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Computation of Steady Shocks
by Second-Order Finite-Difference Schemes

By Lasse K. Karlsen

Abstract. The computational stability of steady shocks which satisfy the entropy

condition is considered for the scalar conservation law
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It is shown that the computation of the pure initial value problem by Lax-Wendroff
type schemes approaches a steady state if the initial data satisfies a specified con-

dition, and that this condition is always satisfied for the corresponding initial-bound-
ary value problem with a finite number of grid points. The effect of machine accu-

racy on the influence of the boundaries on the error near the shock is also discussed.

1. Introduction. In a recent paper by Harten et al. [1] the existence of steady
discontinuous numerical solutions was considered for the nonlinear conservation law
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It was proved that the Lax-Wendroff scheme is linearly unstable when applied to the
initial value problem with initial data close to the exact steady discontinuous solution
of the differential problem. In this paper we shall consider the case f = %u? a little
further since this particular equation has some similarity to gas-dynamic shocks. For
the same reason we shall only consider discontinuities which satisfy the entropy con-
dition [2]. It will be shown that the computation of the pure initial value problem
will reach a steady state for a restricted class of initial data and that this will always
be the case for the initial-boundary value problem with a finite number of mesh
points. In addition to the Lax-Wendroff scheme, some other second-order schemes
are also considered.

2. The Initial Value Problem. As in [1] we consider perturbations w; of the
exact steady shock
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Linearization of the Lax-Wendroff operator
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where h = At/Ax and a = f' = u gives a linear perturbation operator of the form
W, =T,w for the application of the Lax-Wendroff operator once. After the change
of variables

pj=w; + Wi P]- = Wi + Wl_j,
4G =W Wi GEW T Wy,

one gets the two new operators P; = T,,p; and Q; = T,q;. Using the Kreiss theory
[3], i.e. looking for solutions of the form Pi = pp), it is found that the Tp-operator
has an ei_genvector p with p = 1, and is weakly unstable since the L,-norm | T;‘ I~
const \/n, whereas the Tq-operator is stable.

The T,-operator is given by

() Py= (A0 + %bM)py g + (L= D2y + (D + %670, > 1,

(12) P, = (1 +%b-%b*)p, + %b + %b*)p,,

where b = hf'(1) = h (this is of opposite sign to b in [1] since we consider only
shocks which satisfy the entropy condition). Equation (1a) is equivalent to (1) with
the boundary condition

Po=y P
We shall now consider a new operator T, which is obtained by the change of
variable

) r = (%b + l/zbz)p,'+1 - (%b+ l/ébz)pi,
which gives
R; = (%b + %b* ), + (1= b, + (= %b + %DV, 1y =0.

From the argument in [1] for the T, -operator it follows that T,*(—b) is stable
and, hence, so is T, since T,(b) = T¥(—=b). Asn —> oo, we obtain I Tl — 0 and
from the definition of r in Eq. (2) the steady error profile

B b1
Prer = Wp M=
To obtain this steady result we must obviously require the initial data for the 7,-
operator to be bounded, i.e. 7l <K, which from the definition of the L,-norm [4]
is equivalent to
3) AxY%b2(b + 1)? i <p, - b;lp.>2 <K
P AR RS B '

From the von Neumann condition (b - 1)/(b + 1)< 0, and the right-hand side of (3)
is therefore bounded if the initigl data p; is oscillatory, pp;yq <0, and decays at
least as fast as (b — 1)/(b + 1)y asj — oo. If condition (3) is satisfied, the compu-
tation of the pure initial value problem will approach a steady state.

In the computed example for T, in [1] condition (3) is satisfied since p;=0
for j > 50 in their initial data. The information contained in the initial data for
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j = 50 is, however, carried along characteristics running towards the shock and will
not reach the shock before approximately n = 50/b (= 55 for b = 9). | T 1 will,
therefore, only grow as 4/n initially; and when the characteristic from j = 50 reaches
the shock, the computation settles down to a steady-state error profile. This is shown
in Figure 1 which is the development of | Tl','qbll2 with the initial data ¢ of [1]. The
approach to the steady state is not apparent in [1] because the computation is only
shown to n = 40.
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FIGURE 1
Computed p-operator with data of [1],b =9

3. The Initial-Boundary Value Problem. From the previous pure initial value
problem we construct an initial-boundary value problem by adding the boundary con-
ditions v, = 1 and v}y = -1 (;, N, > 0) for all n. For the Lax-Wendroff
scheme we know from the previous section that the following eigenvector has p = 1,
(W; = pw)):

w; = %(p; +q;) = AN"! + hq,, j>0,
w; = l/ﬁ(pl_l-—ql_j)=A7\—i—%q0, j <0,
where X = (b — 1)/(b + 1) and 4, q,, are constants. The boundary conditions give
wy, =0: ANVITY 4340 =0,
w_n, = 0: ANV2 - %qy =0,
or

Vit +aN2]4 = 0.

Since the square-bracketed term is generally #0, an eigenvector w # 0 would seem-
ingly not exist. However, for reasonable V, and b close to 1 the square bracket is
smaller than the accumulated round-off error. An eigenvector w # 0 will, therefore,
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exist in most practical computations. This effect of N; will be shown in an example
below.

In this case g, — 0 and the eigenvector is the same as in the pure initial value
problem. The primary effect of adding the boundary condition for reasonably large
N, and N, is, therefore, similar to having the initial data zero forj > N, and j <
—N,. The above condition (3) for a steady error profile is, therefore, fulfilled.

We expect the steady state to be reached after approximately ng =
(1/b) max(N,, N, ) steps. For a fixed-length interval we have max(V,,N,) ~ Ax~! and,
hence, n; ~ 1/bAx. For bounded initial data the maximum error increases as \/;s ~
Ax™!/2 a5 the mesh is refined. However, the L,-norm

Y%

Iwl = Ax <Z wf) ~ Ax";
j

and the initial-boundary value problem, therefore, converges in the L, sense. These

results may be of doubtful value for the nonlinear operator, since the linearization

breaks down when the error becomes large.

4. The MacCormack Scheme. A commonly used scheme for gas-dynamic prob-
lems is the one suggested by MacCormack (MC) [5]

n¥l_ . n _ n _ rn
o=y = oS e ~ £,

o} tl= %y + vl-ﬁ:"_1 - oh(ffr1 - fjﬁ_fl)),

where ¢ = 1 gives forward-backward differencing (FB) and conversely for ¢ = —1 (BF).
This scheme is interesting because it is unsymmetrical at the shock and tends to give
better results for gas-dynamic shocks than the Lax-Wendroff scheme. The p-operator

is the same as for the Lax-Wendroff scheme. The g-operator is, however, different

at the shock

Q, = (1 —%b—%b*)\q, + (%b + %b*)q, + b*p,.

The first two terms on the right-hand side are the same as for Lax-Wendroff. The last
term (+ for FB and — for BF) couples the g-operator to the p-operator. This equation
is equivalent to the following boundary condition at the shock: q, = ¢, *2bp, /(b - 1).
For p; # 0 we must, therefore, have when p =1, q; = ibp,-. The steady-state error
profile for MC is, therefore, given by

b—1\i
w; = %pi(1 *b) = A(1 ib)<b—+—1>’ i>0,

b—1\J
Wi=V2P1—j(1*b)=A(1¥b)<m>, j<o.

Depending on the choice of differencing (FB of BF), the error is smaller on one
side of the shock by the factor (b — 1)/(b + 1) compared to the other side. This of

course is a well-known phenomenon for the MC scheme. The implications for the
initial-boundary value problem are similar to the LW scheme.
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Nonconservative, Switched MacCormack. In an earlier study using a similar lin-
earization procedure for the steady-state solution of the MC scheme [6] it was found
that the error could be removed if the differencing was switched across the shock: FB
for j < 0 and BF for j > 0. This gives the same g-operator as the LW scheme, but the
p-operator is now different at the shock

P, =11 1b 3b2 +1b+1b2
1= 20 TP\ T P

which is equivalent to the new boundary condition
Po = "P;-

In the p-equation with P,. = ppoki this boundary condition requires A = —1 and p =
1 —2b2. For b <1 we get Ipl <1, the scheme is, therefore, stable; and the error
will decrease as n increases. The same result is also valid for the opposite switching
BF for j <0, FB for j > 0. These two schemes, however, have the disadvantage that
they are not conservative at the shock, which causes an incorrect shock speed when
used in a transient flow with a moving shock. Some conservative switching schemes
will, therefore, be considered next.

5. Conservative, Switched Schemes.

Switched MacCormack. The two schemes discussed above with opposite differen-
cing on both sides of the shock can be made fully conservative if a special shock op-
erator is applied forj = 0

1) FBj<0, BF;j>0,

vt = vp = (T - 2,

Wy = (b + %b¥)w, + wy + (4b + %bHw_,,
2) BFj<0, FBj>0,

vt =vp — Bh(f! - fM),

Wo = %bw, + wy + %bw_,.

It is easily shown that an eigenvector for the linearized operator of scheme 1) which
has p = 1 is given by

w].=>\wl-_l, i>1,
w, = —w,,

wj=7\wj.+l, j<o,

where A = (b — 1)/(b + 1). The result for scheme 2) is similar, being the mirror image
of scheme 1) in the shock. The effect of the shock operator is clearly to regain the
possibility of a steady-state error. As explained below this is due to the fact that the
scheme is now again fully conservative.
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Upwind Differencing Schemes. A hybrid scheme which has been found to give
improved results for gas-dynamic shocks is one using the upwind differencing scheme
suggested by Warming and Beam (UW) [7]. This scheme is fully conservative and uses
a shock point operator. For gas-dynamic applications they combine the UW scheme
with the MC scheme as follows:

T = o — RS - ),

O T = HQT Y A = 2+ A7)~ BAGTE  TY,
Vit = vp — BR(FE — 2Ty + f7) — RO - I,

j>0 MC  BF.

The linearized operator for the UW scheme is

3 +1 ) ) 1 1,
W, = I_Eb Eb w; + (20 = b)w,_ + —5b+5b Wi_p-

This scheme has no unstable eigenvectors. For p = 1 the eigenvectors are

-b
w; =Aw;; withA=1and A= 1———1;
Since IAl > 1 for b <2 (which is the von Neumann condition for this scheme), the
scheme is stable. For j = 0 the following eigenvector with p = 1 can exist:

w, = —Aw,,
w].:7\w]._l, j>0, A=0GB-D/(b+1),

which is typical for the MC scheme.
Finally we consider the use of the upwind scheme on both sides of the shock,
except at j = O where the conservative shock operator is given by

1 .
Ug—gh@fl fz +fn+1 2f_nl +f_n2_f_n1+l)a

1 1, 3 1, 3 1,
——b+ b w, +| “b b w +wy+|{ -b-=b%)w_,
2 2 2 2 2 2
1 1
+(-=b+ =52 w_,.
2 2

Because the UW scheme is stable for j # 0, all w; (j # 0) = 0, and the last equation
gives Wy = w,. The only remaining error in the steady state must, therefore, be at
j=0.

Steady-State Errors of Conservative Schemes. In a conservative scheme the
quantity v is conserved, i.e. its sum is constant except for fluxes at the boundaries.
This means that the sum of the errors (the perturbation from the exact steady state)
is similarly conserved. Conservative schemes, therefore, generally have remaining errors
in the steady state. The total sum of these errors is the total initial error plus a con-
tribution from fluxes at the boundaries.

n+1
Yo

Wo
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The unconservative, switched MacCormack scheme is completely stable because
the extra term introduced by the switching acts as a sink as long as the errors are dif-
ferent from zero.

6. Computed Results. As a test case we have computed the specified initial-
boundary value problem with N, = 15, N, =9,b =9 and a constant initial error
w; = 01, -N, <j <N, W_y, =Wy, = 0. The development of lwl? with n for
the schemes discussed above is shown in Figure 2. For all the conservative schemes
Iwll? grows approximately linearly with n up to n = N, /b and then approaches the
value dictated by the steady-state error profile as expected. Also shown is the im-
mediate convergence of the nonconservative, switched MC scheme to the exact steady-
state solution. A comparison between the nonlinear and linear steady eigenvectors of
w is shown in Table 1. Considering the relatively large maximum error the agreement
is reasonably good, except possibly at the shock points j = 0, 1.

2 MC FB-BF-S0
Hwll
MC BF-FB-SO
-2 -
510 2 UW-UW
MC_BF
UW- MC
_ Lw
3'102—
-2
10
MC BF-FB
éEMc FB-BF
0 T T !
10 15 20 n 5

FIGURE 2

Computed lwl? of initial-boundary value problem with b = 9

An estimate of the total error in the steady state can be obtained for the con-
servative schemes. For the LW and MC schemes the error flux per step at the left
boundary is

Bb(1 = bWy 4y

as obtained from the linear approximation. The contribution from the left boundary
to the total remaining error is, therefore,

(1L = YWy, oy F Whyhr F ).
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Because w” Ni+1 rapidly approaches zero as n increases, this sum can be estimated
from a few steps and was found to be (1 /b)wENl 4+ for this special constant initial
error. The contribution from the right boundary is the same as the left for the MC
and LW operators.

For the upwind scheme the exact flux terms were used when points outside the
boundaries were needed in the algorithm. The result of this procedure is that the UW
operator has zero error flux at the boundary, and the initial total error is, therefore,
conserved. Table 2 shows a comparison between the linear estimate and the nonlinear
computed total error in the steady state. For the MC scheme it can be seen that a
smaller nonlinear effect is obtained when the predictor step is taken towards the
boundary. This effect does, however, depend on the type of initial values chosen.

TABLE 1

Summary of steady-state eigenvectors

Upper values: Linear operator

Lower values: Nonlinear operator

W Wo Mo W_y
Scheme Wo wo W) Wo1 Wo2
1.22-10" " 1 -5.26-10"° | -19 -19
L 1.01-10"" 1.41 -7.99-10"% | -33.2 | -18.8
-1 -2 -2
MC (BF) 2.31 10_l 5.26 10_1 5.26 10_2 19 19
2.10-10 1.50-10 -4.40-10 -35.7 | -18.9
2.31-10""1 5.26-10 > | -5.26-10"> | =19 -19

MC FB-BF-SO

1 1 2

2.49-10" 1.81-10 ' | -4.06-10"° | =5.53 | -24.6
-1 -2 -2
MC BF-FB-SO 2.31-10_l -5.26-10_3 5.26 10_2 19 19
2.31-10 -2.08-10 -5.23-10 48.1 | -19.1
-1 -2 -2
U+ MC 2.20 10_1 5.26 10_1 5.26 10_2 o
2.10-10 1.49-10 -4.41-10 ~108 | —
2.30-10"" 0 - I —
UW + UW 2.30-10"" ~10"° - ~108 | —

Finally, a test has been made on the importance of the term § = NV171 +
AV2] in the discussion above concerning the difference between errors obtained for
the pure initial value and the initial-boundary value problems. The computations were
performed on a PDP-15/76 computer which has a precision of 1077 — 1078, Forb =
9 we must have N; =~ 5 to obtain S of similar magnitude. A test has been made for
the UW + MC scheme with N, = 5 and N, = 3. For N, = 5 the scheme seems to
converge very slowly towards the exact steady state, after the initial transient. Instead
of a steady state, there is a slow decrease in |wy | at the rate of approximately 107
per time step. For N, = 3 S is as large as 10~* which is well within machine accuracy.
As expected the error now decreases and after approximately 3600 steps converges to
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a new steady state with |w,| as small as 107*. In this result the error near the N .
boundary is ~ 1078 which is machine accuracy. This test shows the importance of
the spatial decay rates of the error eigenvectors towards the boundaries. If this rate
is sufficiently rapid the boundary conditions have no effect on the errors in the in-
terior.

TABLE 2
Comparison of steady-state total errors

Linear Nonlinear
Sceme estimate computed
Lw .231 .2310
MC (BF) .231 .2399
MC FB-BF-SO .231 .2490
MC BF-FB-SO .231 .2310
UW + MC (BF) .2305 .2394
UW + UW .23 .2300

In conclusion it is interesting to note that a reduction of the steady-state error
for any of the conservative schemes must be accompanied by a corresponding error
flux at the boundaries. If, for example, an artificial viscosity is applied without de-
stroying the conservative property, then its effect must be felt at the boundaries in
order to reduce the total error, otherwise it would just accomplish a redistribution of
the errors. This implies that the initial errors must be able to propagate away from
the shock and pass through the boundaries.

In the present scalar differential problem the characteristics run away from the
boundaries, so there is no mechanism by which signals can propagate in the required
manner. It is, therefore, doubtful if this simple problem is a good model for more
complicated systems such as for example one-dimensional gasdynamic flow. For a
gasdynamic shock the situation is similar on the upstream supersonic side since all
characteristics run downstream. On the subsonic side, however, there are characteris-
tics in both directions, which means that errors can also propagate away from the
shock towards the downstream boundary.
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