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Polynomial Approximation of Functions
in Sobolev Spaces*

By Todd Dupont and Ridgway Scott**

Abstract. Constructive proofs and several generalizations of approximation results of
J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we
represent a function as a polynomial plus a remainder. The remainder can be manipu-
lated in many ways to give different types of bounds. Approximation of functions in
fractional order Sobolev spaces is treated as well as the usual integer order spaces and
several nonstandard Sobolev-like spaces.

1. Introduction. Approximation properties of finite element spaces are often
derived using variations of the so-called Bramble-Hilbert Lemma [4], [S]. This lemma
is based on an inequality of the form

(1.1) inf If-PI<C Z f|
aE A
where Pis a class of polynomials, A is an associated class of multi-indices, and || -|| and

|| denote certain Sobolev norms. An inequality of the form (1.1) can be found in
Morrey [16] (and implicitly in Sobolev [18]) for the case of P being all polynomials
of degree at most 7, A being all multi-indices of length  + 1, || -|| being the norm on
WI’,", and |- | being the norm on L. In the second Bramble-Hilbert paper [5], (1.1) is
derived for certain classes P that range from the polynomials of degree at most 7 to
the polynomials that are of degree at most 7 in each variable separately. Motivated by
particular applications, we extend (1.1) (in Section 4) by allowing more general collec-
tions P and A and, further, by deriving (in Section 5) inequalities of the form

12) inf If ~Pl<C T IP’
j

Pep
where {Pi} is a collection of homogeneous polynomials of degree Ii and P is the inter-
section of the kernels of the operators P;(3/3x).

The proofs of Bramble and Hilbert used the results of Morrey and generalizations
thereof. The proofs of these results are nonconstructive and cannot be used to esti-
mate the size of C in (1.1) or to determine how C would vary as a function of the do-
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main. Sobolev’s approach to imbedding theorems is based on an explicit representation
of a function as a polynomial plus a remainder term. The results presented here use a
related representation that is derived as an averaged Taylor’s series (see Section 3).
This representation can be manipulated in various ways to get bounds of the form (1.1)
and (1.2). Although we do not explicitly calculate the associated constants here, it is
easy to see what parameters they depend on, and, in particular cases, the proofs could
be used to bound them. (The results of Section 5 are somewhat of an exception to
this; see Remark 5.2.) We have calculated these constants in one special case [9].
Further, the form of proof used here allows the dependence of the constant on the
underlying domain to be clarified. The basic results of this paper (Sections 3, 4, 5 and
6) are derived initially for domains that are star-shaped with respect to (each point of)
a ball and in these cases the constants are seen to depend on the domain only through
its diameter and the diameter of the associated ball. Having this type of dependence
makes it easier (or possible) to treat the perturbations of the domain that are frequent-
ly needed to handle curved boundaries by finite element methods (see Example 4 in
Section 8). Our results are also extended (in Section 7) to regions that may be viewed
as a finite union of domains that are star-shaped with respect to balls. Polynomial
approximation results for such regions have been derived by Jamet [14] using an en-
tirely different approach. These regions include ones satisfying the cone condition used
by Bramble and Hilbert [4], [5], but are slightly more general.

When functions are approximated by piecewise polynomials on a mesh of size
h > 0, the bound for the error typically involves & to a positive power. In most cases,
the power decreases by one for each additional order of differentiation applied to the
error. One purpose of our results on tensor-product polynomaial approximation (Sec-
tion 4) is to show under what conditions one should expect not to lose a power of &
when differentiating the error. An application is given to illustrate this point in
Example 1 of Section 8.

There are situations in which it is necessary to approximate a function satisfying
a homogeneous, constant coefficient differential equation by polynomials which also
satisfy that equation. The approximation results following from (1.2) (see Section 5)
can be used to treat such cases. An application is given in Example 2 of Section 8 in
which harmonic functions are approximated by harmonic polynomials.

Our proofs of (1.1) and (1.2) are based on a basic representation formula of a
function as a polynomial projection plus a remainder derived in Section 3. An impor-
tant property of the projection operator is that it commutes with differentiation, that
is, a derivative of the polynomial projection of a function is the same as an associated
(lower order) polynomial projection of that derivative of the function. This com-
mutativity property is used in a crucial way to derive the results described in the pre-
vious two paragraphs.

Frequently, one is interested in the best possible approximation of a function
subject to the constraint that a function and its approximation agree at certain points
31, [8], [17]. Restricting to integer index Sobolev spaces excludes certain interesting
cases from study. Most of the results in this paper are proved for the integer case, but
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in Section 6, estimates of the form (1.1) involving fractional order Sobolev norms are
proved, and an illustration of their application is given in Example 3 of Section 8.

Several of the questions we discuss here have been treated from different points
of view by many authors. Our interest in these questions comes from studying the
approximation results that are needed to analyze finite element methods. In this area,
the work of Bramble and Hilbert [4], [5] is fundamental. The work of Ciarlet and
Wagschal on multipoint Taylor formulas [7] is another approach to giving constructive
proofs of approximation results needed for finite element analysis and their results
played an important role in the evolution of this paper. The basic representation given
in Section 3, which we call a Sobolev representation, is quite similar to one used by
Sobolev [18] in proving imbedding theorems (see Remark 3.5). However, it appears
to be different from the one used in [18] for which, in particular, it is not clear that
the commutativity property mentioned above is valid. A more recent treatment of re-
lated representations, as well as some discussion of their applications in other work,
can be found in an article by Burenkov [6]. In [15], Meinguet gave a constructive
polynomial approximation process that is closely related to the Sobolev representation
in Section 3 and, in [2], Arcangeli and Gout applied Meinguet’s ideas to Lagrange inter-
polation in R™.

2. Notation. Let x, y,... denote points in R”, and let dx, dy, . .. denote
Lebesgue measure. If D is a measurable set, p € [1, ], and f is a (real or complex
valued) measurable function, we say f € LP(D) if

/
X)) 100 = (S 17600 ax) " <

with the usual modification when p = . When p = o, 1/p is defined to be zero.

Let N denote the set of nonnegative integers. A multi-index a is an n-tuple of
nonnegative integers: a = (a;,...,a,),; EN,i=1,...,n We have the follow-
ing definitions:

22) ld =a; +a, +-- - +q,,

2.3) a<p iffe,<B,i=1,...,n,

2.4 (a+ﬁ)i=a,-+6,,. i=1,...,n,
(2.5) (a—g),.=max{a,.—3,., 0}, i=1,...,n
(2.6) al = () "+ - (),

@.7) X% = @DEGD - (), and

oW EE @

We let 8, i=1,...,n,denote the multi-index whose ith component is 1 and the
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rest are zero:

. 1, Jj=1i
.9 6; =
0, Jj#i
When D is an open set, denote by C*(D) the space of infinitely differentiable
functions in D. For f € C™(D), we use the notation

(2.10) 190 =(L) 76) @eD).

Let Cg (D) denote the subset of C*(D) functions that have compact support in D.

Let D(D) denote Cy (D) topologized with the usual inductive limit topology [13]. The
dual D'(D) of TXD) is called the set of distributions on D. If ¢ € D'(D) and if & is a
multi-index, ¢®) is called a distributional or weak derivative of ¢, where ¢(® is de-
fined by

() = (- D)¥e(f@), fe ).

A distribution ¢ € D'(D) is identified with a function ¢ defined on D if for each f €
WD), ¥f€ L (D) and & f) = fp ¥fdx. In this case we shall let ¢ denote the identi-
fied function, ¥, as well.

If m € N and if for each @ € N with |l < m, ¢* is given by a function such
that ,

— a oo

@.11) ||¢||w£,, o= aafgm ll¢¢ ’uLP(D, < oo,
then ¢ € W,'(D). Note that C*(D) N WD) is dense in W;'(D) provided p < oo
(See [11, p. 15] for a proof.) If D has finite measure, then W,'(D) C W'(D) if 1 <
q < p <o (by Holder’s inequality). For ¢ € W'(D) let

= (a)
(2.12) l¢|w;,,(D) > e ||Lp(D).

lal=m

Let r be a positive integer, and denote by P, the space of polynomials in n
variables of degree less than . Let P, = Uf; 1 P

3. Approximation by Complete Polynomials. Let D be a bounded set in R”
with diameter d. Suppose D is star-shaped with respect to every point in an open ball
B. Let ¢ € Cy(B) have integral one. Throughout Sections 3,4, 5, and 6,D, d, B,
and ¢ will remain the same.

SOBOLEV’S REPRESENTATION. If f € C™(D), l is a positive integer, and x € D,
then

(3.1) @) = Qf(x) + RYf(x),
where ‘
(3.2) U= % | ¢(y)f(°"(y)9%l- dy

lal<1 B
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is a polynomial of degree less than | and
(3.3) RI® = X [ k210 a.

lal=1
The kernels k , are given by

(B34 ky(x, ) = (fa!) x — y)*k(x, ¥),
where
3.5) k(x, y) = f: sTP g + 57 (Y - x)) ds.

Remark 3.1. As a function of y, k(x, -), and, therefore, each k(x, *), is sup-
ported in the convex hull of {x} U supp ¢; in particular, the region of integration in
(3.3) is contained in a compact subset of D. O

Remark 3.2. Integration by parts shows that Q’ is defined for all f € D'(B) and
that, in particular, for fin L,(B)

. ‘
(3.6) 1 f"w{; 1(p) <Cn L d )iIfly 8y U
Proof of the Representation Let x €D, y € B, and use Taylor’s theorem:
o= 2 gy ¥ (" 4 r f =17 + s(y— x)) ds.
lal<1 o! lal=1

Multiply by ¢(») and integrate with respect to y:
16 = Qe +1 T Jr fo0) & = [ 87O 4 s -3 ds
Using Fubini’s theorem and the change of variables z = x + s(¥ — x), one finds

Jo) 6 = [ 8177 + 5y — x)) ds ay
1
= [, Jo0) & =911 +5(y - ) dy ds
1
=f oo +576 - x) @ - 25T O dz ds
= f(x - z)“f(“)(z)<f: o +57 1@z - x))s_"‘lds) dz

=2 [k 219 ) d

The use of Fubini’s theorem is justified because

lk(x, 2)I =,f: p(x +s 1z - x)s " ds

(3.7)

fl p(x + sz — x)s7! ds’ <elx —zI™",
lz—xl/d

where ¢; = lI¢ll, .z d"/n. O
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Remark 3.3. In view of (3.4), it follows as in (3.7) that

(5)() " re

In view of the Sobolev representation and (3.8), estimates of the approximation

(.8) <C@ 1 d, ¢, 18, lyhix — yll*=n=1=l"l o

error u — ( 'u may be reduced to consideration of the Riesz potentials
(3.9) I'fex) = f b Ix — =" () dy.
The following proposition collects several known results in the form we find useful.

PROPOSITION 3.1. Let I be a positive integer and let p and q be in [1, ). Sup-
pose that 1/q — 1/p + l/n > 0 and that o is a positive lower bound for

l'l 1 1,1 . 11 }
- ’___+—’ 1——’_ b
max{[n e ptn mm{ » q}

where [x] is the largest integer not greater than x. Then I U maps L p(D) tolL q(D)
and for all f € L (D)

1
W'l oy < €0 1 DI,

Proof. Let

|xI-*  forx <d,
Rz(x) =
0 forx >d

Then, for x € D,
I'f(x) = R, * f(%),
where f is extended to R” by zero outside D.
Forl>n, R, is bounded and, hence,

W',y < C@ L NSl (D)

The result then follows from Holder’s inequality.
Now suppose that / < n and that 1/g — 1/p + I/n = 0> 0. For this case we
apply Young’s inequality [21] to obtain

1 _
[ fIILq(D) = IR, *fIILq(D) < llRlllLr(R,,)IIfIILP(D),
where 1/r=1—-1/p+1/g=>1—~1/n+ g. But

d(l—n)r+nu 1/r
R = N A—
IR, (g, = €O [( — +n]

since (I ~ n)r + n = onr. Hence, the proposition holds in this case as well.
Now suppose that / <n and 1/q — 1/p + I/n = 0. Then it is a standard result
(cf. Stein [19, p. 119]) that

s

< oo,

<C@n L p DI

Ly(R™) Lp(R™
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provided that p > 1 and p <n/l, i.e.,q <oo. It is clear from the proof in Stein
referenced above that the constant C(n, , p, q) can be chosen to be continuous in p
and g, and hence bounded by

C@, 1, o) = sup {C(u, L p,aq): max<1 —%,%) >0 } <o,
- This yields the proposition in the case 1/g — 1/p + I/n = 0 and max(1 — 1/p, 1/q) >
0> 0.
Now suppose 1/g — 1/p + I/n is positive, but arbitrarily small, and
max(1-1/p,1/g)=0>0. If 1 = 1/p > 1/q, choose q such that 1/g — 1/p + In=0.
Since max(1 — 1/p, 1/q) > o, the previous case implies that

W oy < €O L d, OIFN, ()

forall f€ Lp(D). Since I/Z < 1/q, Holder’s inequality yields the desired result. If on
the other hand 1 — 1/p < 1/q, choose p such that 1/g — 1 /;5 + I/n = 0. The previous
case again implies that

11l 0y < C, 1 d, 0l y:

and Holder’s inequality applied to the right-hand side yields the desired conclusion.
This completes the proof of the proposition. O

Remark 3.4. The above proposition may be interpreted via the following 1/q
v.s. 1/p diagram:

1/q
b
1
\l/
5 S
v
G10) ;L L \%/
____al m/\\\\l ---+ 1/p

! ’
s/ 2/n

The proposition holds for all pairs (1/p, 1/q) in the closed unit square excluding the
shaded region lying below the line 1/g = 1/p — I/n and excluding the two points
(/n, 0) and (1, I/n). Furthermore, the norm of I*: L,(D) — L,(D) can be bounded
uniformly in the closed subset of the unit square excluding the shaded region and ex-
cluding discs of radius ¢ around the points (I/n, 0) and (1, I/n). However, as ¢ is



448 TODD DUPONT AND RIDGWAY SCOTT

allowed to tend to zero, the norm of I tends to infinity. (If I > n, then [ is bounded
uniformly for all p and q.) Notice that for all /, n, p, and g for which the proposition
is applicable, it is also applicable for /, n, p', and g for some p' < eo. This observation
will be used later to restrict attention to finite p in order to allow the use of a density
argument.
The restriction that p # 1 and g # <« when 1/q = 1/p — Il/n is necessary since
the Riesz potential of order / does not map L, (R") (respectively, L, #(R™)) into
L, /n [R™) (respectively, L, (R")); see Stein [19, p. 119]. However that the case
= 1 may be treatable by another argument is indicated by the fact that the Sobolev
embedding holds in this case; see Stein [19, pp. 128—129]. O
Viewing the Sobolev representation of f as giving a polynomial approximation
(Qf) to f, there are now two natural polynomial approximations to the derivatives
of f, namely, (3/0x)*Q 'f and Q *~'%(3/8x)*f. Both are polynomials of degree less
than ! — |a|. Schematically,

(3.11) Q1 Ql—lal

_Q_ <]
(%)
] > Prlal
THEOREM 3.1. The diagram (3.11) commutes, i.e. for f € D'(B), (3/0x)*Q 'f =
Ql—lal(a/ax)ozf:
Proof. Let f€ CT(B) and let x, y € B. We write the Taylor polynomial of f as

T fx) = 2 ) )( ?)

lal<1

(% )(T'f)(x)—T' o ((a) £)e,

as is easily proved by induction. But since

Q1) = [ 6T} 1) dy,
the result follows by differentiation under the integral.
The result then follows for f € D'(B) since (3/dx)* is continuous on D'(B),
Q¥ is continuous from D'(B) into P, and C™(B) is dense in D'(B) [13, p. 15]. O
Combining Proposition 3.1 with Theorem 3.1 gives the following:

Then

THEOREM 32. Let mand | be integers such that 0 < m <, and let p and q
be in [1, =]. Suppose that, with T=1- m, 1/qg — 1/p + l/n = 0 and that

Lobo D infy -1 LW
a p n p’q

0 < 0 < max {.[Wn 1,
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Then for f € W' (D)

If— Qi <SC(n L d, ¢, 0)lf]

l .
w;"(D) WD)
Proof. In view of Remark 3.4, it suffices to assume that p < eo, for then the
general case follows from Holder’s inequality. Since C*(D) N W;(D) is dense in Wzlv(D)’
it suffices to prove the estimate for f € C*(D) N W;(D). Take o € N” such that

|| < m. Then by Theorem 1,
<5§_>a(f_ Qlf) = £(@ — @ 1-lalf(@ — pi-lalp@
> .

Thus the result follows from (3.8) and Proposition 3.1. O
Remark 3.5. Sobolev’s proof [18] of the imbedding theorems was essentially
via Theorem 3.2, Remark 3.2, and the triangle inequality:
< _ 1l + 1
Ilfllwg,(D)\IIf Qrfll i

wrm(D) wrm(D)

<q,lifl + ClIf o)

w;(D)
It is not clear that Theorem 3.1 holds for the representation used by Sobolev, but as
noted below, Theorem 3.2 does not really rely on the commutativity. O

Remark 3.6. The estimate in Theorem 3.2 could likewise be derived without
using Theorem 3.1 simply by differentiating under the integral, in view of (3.8). How-
ever, the use of the commutativity becomes crucial in the next two sections. O

Remark 3.7. Note that if m = [, then the conclusion of Theorem 3.2 remains
valid for ¢ < p. This follows because

— 0! =
7= Q11 5y = 1y oy
4. Extended Tensor-Product Polynomial Approximation. Let A be a set of

multi-indices, and let the polar of A, A°, be the set of multi-indices given by
(@.1) A°={{36N": (aa_)"‘xﬁEOforauaeA}.
X

If A and B are two sets of multi-indices such that A D B, then A® C B°.
Two sets of multi-indices that play important roles are the following:

A={aEN" |al=1}, B={s!,...,18")}).
In these cases
A® = {g: 1B1<I}, B°={@ B, <lfori=1,...,n}.

The set A is naturally associated with complete polynomials of degree less than /
while B is naturally associated with polynomials that are of degree less than / in each
variable separately.

For any set of multi-indices A define the base of A, A_, as the collection of all
a € A such that € A and § < a implies that § = &. Note that A® = (A_)° since
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a € A implies that there is ¥ € A_ such that y < a, and hence (3/0x)"x® = 0 implies
(3/0x)*xf =0

LEMMA 4.1.  A° is a finite set if and only if there are nonnegative integers r,,
i=1,...,n,such that

{r;8': i=1,...,n} CA.
Proof. The “if”’ is obvious, since
ACC {rs: i=1,...,n}°={w o,<r,i=1,...,n}.

To prove “only if”’, suppose that, for some i, {n": n € N}N A = &. Then for
« € A, there is some j # i such that o; # 0, and so if f is any function that is constant
as a function of x;, then f (@) =0, In particular, if f depends on x; alone, then f (@)
=0 for all « € A. Thus, {ns: n€ N}C A°, and hence, A° is not finite. [
Remark 4.1. If A° is a finite set, then it follows from Lemma 4.1 that
max |B|<n< max |a| — 1).
ge AO aE A _
Note that it also follows from Lemma 4.1 that if A® is finite then the class of
polynomials spanned by x*® for 8 € A is a subset of the tensor product space of poly-
nomials which are of degree less than rpinx;fori=1,...,n O

/

EXTENDED TENSOR PRODUCT REPRESENTATION. Given a finite set A of
multi-indices such that A° is finite and given f € C™(D),

“2) &)= Q" fx) + R f(x), x€D,
where

43) Q* @) = ezA J, ¢(y)f‘“)(y)( SELEPS
and

(4.4) RAf(x) = z S, Fale D7) av.

If A® = &, then the sum over A° is identically zero. The kernels k, satisfy

(45) |<aa—x)ﬁ(aay) Bl )| <€ 1, 6,4, 161 Tl — ylel-n-181-1,

where | = 1 + max olal.
ac< A

Proof. Consider Sobolev’s representation of order I:

f@) = Q'f(x) + R x)

zf ¢(y)f(‘”)(y)( L+ 5 S ka, )7@() dy.

|a|<1 lal=1
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The set of all multi-indices N” decomposes into two disjoint sets, namely A® and A =
{:la € A D a<p}=A+N'=A_ +N". Sincel> (maxBerlﬁI), ] = 1
implies that « € A. Thus, we have

= 04 f(x) + @) & )
fx) = Q" f(x) 10; f(b(y)f ) —

a AD

dy+ [ ko 0@ dy,

lal=1

and the sums in the remainder terms are over @ € A. It remains to convert these terms
to the form (4.4). But, for each a € A, there is some § € A_ such that 8 < a, so we
may write (¥ = (8/0y)*7#f(®, integrate by parts |a — B| times, and obtain

| ¢(y)f<°'>(y)(x—;,—yl dy

= e (27 foon 2]} rocn av

Skt NFD )y dy = les [ {(a%)a—ﬁka(x» y)} &) ay.

or

Summing over all &, we obtain (4.4); it is not clear whether the ?ﬁ’s are uniquely de-
termined by the above process. Estimate (4.5) follows from (3.8). O

We now consider the commutativity of Q# with differentiation. For two multi-
indices a and B, (2.5) defines a new multi-index a — 8. Note that o — § is defined even
if « & B and that (@ — §) + 8 > «, with equality if and only if & > . Given a set A
of multi-indices and a multi-index g, define a new set A — 3 C N” by

A—B={a—B: a€A}.

Since (A — £)° C A, we see that if A° is finite then so is (A — 8)°.

THEOREM 4.1. Let A be a finite set of multi-indices such that A° is finite and
let B be a multi-index. Then

b )
(4.6) (aa_x> 04 £= QA F1®  forany fE D (B).
Proof. 1t is easy to see that (3/0x)” ~Px® = 0 if and only if (3/3x)"x%*F = 0.
Thus, § € (A - )° if and only if § + 8 € A®. Hence,

A-pB)°={6-8: 6€A° 6=}
Thus, for f € C*(B),

- )’Y B
- OO VIR A S A
<6x> Q" /) %:A [ 60 G Y
Y=
_ 5 +8) 1y & )6 _ ) A—B7(B)
= f o) ———dy = Q*FrPw).
ae(A—B)"

The result follows for £ € D'(B) by density. [0
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Remark 4.2. Note that both sides in (4.6) are zero unless § € A°. O

The remaining results in this section and the results in Section 5 hold for func-
tions that are in a function space described in Remark 5.4. In each case it suffices to
prove these results for functions in C”(D) such that all relevant norms are finite. The
definition of the function space is delayed so that it need be given only once and
because the intervening results make the appropriateness of the norm used much more
apparent.

THEOREM 4.2. Let A bea fim'te set of multi-indices such that A° is a finite set;
let B be any multi-index; let I = min , Blal let m be a nonnegative integer less than
Landlet {q} VU {p,: «a €(A-p)_} C [1,]. Suppose that

min {c%_l-’lz + (lal — m)/n: aG(A—B)_} =0

and that 0 < o < min{u,: a € (A — B)_1}, where, with o= |a| —

_ o] L_L m,,,{ _1 1}}
M, = max {[ nl , q l’a+ 7.7q .
Then
<Cn, A, B,m,d, ¢,0) ||f(a+B)||Lp (D)
«

f—0Af I
|G- 2 lp
Proof. Use Theorem 4.1 to see that
B
(&) - ot = A5,

Thus, it suffices to prove the result for § = 0. Differentiating under the integral in
(4.4) and using (4.5) and Proposition 3.1 completes the proof. [

5. Generalized Polynomial Approximation.

THEOREM 5.1. Let P,, ..., P, be nontrivial homogeneous polynomials (in n
variables) of degrees I, . . . , I, respectively, having no common (nonzero) complex
zero (this forces k = n). Define

— ! ny. _a_ = i

{feD(R ): P,.<ax)f_0for] 1... ,k}.

Then K C P, for some integer r. Let |l = minl<’< k lj; let m be a nonnegative integer
less than I;and let {p;: j=1,...,k} C[1,)]. Suppose that

1 .
11,4 =1,...,k,
a7 p ;- m)n> j

and that 0 < o <min{y: j=1,...,k} where,withl~i=li—m,

y; = max {[1/"] ""'I—"'l/” mm{l—P_lj’ll;}}‘

@,

Then

<C(n, m, {P

inf |If—Qll
QK

wgt N
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Proof. As is Agmon [1], it follows from Hilbert’s Nullstellensatz that there is
an integer r such that for all [a| = r,

k
(5.1) £ = 2 RAEP(E)
=1

for some polynomials R;?‘ that are homogeneous of degree r — lj. Thus each f€ K
satisfies 7(®) = 0 for all |a| = r, i.e., K C P,.
()

Since K C P,, it follows that for any P € P,
where D* is the ball of diameter 2d concentric with B, because of the equivalence of
norms on the finite-dimensional space P,/K. Therefore,

(&)

with C depending only on the diameter d of D, the diameter of B, and {P].}. (The
independence from g and {p;} can be achieved using Holder’s inequality.) Using
Sobolev’s representation of order r and the triangle inequality, we get

>

inf IP - Ol <
Q€K : QW'”(D*) CZ L, (B)
i

b

L, (D)

62) o 1P =l ) < € Z

inf I — Qll

Q€K

<Ilf - Q'fl + inf |Q"f - QI
QeK

F(5) 2

WM (D) WD) WD)

<[IR’fIl

w2 wg D)

Because of Theorem 3.1 and the linearity of Q 7,

A R L (O]

Thus, Remark 3.2 shows that
S Y EY T
||P’<6x> Q’f ¢ 'Pf<ax 7 L (D) <l dx !

<
Wi (D)
It now remains to estimate R'f. Using (5.1), we have

RIG) = 2 [ koo 1) dy

lal=r

I 5 P [m(@)n(3) o
k

> f[lal r (- 1)t R} R <a‘3y> ko (x, y)] P; <%}) f(y) dy.

j=1

L, (D)
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Since deg R} = 7 — I;, (3.8) and Proposition 3.1 imply that
. 2
Z )
and this completes the proof of the theorem. O

Remark 5.1. If A = {a!,...,d*} is a finite set of multi-indices and {Pj} is
defined by P;(x) = x*' forj=1,...,k, then A® is a finite set if and only if
Py, ...,P; have no common (nonzero) complex zero. This is because K N P,, is the
space spanned by {x®: g€ A°}; hence, dim K N P,, = card A°. The proof of Theo-
rem 5.1 thus contains the “if” part of our assertion. To prove the “only if”” part,
suppose there is some & # 0 such that P;(§) = 350" =0forj=1,...,k Then some
component, say §;, of £ must be nonzero, and so none of the a’’s can be of the form
r&', r € N; hence, A° is not finite (Lemma 4.1). O

Remark 5.2. The proof of Theorem 5.1 is constructive to the extent that the
constant C in (5.2) can in principle be computed (it is a finite-dimensional problem).
The integer r guaranteed by Hilbert’s Nullstellensatz depends only on I, . . ., [;; cf.
van der Waerden [20,v.2,p. 6]. O

Remark 5.3. If 0 # £ € C" is such that P(E)=0 forj=1,...,k,then
Pl-(a/ax)ei" = PI-(E)es" =0, so that K ¢ P_. Thus, this condition is necessary for
polynomial approximation theory. (Note that even if the P;’s have real coefficients,
there is a real-valued nonpolynomial function in K, namely,

r <
IR Ty ) <

Ly @)

P,(3/0%)(Re %) = Re (B;(3/3x)et) = 0,

so it is necessary to consider all complex zeros of the P;’s.) 0

Remark 5.4. The estimates of Sections 4 and 5 are valid for functions f in the
space H defined as follows: Let {Pj} and {p].} be finite sets of polynomials and ex-
tended real numbers as in Theorem 5.1. Take H to be the subset of L, (D) consisting

of functions f such that the distributional derivatives P;(9/0x) f are elements of L, (D).
This is a Banach space with the norm !

‘» [0
11z oy * Z"f’;(g;) Al
7l Ly (D)

Further, when all the p; ’s are finite, the set C”(D) N H is dense in H (see below),
and this allows the proofs of Section 3 to be carried through in view of Remark 3.4.
The claimed density of C™(D) N f{ is not easily seen by the standard partition

of unity argument (cf. [11]), but can be demonstrated as follows: Assume that 0 € B,
and for r > 1 let f,(x) = f(x/r) and D, = {x: x/r € D}. Since D is star-shaped with
respect to B, D CC D, for r > 1. Given f € H, it is easily seen that f, € H and that
f,— finH asr { 1. Thus, it suffices to approximate f, by a function in C*. If
Y ECSRM, [ Y(x)dx =1,and ¥ (x) = e "Y(x/e),thenase } 0 Y, = f, — f, in
L, of any compact subset of D, provided p <. Hence, ¥, * f, — f, in L,(D).

* Finally, since P]-(B/E)x)(xlz€ *f)= VY, * Pi(a/ax)f,, we see that Y, » f, — f, in H as
ey 0. O
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6. Approximation by Complete Polynomials of Functions in Fractional Order
Sobolev Spaces. For m > 0 let m = m + 0, where m is the integer part of m; i.e.,
meE€Nand 0 <6 <1. For positive nonintegral m and 1 < p < o define

@(x) — f(@
3 f'f )~ W)IP

(6.12) Ifl

For p = o define the seminorm by

£ (x) = F@(p)l

(6.1b) [f1 = ess sup
wZHD) Ialz=r71 DXD lx — yI°
m . m . - .
The space w, (D) is the set of all W, (D) functions such that Iflw;"(D) < oo, and its
norm is defined by
1Ty = W1y * 170y

PROPOSITION 6.1. Suppose that 1 < p < oo, that m = m + 0 where m € N and
0<0 <1,and that | =m + 1. Then there is a constant C = C(n, ¢, d, m) such that
for fE€ WD)

!
(6.2) F=Qfl, »D) S CIfIw’"(D)’
where Q' is defined in (3.2).

Proof. First take 1 < p < oo, Then, as in Section 3 we can assume without loss
of generality that f € C*(R"). (See Grisvard [12].)

Suppose that « is a multi-index such that |a| = /, and take j to be such that o =
B + &/ where § is a multi-index. Let

(63) R, () = fD Ok, (x, ) dy,

where &, is defined in (3.4). This can be written as follows:

R = [ ;,—% [FP) = FO] k,(x. ) dy

(6.4) o ot
hm{ f{y€D= Ix—y|>e}[f ()=l ayjka(x’J’)dy

eVo
+f
Ix—yl=¢€

where ds is surface measure.

[FO0) =190 koo, ) 6= dsh

The surface integral in (6.4) tends to zero as € \ 0. To see this note that, for
[x — ¥l = ¢, (3.8) implies

Ik, (x, I < Ce'™™,
that, for |x — y| = ¢, f€ C " (R") implies
1O ) - O < Ce,
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and that

f lds=Ce" 1!,
lx—yl=e
Using (3.8) again, we see that
. f lf“”(y) 1Ol
-yI"
Note that the integrand is in L! since it is bounded by C|x — y|~"*!, Holder’s ine-
quality and (6.5) imply that

6.5) IR, ()| <

f“*)(y) AR 34

y|n+0p

(6.6) IR, )P <C f dy.

Integrating this with respect to x and summing on |a| = [ gives (6.2) for the case p < oo,
Note that the C in (6.6) is just

. \pi' w 1-1/p p
cg(fDlx—yl‘"”de) <3co<—é'l <1_?17)> dos,

where w,, is the measure of the unit (n — 1)-sphere. Thus the constant C in (6.2) can
be taken to be independent of p € (1, =), and it is bounded for 6 in the interval (e, 1)
where € is positive.

The estimate for p = oo is complicated by the facts that, for nonintegral m,
W’"(D) q W”’(D) for p < e and C*(D) is not dense in W™ (D). In this case, note
that C’”(D) DWZ D). Form>1and for f€ C’"(D)

(x

=3 " s@yy
(6.7) lat=m ( )a
_ X —
e Ty—f M@0+ 50y - 1) = FO)] ds

This representation is just the first line of the proof of the Sobolev representation
given in Section 3, except ! was decreased to m and zero was added in a convenient
form. Each term in the second sum can be bounded by

i [ = 9l - p11? asi

wlZ(D)
Multiplying (6.7) by ¢(»), integrating with respect to y, and applying the above bound

gives the conclusion for p = e and m > 1.
For m = 0 replace (6.7) by the trivial relation

FE) =1+ [fx)-f(»)].
Then proceed as above. O
Proposition 6.1, when combined with Theorem 3.1, gives

THEOREM 6.1. Suppose that m = m + 0, where 0 < 0 < 1 and m is a nonnega-
tive integer. Let 1= m + 1, and let Q' be defined by (3.2). Then there exists a con-
stant C = C(n, ¢, d, m) such that, for 1 <p <eoand f € WD),

©68) 17 = QN mpy < EWlympy;
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7. Relaxation of Domain Constraints. The results of Sections 3, 4, 5, and 6
were derived under the assumption that the domain was star-shaped with respect to
each point in a ball. In this section we show how this constraint can be weakened. In
particular, the previous results can be extended to bounded domains which satisfy the
restricted cone condition (see below) that was used in [4], [5]. In addition certain
domains which fail to satisfy the restricted cone condition can be treated (for example
a slit disk in R?). The principal result of this section (Theorem 7.1) states roughly
that a domain has good approximation properties if it is a finite union of domains with
good approximation properties. In [14] Jamet uses a different method to relax
geometric constraints associated with polynomial approximation.

First, we remark on the relation between domains which satisfy the restricted
cone condition and those which are star-shaped with respect to a ball. A bounded
open set £ is said to satisfy the restricted cone condition if there exists a finite open
cover {Oj}}’:1 of Q and a corresponding collection {Cj}f:l of truncated right circular
cones with vertices at the origin such that if x € Q N O]. then x + C; C €. The
following remark is easily verified.

Remark 7.1. If a bounded open set £ satisfies the restricted cone condition then
it is the finite union of open sets D; each of which is star-shaped with respect to a
ball B;.

That the converse of this result is not valid is easily seen by considering

Q={re’?: 0<r<1,0<6<2n},

where we identify C with R2. This domain fails to satisfy the restricted cone condi-
tion, but = D, U D, where

Dy = {re: 0<r<1,0<6<3m/2}>
Dy = {re®: 0<r<1,n2<0<mn}.

The domains D,- are star-shaped with respect to balls B]. = {z: |z — z].I < 1/4} where
z, = %% and z, = 454 O

For each bounded nonvoid open set D let H(D) denote a linear space of functions,
and let f/(D) be equipped with two seminorms || ||, and ||| |ll,. Suppose that these
spaces and seminorms have the following properties:

(a) The restriction of each element of H(D, U D,) to D, is in H(D,).

(b) For each fe H(D, VU D,),

1£lpup, <Iflp, +1flp, <21flp up,

and llIflllp |+ 1I1£1llp, <201£1llp p, -

(¢) P, CH®D).

@ IfPe P, and ”P“Dl = 0, then ”P”Dluo2 =0.
In the use of the results of this section, ||f lp will be a finite sum of terms of the
form ||f(°‘)||Lp(D) and ||| f|l| will include in addition terms of the form

IP@/2X)f Ny, (py and |f ”)'w,«?(o)‘
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THEOREM 7.1. Suppose that Q = |J jjil Di is connected and that each D]. isa

bounded nonvoid open set. Let P be a finite-dimensional subspace of P ,, and suppose
that there exist Q]. and C; forj =1, ... N such that, for f € HD)), Q;f€ P and

(7.1) - Q,-flIDI. < lellflIIDj.
Then there exists Cy such that, forj =1, ...,Nand f € HQ),
(7.2) IF = Q;fllg < Collfllg.

Proof. Tt suffices to consider the case N = 2, since the general case follows easily
by induction. Let B =D, N D,;B # & since § is connected. By properties (b) and
(d) above, the seminorms “P“Dl + ||P||D2 and ||P|lz on P € P have the same kernel.

Using the equivalence of norms on the corresponding quotient space yields
(7.3) IIPIID1 + IIPIID2 < C|Pllg foralPE P

for some constant C = C(D,, D,, P).
Suppose that f € H(£2) and that P;=Q;fforj=1,2. Note that

If = Pyllg SIf=Pyllp + 1= Pyllp, + 1P, = Pyl
using property (b) and the triangle inequality. By (7.3),
P, _P1“D2 SCIPy, = Pillg <CIP, = flig +IIf = Pylig]-
Combining with the previous inequality, applying (7.1), and using property (b) yields
If—Pillg <(1+ C)(CIIIIfIIIDl + Gliflp,)

<1+ C)max {C,, C, }Ifllg. O

Remark 7.2. In those cases in which the norm || ||, is translation invariant, as
is the case for all the Sobolev-type seminorms used so far in this paper, the constant
C in (7.3) can be taken to depend only on d and d instead of D, and D,, where d >
0 is such that some ball of radius d is contained in D, N D, and d= diam(D, UD,). O

Remark 7.3. Tt follows from Theorem 7.1 that Theorems 3.2, 4.2, 5.1, and 6.1
hold if D is any connected open set that is the union of a finite collection of domains
that are star-shaped with respect to balls. In Theorems 3.2, 4.2, and 6.1, one chooses
Q to be defined with respect to any ball contained in D. Note that Theorem 5.1 still
holds because Theorem 7.1 does not require the mapping Q j to be linear or even
continuous; hence,we may define Qi by taking anything reasonably close to the infimum
in Theorem 5.1. O

8. Examples. This section contains four simple examples that are based on the
results of Sections 4, 5, and 6. The purpose here is to show how the refinements in
those sections yield results that would not be easily derived by results based on com-
plete polynomial approximation or on more restrictive tensor product results. First
the results of Section 4 are used to show an error bound for approximation by poly-
nomials that are constant in one variable and linear in another. Next, the results of



APPROXIMATION OF FUNCTIONS IN SOBOLEV SPACES 459

Section 5 are used to show how well harmonic polynomials can approximate harmonic
functions. In the third example, the results of Section 6 are used to bound the inter-
polation error in a case in which the function being interpolated does not have enough
derivatives to be able to apply the theorems of Section 3. The fourth example shows
how triangles with curved edges can be treated using our results.

Example 1. In this example we consider approximation in two variables by
polynomials that are constant in one variable and linear in the other. One interesting
question in this context is whether differentiation of the approximating polynomial in
the direction in which it is linear gives a good constant approximation to the deriva-
tive of the function being approximated. The commutativity of the operator QA with
the differentiation operator allows an affirmative conclusion.

Let & be a positive parameter, and let D, = (0, k) x (0, h). Take § = (1, 0) and
consider, for f € C*(R?),

PR
(2)-n
where P= {a + bx,: a, b €ER}.
For any function g defined on D, let g(x1 ,X,) = g(hx,, hx,) be defined on

D,. Note that
] \ &
(%) v-»

G0 ntsm =it {1 = Py, + . pep),

L,(Dy)

a2\ 3
©.2) | ~ ! ""(a) 7-P
Lo (Dp) Lo(Dy)
Thus, since P € P if and only if Pe P,
(o 5 \f ~
n(f, h) = mf{hllf— Pl *+ <‘a-'> (f-P . Pe P} )
1 x

L,(D))

Fix ¢ € Cy (B) such that [ ¢ = 1, where B is a ball contained in D,. Take A =
{(0,1),(2,0)} and let ) = QA be defined as in Section 4. Then, by Theorem 4.2,

Adding the two inequalities in (8.3) and applying (8.2) with P = 0, we see that for
0<h<l1

B4)  n(f3m) SCRIFODl o,y + 17,0, 17N, 0,]-

53 hlif - Qo) <HCUS OVl 0,y + 17Ny, o 1

<CUF* Pl iy + 1l H]-
Ly(Dy)

() T-a7)

It is interesting to note that if we had restricted ourselves to the direct applica-
tion of the results of Section 3 we would have not been able to show that n(f; k) =
O(h) since the largest class of complete polynomials contained in P is P, and n(f; k)
> ll(a/ax)f||L2(D) if P is replaced by P, in the inf. Our results are related to those

used by Ewing [10] in deriving a similar cross derivative approximation bound.
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To further illustrate the possible uses of Theorem 4.2, suppose that g, p,, p, €
[1, ], F@:D e Lpl(Dh)’ and f(2:0) € Lpz(Dh), where 1/q — 1/p; + 1/2> 0. Then

. . 1-2/p,+2/q y
_ < 1 (0,1)
inf {|| f P”Lq(Dh). PEPY<Ch I/ “Lpl(Dh)

2-2/p 2/q 2,0
+ h 2 ( 3 )
”f ”[ (Dh).

In general, direct application of results of Section 3 would not yield such a bound. O

Example 2. To construct an example of the use of Theorem 5.1, let P, (x) =
x(’+1‘j’j)-, forj=0,...,r+1,and let Pr+3(x1, x,) = xf + x%. The set K con-
sists of all harmonic polynomials of degree less than or equal to r. If we proceed exact-
ly as in the previous example, we see that for all f € C*(R?)

. inf ||f— P <C[h"“ 1@ + R A ]
®5) =Py, S |a|§r+1 PR Moz

We can conclude that if f is harmonic on D, then it can be approximated by elements
of K with an error CK”*t1. O

Example 3. To give an application of Theorem 6.1 we consider the question of
bounding the error in an interpolation process. Suppose that Q is a bounded domain
in R? with a polygonal boundary and that F isa family of triangulations of Q. For
TE F, let h = h(T) = maxpe 7 diam(7T). Denote by My = My(1, T) the space of
functions that are continuous on £ and linear (affine) on each 7€ T. Assume that
there is a p < o such that for all TE F, T € T = (diam(T))?/area(T) < p; this says
that the triangles do not degenerate.

For any function f € C(?Z) let Tf= IT fbe the element of M ; which agrees
with f at each vertex of T;i.e., 1fis the piecewise linear interpolant of f. It is well
known (and follows easily from Theorem 3.2) that if f€ W%(Q), then

- < Ch? .
IIf IfIILz(m Ch IIfIIW%(m

However, if 0 < € < 1 and if f € W} T€(), the results of Section 3 give no error
bound. A natural approach would be to try to use the theory of interpolation of
Banach spaces and use results for W2 and W, ; however, this fails because 1fis not de-
fined on W21 since the elements of this space are not in general continuous.

Define T = {(x,;, X,): x; >0,x, >0,x, +x, <1}. For T a triangle in
TE F let A be an affine map taking Ty onto 7. Assume, without loss of generality,
that 4 is linear, and note that ||4]| < Ch. For a function EG C(TR) define ’f; to be
the affine function of x that agrees with g at the vertices of Ty i.e.,

I’E(xp X,) = E(O: 0) (1 - Xy~ x,) + E(l’ O)xl + ?(O, l)xz'

Note that G - T?)(x) = (f— 1f)(Ax), where ?(x) = f(Ax). Thus

3.6) 1f = 11y = 1det AT TFIB 7, )
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Next note that for any P € P,
0F =T Flip gy = If =P = TG = Pl (rg)»

since 7 is a linear map which reproduces polynomials in P,. Letting || || denote the
norm of T as a map of Wi*€(T) into L,(Tg)(which is finite by Sobolev’s inequality)
we see that

1= TF Ny yrgy <@ +IT N inf 17~ Pl

pPep, witerg)
From Theorem 6.1 and the fact that LPIW1 +e=0 for P € P, it follows that
2
(CN)) = TFl,rp <le|W;+E(TR).

To estimate the right-hand side of (8.7) represent 4 as a 2 x 2 matrix that acts on
column vectors (x,, x2)T and then note that

~ ?(1 ’0) . f(l ,0)
VIi=\ ~ =A4* = A*Vf,
f f(oil) f(oil) Vf
where f(“) and f(% are evaluated at x and Ax, respectively. Thus

197(e) = V7 ()2

TRXTR Ix_y|2+2e

et [[ANCIQ WO Xl e,
TXT |x y|2+2e |A'—l(x N

dx dy

e ([ IVFx) = VF()I?

|2+2€

dx dy.
IdetAI2 TST |x-y

From this result, (8.6) and (8.7) we see that

[141i lVvf(x) — V()
7= If”Lz(T)\C[IdetAI hETRe ff yl2+2e dx dy

Sum this result over triangles and use the nondegeneracy of F to bound the term in
brackets to obtain

TXT [x —

> ff V£ () = vf(»)I? x dy>1/2

_ y|2+2€

1f = 1flly () < CHI*e <

(8.8) \reT 7x1 |Ix
< 1+e

< Ch lflwzl,""(n)'

If we had not needed to estimate the interpolation error but merely the error in

the best possible approximation in M7 a bound like (8.8) could be obtained by inter-

polating between L,(2) and WZZ(Q). However, it is frequently the case that one needs
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to know how well a function that vanishes on the boundary can be approximated by
function spaces that vanish on the boundary. In such cases bounds like (8.8) extend
the error estimates to their natural lower limits. One such example can be found in
Douglas, Dupont, Percell and Scott [8]. O

Example 4. We now show how the above results can be applied to certain
families of curved domains. Suppose €2 is a bounded domain in R? with smooth
boundary 8S2. Let F be a family of triangulations of §2 having straight interior edges
and (possibly) curved edges lying on 952, and suppose that F satisfies the nondegener-
acy assumption of Example 3:

sup sup (diam(7T))?/area(T) < p < .
TeF TeT

Such families of triangulations were considered in [17], where approximation
properties for the boundary triangles having a curved side were derived in a very com-
plicated way. The main difficulty is that now there is no fixed reference traingle, but
rather a family of reference domains. For each T € T € F, define an affine mapping
by sending the vertices of T onto the set {(0, 0), (1, 0), (0, 1)}, and let the image of
T be denoted Tp. Again define A(T) = maxpcr diam(7) forall T € F. For h,
sufficiently small (depending only on § and p), if (T) < hy and T € T, then Ty, is
contained in the disc {|x| <2} and is star-shaped with respect to the disc {lx — x|
< 1/8}, where x, = (1/4, 1/4). Thus, the above approximation results apply to T
and, via the affine mapping, to each T, with the constant C in the estimates depending
only on £ and p (as well as the degree and type of polynomial approximation). [
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