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Corrigendum to “What Drives an Aliquot Sequence?”’

By Richard K. Guy and J. L. Selfridge

Abstract. An aliquot sequence n:k, k =0,1,2,...,isdefined by n:0=n,n:k+1
= o(n : k) — n:k, and a driver of an aliquot sequence is a number 2Av with 4 > 0,

v odd, vI2A+l
that the drivers comprise the even perfect numbers and a finite set. These are now

— 1 and 2‘4_l lo(v). Pollard has noted some errors in a proof in [1]

corrected in a revised proof.

John Pollard has observed two inaccuracies and some obscurities in a proof in
[1] for which we wish to substitute the following.

THEOREM 2. The only drivers are 2, 233, 233.5, 2537, 2°3.11.31 and the even
perfect numbers.

Proof. A driver is 2*v with 4 > 0, v odd,v|24*! — 1 and 24! Ia(v). Ifv=1,
24-1 | 1, A = 1 and we have the “downdriver” 2. If v = 24*! — 1 is a Mersenne
prime, the driver is an even perfect number. Henceforth, we assume that v > 1 and
that 24! — 1 is composite.

If p* || 24+1 — 1, p prime, a > 0, define the deficiency, 6(p), of p to be 2¢/p?,
where 2¢ || o(p®) and p® || v, 0 < b <a. The product of all the deficiencies is greater
than 1/4, since otherwise

2A+1>2A+l_l=npa>4nzd,
p d

24-1 > 1129 and 247! would not divide Io(p®) = o(v).

The power of 2 dividing o(p®) depends only on how many factors of the product
(» + D(@P?* + DE* + 1) ... divide o(@®), each factor other than p + 1 contributing a
single 2. Hence,d = 0 if b is even and d = ¢t + k — 1 if b is odd, where 2* ||p +1,
there are k such factors, and thus 2% ||b + 1. It then follows that

S <@+ DO+ 1)<+ 1)a+ 1)20°

If p is a Mersenne prime and @ = b = 1, §(p) = (p + 1)/p > 1. Otherwise, 6(p) < 1.
If p is not a Mersenne prime, then 8(p) < 2/5 (6(5) = 2/5ifa=b = 1), §(p) < 4/11
if p > 5, and §(p) < 2/25 if a = 2. If we denote by I18(p) the product of the defi-
ciencies of the Mersenne prime factors of 24+1 _ 1 it is not difficult to see that

4 8 32 128 4 8 32 64 _8
<=.2.24,2140 [, 3. 98 22, gyl
rI‘\3(”)\3 731127 <373 & %

We now note that 24! — 1 contains at most one non-Mersenne prime factor.
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For having two such prime factors would imply that the product of the deficiencies
would be less than

4.
1

w| 0o

<

B

8z, (,) I 8() < 2-

—

2|74 +1
2|)

while p — 1 is impossible since

2 8 1
s s < 5 <g
For a Mersenne prime 29 — 1> 7,a > 1 would imply §(2¢ — 1) < 32/31%. But
(32/31?)(8/5) < 1/4. Forp = 7,a > 1 would imply

s [l spy<S.2<1
P17 72 5 4
For p = 3,a > 3 would imply §(3) < 8/81. But (8/81)(8/5) < 1/4.

If p =3%,33|24%1 —1,18|4 +1,19.73]24*! — 1. But neither 19 nor 73
is a Mersenne prime: contradiction. If p? = 32, 6lA + 1. If A = 5 we have the driv-
er 2°3.7, while for odd 4 > 5, 241 — 1 contains a non-Mersenne prime factor p, and

426 1
53 [T sy <5-5-2<y
pP¥+3
If2<q, < -<gq,then24%! — 1 = (291 — 1) - - - (29% — 1) is impossible
modulo 291%! and we have only to consider

2471 — 1 =91 -1) - 2% = 1)(2°u - 1), u odd, u > 3.
We know that u = 3 or 5, since u = 7 would imply

2 8

1355

s2cu - ) [16() < }1.
If c=1,u =3 (since 2.5 — 1 is not prime), 2u — 1 = 5, 5|2““’1 -1, A+ 1 =4k,
15]24%1 — 1. If 4 = 3, we have the drivers 233 and 233.5, while if 4 > 7, there is
a prime p, p |2A+ 1 —1,p =1 (mod 4 + 1), giving a second non-Mersenne prime divi-
sor of 24+1 — 1.

So we have ¢ > 2,q, > 2,u =3 or 5 and

—1=QI -1)(=1) - (-1)Q2°% - 1) (mod 2min(eaDF)

—1=CDFIE291 - 2% + 1), kiseven and ¢, = ¢ Now 24+1 <291 .. . 2ak2ey
and 29 — 1 divides 24 *! — 1 only if ¢ IA + 1 and the g, are distinct primes. There-
fore,

q G| A 1<q + g tetlogu<q, +cctq tq, +3

If k > 3, this would imply 2.3.9;5 <q,9,95 <2q, +q, + q; +3 <4q; + 3, a con-
tradiction. So k =2,4,q, <2q, +q, +3,(q, —1)g, -2)<5,9, =2 =cand
q, =3 or 5. Only the latter gives a solution; # = 3 and 2°3.11.31 is a driver.
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