M is S* diag(X, X)S.

For our discussion we assumed L, = M, so far. If L, is a proper N-centering of
M, , we transform G by diag(D, D), where D is the matrix of a basis transformation
from M, to L,. Note that the new group has the same “block pattern” as G. How-
ever, I' (V) is replaced by a rationally equivalent integral group. This leads us to as-
sociate the quadratic forms of the centerings of G with the N-centerings of M,. There-
fore, we proceed in our computation as follows.

Let X € Z" *" be the matrix of a positive definite quadratic form with irreducible
Auty(X), and let K, ..., K; be all minimal irreducible subgroups of Aut,(X) up to
Z-equivalence. By M = Z"*! we denote the natural representation module of Aut,(X).
For each submodule M’ of M which is a centering with respect to one of the K, i€
{1, ..., 1}, we define K(M") to be the biggest subgroup of Aut,(X) leaving M’ invariant
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and o' to be the homomorphism of K(M') into Aut,(M/M') which describes the ac-
tion of K(M") on M/M'.

There are two possibilities for M’ to yield a group G as considered above for
which I}, T, are inequivalent. Either K(M") does not act faithfully on M/M' or o' is
injective and there exists an irreducible subgroup H of K(M") with an outer automor-
phism ¢ subject to the following three properties: ¢? is an inner automorphism, c is
induced by the normalizer of o'(H) in Aut,(M/M") corresponding to H, and ¢ is not
induced by the normalizer of H in GL(r, Q).

Let N(M") be the set of all x € Aut,(M/M") for which an irreducible subgroup
H of K(M") exists which is normalized by x and for which x*> € a'(#). In case ' is
injective x must correspond to an automorphism ¢ described above. The forms we are
interested in are induced by I, ® X on ker(u; ® u,) with i, = Xiz, for x € NM").
However, we know from Lemma (2.1) that the x lying in the same coset of Aut,(M/M")
modulo o'(K(M")) provide the same form. Hence, it suffices to pick one x out of
each coset. If M’ runs through a set of representatives of the Aut, (X )-orbits of the
centerings of M as discussed above we get all forms derived from 7, ® X. Moreover,
if X runs through a set of representatives of integral positive definite primitive 7-ary
forms with an irreducible automorphism group, we obtain all integral 2r-ary forms an
automorphism group of which is irreducible and has a Q-reducible subgroup of index 2.
This procedure is performed in the next paragraph for r = 4.

There can be made further simplifications the underlying ideas of which are
demonstrated by the following example.

(2.2) Lemma. If N2M) is contained in the subgroup induced by Aut,(X) in
Aut,(M/2M), each centering M' C 2M provides only multiples of quadratic forms
which can already be obtained by centerings M" which are not contained in 2M.

Proof. For M' = 2M we have i, = i, = I, € Z5*". A matrix for the basis
transformation is S = (‘;’ _‘;:). Because of S¥(I, ® X)S = 2(I, ® X) the result fol-
14
lows. Q.ED.

3. Irreducible Subgroups of GL(4, Z) and Derived Octonary Forms. There are—
up to Z-equivalence—six quaternary integral primitive quadratic forms admitting an ir-
reducible automorphism group [1], [2]. They are represented by the following ma-
trices:

0,=1,, 0=

O O = N
— e N
O NN = O
N O = O
Q

w

|

NN

®
/l—\
—_ N

|
N =
N———

2 -1 2 -1
Q4=<_1 2>®<_1 2>’ Qs =14 +Js Q=51 s

where all entries of J, are 1.
For each of these forms we have to proceed as described in the last paragraph in
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order to obtain the forms belonging to the centerings of the irreducible subgroups of
Aut,(I, ® Q) (=1, ..., 6). For this we can make use of the list of the finite sub-
groups of GL(4, Z) in [1].

Ad Q,. The automorphism group of Q, is the full monomial group H, of order
2%4!. From Theorem (3.2) in [6] one sees immediately that the minimal irreducible
subgroups of H, are 2-groups. Hence we only have to consider 2-centerings of the
natural representation module L = Z* *!. For instance, the extraspecial 2-group

conare((3 9 )

of order 32 has the following lattice of centerings which contains the centerings of all
other irreducible subgroups of H,.

The orbits under the action of H, are {M,}, {M,}, {M;, M,, M}, {M},

{M,, Mg}, {2M,}, ... . The corresponding bases are expressed in the basis of M, via
the transformation matrices:

1 0 0 0
. 1 1 0 0\ 11
@) BO) =1L, @) BOR)=| , | | || @) BOR)=5® (1 —1>’
0 0 1 -1
1 -1 1
, 11 -1
™) BM=| | (V) B(2My) = 21,
11 1 1
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1 1
(@BW0=C_D®<14>

(3.1) LEMMA. Only the forms induced by I, ® Q, = I on ker(u; ® p,) need
to be considered.:
@ by =l =(0000)€Zé><4,
() 7 =/ =0111)€2;>,

1111
iii T =1 = EZ2X4
) fr= (1100) 2
1111
(iv) i, =g =|1100]|€z3*,
1010
1000\ /0111
o100 1011 4 xa
T czixs.
) Pol Sl oo 1ol ron {7
ooo01/ \1110

(3.2) ProrosiTION. The forms obtained from Lemma (3.1) are:
(@) F, =1, det F| = 13;

21000000
12100000
01210000
) loo121000 e
(@) F2=100012100 dtfH=1"2%
00001211
00000120
00000102
2100
1211 _ 1444,
(iii) F,=1,9® 0120 , det Fy = 1727
0102
20000001
02000001
00200001
. |ooo20001 e,
(i) Fa=l 00002001 | detFa=12%
00000201
00000021
11111114



MAXIMAL FINITE IRREDUCIBLE SUBGROUPS OF GL(n, Z). IV 265

O O OO~ ONOo

O O O O = N O =
|
O O O = N = = O

(v) 2F,; 2F, with F5 = , det Fg = 1%, 2F,.

|
©C O~ BNH=OOO
|
|

—_ N = 0 O O O O

O = NN = OO OO

O 0O O OO —=O0ON
N = O 0O O O OO

Proof of (3.1). An easy calculation yields that K(M") acts faithfully on M, /M’
except for those centerings M’ containing 2M,. We consider these exceptions first. In
the cases (i) and (ii) we have i, = [, since the automorphism group of M, /M, is triv-
ial. In case (iii) K(M;) is a subgroup of index 3 of H, and its image in Aut,(M,/M;)
is isomorphic to C,. Since the image of K(M) in Aut,(M,/M,) is self normal, we
again obtain 4, = u,. In case (iv) we see that K(M,) is equal to H, and the subgroup
induced by K(M,) in Aut,(M, /M) is isomorphic to the symmetric group S, which is
the biggest subgroup of Aut,(M, /M) transforming M, /M into itself. Since M, is
the only centering of M, of index 2 with respect to an irreducible subgroup of H, any
element of Aut,(M, /M) normalizing the image of an irreducible subgroup of H,
leaves M, /M invariant and, hence, lies in the image of H,. Therefore, u; = i, holds.
Also, in case (v) K(2M,) is equal to H, and the subgroup induced in Aut,(M,/M,)
consists of all permutation matrices of degree 4 with respect to the standard basis.
Clearly the normalizer of this group is the direct product of the group itself and its
centralizer which is easily seen to be generated by J, + I, (over Z,). The images of
the irreducible subgroups of H, are the transitive groups of 4 x 4-permutation matrices.
Some standard arguments show that their normalizers are contained in the normalizer
of the group of all permutation matrices. Therefore, we end up with two possibilities
for u,.

It remains to discuss the cases in which K(M") acts faithfully on M,/M’. For
M' =M, (or M' = Mg) K(M") is a subgroup of H, of index 2 and its image in
Aut,(M,/M,) is the biggest automorphism group leaving M, /M, invariant. (Note
Mg/M, is the Frattini-subgroup of M,/M,.) The same argument as in case (iv) shows
that no u, can exist.

For M' = 2M, the module ker(u; @ u,) is contained in

L:=QM, ®M,), ker(u; © w,)

of index 2. Clearly, there are two possible forms which can be induced on L, namely
2F, or 2F; compare (3.2). In the first case we can only obtain a form which already
occurred in (ii). In the second we observe that the automorphism group of F is the
Weyl-group W(Eg) of the root system Eg. The 28 — 1 subgroups of index 2 of
the lattice on which W(Eg) acts fall into two orbits of length 135 and 120. The
stabilizer of a lattice in the first orbit is irreducible of order 278! and the corre-
sponding form is F,. The stabilizers of lattices in the second orbit are reducible
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since they permute all roots which are orthogonal to a given root. Hence, we can only
obtain the form F),.

If M' is a centering properly contained in 2M,, then there must exist two cen-
terings L,, L, between M; ® M, and ker(u; @ u,) which correspond to M and 2M,
and are of index 23, respectively 2°, in M 1 ©M,. Clearly, we have L, D L,; and
there must be at least one more centering between L, and L,. The forms induced on
the subgroups S with L, D § D L, are easily seen to be equivalent to 2F, in one case
and 2F; in two cases. Therefore, the subgroup with the form 2F , must be a centering
and a multiple of the form induced on ker(u, ® u,) has already been obtained. Q.E.D.

Ad @,. The automorphism group of Q, is the Weyl group of the root system
F,4. Itis of order 2732 = 1152 and has a subgroup ﬁ4 of index 3 which is rationally
equivalent to H,. First, we consider the minimal irreducible subgroups which are ra-
tionally equivalent to a subgroup of H,. They yield the following centerings:

The orbits under the action of Aut,(Q,) are {M,}, {M,, M;, M,}, Mg}, (Mg, M), Mg},
{2M,}, ... . Transformation matrices of the corresponding bases:

(i) B(Ml) = 14,

1 1 0 O 1 0 0 O
" 0-2 0 0 0 2 0 O
@ BoL)=\ o 1 | o) @sero=| T T )
0 1 0 1 0-1 1-1
2 0 0 O
2 2 0 O
w set)= ("7 1 | |} @ samy=a
1-1 1 1
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(3.3) LEMMA. Only the forms induced by I, ® Q, = F; on ker(u; ® u,)
need to be considered:
(@) 7, =m,=(0000)€Z)*4,
(i) 7, =, =(0100)€zl*4,

_ 0100
(iii) =1 = c 72 x4
M=l =191 1)8

1000
(iv) B, =m,=({0100]|cz3>

1011

(3.4) PrROPOSITION. The forms obtained from Lemma (6.3) are:
(G) Fy; (i) Fy; (i) 2Fs; (iv) 2F,.
They occurred already in (3.2).

Proof of (3.3). The centerings M' for which K(M") acts faithfully on M, /M are
properly contained in 2M,. In the cases (i), (ii) and (iii) K(M") induces the full auto-
morphism group of M, /M '. Therefore, H; = M, holds. The argument in the cases
(iv) and (v) is exactly the same as in (3.1), case (iv). The rest follows from Lemma
(2.2). Q.ED.

Next, we discuss the minimal irreducible subgroups of Aut,(Q,) which are not
rationally equivalent to a subgroup of H,.

(3.5) LEMMA. If U is an absolutely irreducible subgroup of Aut,(Q,) which
has more 2-~centerings than Aut,(Q,) itself, then U is rationally equivalent to a sub-
group of H,.

Proof. The 2-centerings of Aut,(Q,) are M, Mg, 2M,, ... . If M /M or
Mg /2M | become reducible as Z, U-modules, the statement is obvious, since the forms
induced on M,, M, M,, M, M, Mg are multiples of Q,. If M, /Mg and M/2M,
stay irreducible, then the lattice of 2-centerings with respect to U is not linearly or-
dered and the order of U divides 72. Since 22 does not divide 72/4 this yields a con-
tradiction to Corollary 3.6 in [4]. Q.E.D.

We obtain the following centerings and transformation matrices:
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2 0 0-1
' -1 2 103
(vi) BM)=1 1 o 02}
1 -1 -2 -1
6 0-1 3
) sory-|0 622
(vit) 1005 o 0 1 of
0 0 0 1
(vi) B(3M,) = 31,

(3.6) LeMMA. We have only to consider forms which are induced by I, ® Q,
on ker(u; ® uy):

1 0 1 O
i Ue = U, = €Z2X4
) = H <0 1 -1 —1) 3
" 2320 -1 0-1 3
vil u, = o, = € 72 %4,
i) 1 <3211>’“2 <o—1—2—2> 6
(3.7) ProOPOSITION. From (3.6) we obtain the forms
2100
. 2 -1 1211
\28 F, = = 1%46%:
(v) s <_1 2>®0120,detF6 1464
0102
2 -1 and
'vii) Fp=l,@(_| ) detF, =1

Proof of (3.6). M, is the only centering M’ for which K(M") acts faithfully on
U, /M’ which we have not yet discussed. K(M,) has order 144 and induces the full
wtomorphism group of M, /M,. Hence, in case (iv) we have u, = u,. As for case
vii) we have K(M, o) = K(My) and K(M, ) acts faithfully on M,/M,,. The auto-
norphism group I?(M-—;_O_) of M,/M,, induced by K(M,,) is of index two in
Aut,(M,/M,,). Hence Ii; = efi;, where € lies in Aut,(M, /M, )NK(,,). The cen-
erings contained in 2}, need not be considered because of Lemma (2.2). The cen-
erings contained in 3M, need not be considered, since Aut,(Q,) acts faithfully on
,/3M, and different representations A of the irreducible subgroups H of Aut,(Q,)
vith A(H) = H can be distinguished by the signs of their character values which can
Iready be determined from the action on M, /3M,. (All character tables are listed in
1].) Q.E.D.

Ad Q3. The automorphism group of Q; is the wreath product Aut,((_% 1)~ C,

Dy, v C, of order 12%2. As in the case of the form 0,, one recognizes that the
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subgroups of Aut,(Q;) are of two kinds. Either their nontrivial centerings are 3-
centerings, or they have just two <-maximal 3-centerings and nontrivial 2-centerings.
If G is a subgroup of the first type, the centerings of G are also centerings of

e )6 Dol D)

These are given by:

The orbits under the action of Aut,(Q;) are {M,},
{M2’ M3}) {M4}) {MS’ M6}’ {3M1}’ see .

The corresponding bases are given by the transformation matrices:

1 1-1 0
. ) -1 2 0-1\ . _ 11
() BM,) =1I,, (i) B(M,)= o 0o 1 ol (iif) B(M4)—Iz®<_l 2):
0 0 0 1
3 0-1-1
0 3 1 -2
. B = = .
(lV) (M 5) 0 0 1 1 > (V) B(3M l) 314
0 0-1 2

(3.8) LEMMA. Only those forms have to be considered which are induced by
I, ® Q3 on ker(u; + y,):
@) B =8 =0000)€Z}*,
) 7, =m,=(01111)€Z}*,

— 1100 1 1-1-1
L, € C 72 %4
(iif) Hys Mo %(0 01 ]>, <1 11 ]>$ 37,

1100 1 1 1 1
(iv) B,={0011]), m=(1 1-1-1])€z3*
0101 0 1 0 1

(3.9) PROPOSITION. From (3.8) we obtain the following forms
@ F, =1, ® (_? 1) (occurred already in (3.7));



270 WILHELM PLESKEN AND MICHAEL POHST

4 -2 0 0-2 1 1 1
-2 4 0 0 1-2-2 1
0 0 4-2-1 2-1-1
1 -2 2-1-2 4 1-2
1-2-1 2-2 1 4 -2
1 1-1-1 1-2-2 4
(iii) Fo =1, ® (2 1) ®(_27)), det Fy = 123*9%; 3F; Fy;
(iv) 3F o With F o =1 +Jg, det F,, = 179.

Proof of (3.8). K(M') acts faithfully on M, /M’ exactly for those centerings
which are properly contained in M,. In the cases (i) and (ii) K(M") clearly induces the
full automorphism group of M, /M, hence i, = [i,.

In case (iii) we obtain K(M,) = Aut,(Q;) and the induced subgroup of
Aut, (M, /M) is isomorphic to the dihedral group of order 8. Because of | Aut, (M, /M,)|
= 48 there are two possibilities for i, .

In case (iv) K(M;) acts faithfully on M, /M and is of order 144. If K(My) de-
notes the induced subgroup of Aut, (M, /M;), then M, /M, has to be invariant under
the normalizer of K(M,). Hence, the normalizer is contained in a subgroup of order
322 - 48. The index is 6, and there is at most one possibility for a relevant outer auto-
morphism. We end up with u,, u, as given. Finally, if M " is contained in 3M 1» the
same argument as at the end of the proof of (3.6) applies. Q.E.D.

If G is a subgroup of Aut(Q;) with nontrivial 2-centerings, those centerings are
also centerings of the group

G2 Gl ) € oo 5))

They are given by:

My
Mg

2M,
v\

M,

Me
\4)3"4

~

w
k 4
<
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The bases are described by the following transformation matrices:
1 0 1 O

2

wsoy=( L O ) i sor=| g,
0 1 0-1 3

(vi) BQM,) = 2y, () BQM) =2, @ <_1 1>-

(3.10) LEMMA. We have to consider only forms which are induced by I, ® Q3 on
ker(u; © 1,):

. = =7 = 1010 2 X4
(VI) My #2_<0 10 1> eZ2 H

(12 3 0 1-2-1 2
vii - - _ c 72 x4
o (o 3 -2 1>’ & <—2 1 -2 1) Ze

(3.11) ProPOSITION. Lemma (3.10) provides the forms
(vi) Fg (occurred already in (3.7)),
(vi)) 3F; (F5 occurred dlready in (3.2)).

Proof of (3.10). K(M') acts faithfully on M, /M" except for M' € {M,, M,,2M}.
The case M' = M, was already treated in (3.8). In case (v) the group K(M,) has order
48 and induces the full automorphism group of M, /M. Hence, i; = i, holds. In
case (vi) we have K(Mg) = K(M,), and K(My) induces a subgroup of index 6 in
Aut,(M,/M). Therefore, we have at most one possibility for a relevant outer auto-
morphism yielding ;.

For M' C 2M, we can apply Lemma (2.2), since Aut,(Q;) induces a maximal
imprimitive and, hence, self-normal subgroup of Aut, (M, [2M). The cases M 'C3M,
were already discussed in (3.8). Q.E.D.

Ad Q,. The automorphism group of @, is rationally equivalent to a subgroup of
order 144 of Autz(Q;). There is no irreducible subgroup of Aut,(Q,) which admits
nontrivial 2-centerings. All possible 3-centerings already occur as centerings of

(AR AR )t

We obtain the following lattice of centerings:

The orbits under the action of Aut,(Q,) are
(M}, {M,}, (M3, M,}, (M5}, {Mg}, {3M,}, ...
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Corresponding bases:

-1 -1-1 2
. ) [ 1 0 0 o
(@) BM,)) =1,, (i) B(M,) = 01 0 op
0O 0 1 1
1003
_ -1 , [-1300
(lll) B(M3)_12 ®< 1 >9 (lV) B(Ms)_ _1 0 3 0 ’
1000

o soro-(3 1) (1)

(3.12) LemmA. Only forms induced by I, ® Q, on ker(u,; ©® u,) need to be
considered.:
() H =B, =(0000)€Z}*4,
G B =m=0111)€z}*4,

_ 1100\ _ 5y
= = (S
(iif) My = My <0 01 1> 37",
1 1 1 1 1 1 1 1
@  m=(1 10 0}, B={(-1 1 0-1 €234,
1 0 0-1 1 1 0 0

(3.13) PROPOSITION. From Lemma (3.12) we obtain the forms:
() Fy (occurred already in (3.9));
9

6 00 0 0 3 3 0
0 6 0 3 0 0-3 0
0 06 0-3 0 0 3
0 3 0 6 0 0-3-3
@ Fu=fo 0-3 0 ¢ o0 3 of GtFuu=1-3"9%
30 0 0 0 6 3 3
3-3 0-3 3 3 8 4
0 0 3-3 0 3 4 8§

2 -1 2 -1 2 -1
iii F. = — .23 .93 .
(iii) Fi2 <_1 2> ® <_1 2) ® (_1 2>, det Fi, =1-3°-9°27;

(iv) Fi3=9Ig—Jg, detF,;=1-97.

Proof of (3.12). K(M') acts faithfully on M,/M' except for M' €
M, M,, M3, M, 2M,}. In cases (i), (i) we clearly have i, = u,. In case (iii)
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K(M,) has order 72 and induces a subgroup isomorphic to C, x S in Aut,(M,/M;)
which is already the biggest subgroup leaving M, /M invariant. Hence this subgroup is
self-normalizing (M, is an Aut,(Q,)-centering!), and we obtain u; = fi,. In case (iv)
K(M;) acts faithfully on M, /M and is equal to Aut,(Q,). Since the index of the in-
duced subgroup in Aut,(M,/M,) in the biggest subgroup leaving M, /M, invariant is 6,
there is at most one possibility for i, (compare (3.10)).

A similar argument shows that M, can yield at most one form. This form would
necessarily be 9F,, since the automorphism group of the unique form obtained from
Mg, namely 913 — Jg, has a unique centering of index 3. The form provided by this
centering is 9F (for a similar argument compare the proof of (3.1)).

The cases M' C 3M' and M’ C 2M' are treated as in (3.10). Q.E.D.

Ad Q5. The automorphism group of Q, is isomorphic to C, x S5 of order 240.
The orders of the irreducible subgroups are all divisible by 5, hence we have only non-
trivial S-centerings. They already occur as centerings of

- O O O
_ 0 O =
- O = O
_— = O O
o = O O
o O O =
- O O O
o © — O

The lattice of S-centerings is linearly ordered: M; D M, D M; D M, O SM; O --- .
Bases for M; are:

BM,) = -1, i=1,2,3,4).

- o o ©
_ 0 O =
=)
=

(3.13) LEMMA. We have to consider only forms which are induced by I, ® Q;
on ker(u; ® u,):

() B =K =0000)€Z;™,

() 1 =R, =(1234) €25

(3.14) ProvosiTION. (3.13) provides the forms:
Q) Fia=1, @ (I, +J,), det F;, = 1°5%;

4 -2 1 1-1-2 0 2
-2 4-1 0-1 1 1-1
1-1 4-1 1-2-2 0
1 0-1 4 1 1 2 1

@  Fis=|_] J] 1 | 4 1 -1 o | detFis=1%5"
=2 1-2 1 1 4 20
0 1-2 2-1 2 4 1
2-1 0 1-2 0 1 4
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Proof of (3.13). K(M") acts faithfully on M, /M’ except for M' € {M,, M,, 2M, }.
The order of K(M,) is 40 and K(M,) already induces the full automorphism group of
M,/M,. Hence i, =, holds in case (ii). Because of K(M,) = K(M,) one easily rec-
ognizes that there is just one representation A of K(M;) with AK(M,)) = K(M;).
Hence M need not be considered, since K(M,) acts faithfully on M, /M,. Similar argu-
ments work for all M’ contained in M,. If M is contained in 2M,, Lemma (2.2) can
be applied because the outer automorphism group of Sy is trivial. Q.E.D.

Ad Q¢. The automorphism group of Q is rationally equivalent to the automor-
phism group of Q.. Hence, we are only concerned with 5-centerings which already oc-
cur as centerings of

0 0 0-1 0010
1 0 0-1 1000
0 1 0-1J)10001
0 0 1 -1 0100

Again the lattice of S-centerings is linearly ordered: M, DM, D M3 D M, D 5M 1D
Bases for M; are:

0 0 0 -1 i~1
1 0 0-1 ,

By =\ o | o1 | % (i=1,2,3,4).
0 0 1 -1

(3.15) LEMMA. Only the forms induced by I, ® Qg on ker(u, ® u,) need to
be considered.:

() A, =7, =(0000)€Z} "4,

() 7, B €{(1111),(2222)} Czi>

(3.16) PRroPOSITION. (3.15) yields the forms:
() Fig=1, ® (5, —J,), det F,, = 1255;

8 3 3 3-3-3-2-2
3 8 3 3 2 2-2-2
3 3 8 3 2 2-2-2
i} 33 3 8 2 2-2 3
@ F,,= 2 2 2 8 3 5 o) GtFi=1-5055F,
-3 2 2 2 3 8 2 2
2-2-2-2 2 2 8 3
-2-2-2 3 2 2 3 8

Proof of (3.15). The proof is analogous to the one of (3.13) the main difference
being K(M,) = Aut,(Q¢). Q.E.D.

The automorphism groups of the forms F, ..., F, , obtained in this paragraph
are discussed in Part V [7]. It turns out that all these groups are irreducible which is
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not completely clear from Section 2. In Part V we also determine the remaining forms
of degree 8, i.e. those forms F for which there is no subgroup H in Aut,(F) having a
Q-reducible subgroup of index 2. We finally obtain 26 Z-classes of maximal finite irre-
ducible subgroups of GL(8, Z).
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