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Error Analysis of Some Techniques
for Updating Orthogonal Decompositions

By C. C. Paige*

Abstract. We consider accurate and efficient methods for updating the result of the
transformation C = BQ, Q orthogonal, of a given matrix B when Q is available. Add-
ing or deleting a row, or adding a column of B leads to a continuation of the original
transformation, and as such is numerically stable. In particular, we discuss a well-
known method for updating when a column of B is deleted, and show that it is as numeri-
cally stable as the problem allows. The results extend to two-sided transformations of
the form C = ZTBQ. The methods and analyses are independent of the form or rank
of B and C, and so are widely applicable.

1. Introduction. In many problems we are interested in computing the orthog-
onal transformation

(1.1) C=BQ

of a given m x n matrix B for a certain orthogonal matrix Q. Often Q will be chosen
so that C has a certain form, such as (L, 0) where L is lower trapezoidal of full column
rank. However, the results will be more useful if they are given for a general orthog-
onal transformation in (1.1). We will be interested in updating C and Q in an efficient
and numerically stable way when a column or row of B is added or deleted. In order
to do this we will assume Q is available whenever it is needed, and we will not discuss
the less reliable methods that use C to find information on Q instead of using Q itself,
even though they are usually faster. The problem is easily solved when a row is ap-
pended to or deleted from B, and when a column is appended to B. Most of this note
will treat the deletion of a column from B.

Here capital italic letters will denote matrices, lower case italic will denote vec-
tors and indices, and greek will denote scalars, except 8B, etc., will denote a matrix of
small elements. Superscript T will denote transpose, and we will use the 2-norm through-
out. In the rounding error analysis the indexed scalars €; will denote nonnegative num-
bers bounded above by the product of the floating-point computer precision € and
small constants dependent only on the number of transformations and possibly the di-
mensions of the problems.

It follows from the work of Wilkinson [4] that if B is given and Q is the product
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of numerically stable elementary hermitians or plane rotations, then the computed ma-
trices C and Q in (1.1) satisfy

(1.2) C= (B +8B)0,
1.3) 10 - QOll = &,
(1.4) 85,11 = €/lb,1I,

where Sbj and bj are the columns of BT and B7, respectively, and Q is orthogonal.
Because of this result the transformation is numerically stable, and we will be interested
in updating techniques which have this same form of numerical stability, or as close to
it as we can get.

If additional orthogonal transformations are applied from the left, or right, or
both, so that ideally

(1.5) c=27Bg,

then it is straightforward, see for example [3, Section 6], to show that the computed
C, Z, and Q satisfy

(1.6) Cc=ZT(B + sB)Q,
1.7) I0-0ll=¢, WZ-Zll=c¢,,
(1.8) 8B = 5Bl

where Z and Q are orthogonal. Here Z combines the rows of B, and so (1.8) is weaker
than (1.4).

2. Updating Techniques. Many effective updating techniques have been devel-
oped over the last few years, and [1] and [2] are good sources for the techniques that
will be mentioned here, along with many others. The purpose here is to be reasonably
brief, but give a general analysis of techniques based on the use of Q for updating (1.1).

In what follows

2.1 C=B0

will be the theoretical result brought about by updating the transformation (1.1) when
arow b7 or a column b is appended to or deleted from B. We will describe all tech-
niques in their simplest forms; other computations will just be straightforward exten-
sions of these.

(a) Append a row bT to B. Compute

(2.2) cT =p7Q;

then a = Q and the transformation

(2.3) Z"=<CCT>=<:;>Q=E'Q

is already available.
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(b) Delete a row bT from B = ( bET). Write

(2.4) c= <c§> = BQ = < sz> 0,

so with 0 = Q, the transformation is updated by deleting the last row of C.
(c) Append a column b to B. Write

2.5) = b= b)(% ?) -B30.

(d) Delete a column b from B = (§, b). Apply an orthogonal matrix P to the
last row of Q, so that if e, is the last column of the n x n unit matrix 7,

(2.6) (e gQ) P= <g icl>'

It follows that QP has the form

2.7 QP = <% i01> = N say.

Clearly, a is orthogonal and
(2.8) (C,c)=CP=BQP = (BQ, tb),

so deleting the last column gives the required new decomposition.

We note that (a) and (d) require Q to carry out the update, while (b) and (c) re-
quire no computation. Q is unaltered in (a) and (b), and trivially modified in (c), but
(d) requires a nontrivial transformation of Q and depends on a nontrivial theoretical
result. The extensions of these methods to appending or deleting other than the last
row or column of B, and to placing the * 1 elsewhere in the last row in (2.6), are triv-
ial, but require more complicated notation and so will be ignored. The results of the
analyses will clearly hold for these extensions. The methods and analyses are indepen-
dent of the form and rank of B or C, and the particular orthogonal matrices Q and P
used to give (1.1) and (2.6), and so are quite general.

On examination it can be seen that the techniques in (a), (b) and (c) are just ex-
tensions of (1.1), and so the results (1.2) to (1.4) hold; and the updating techniques
are numerically stable, giving bounds exactly as if the computation had started with
B instead of B. In Section 4 we will show that (d) is as numerically stable as can be
expected for the problem, giving a rounding error result with similar form to (1.2) and
(1.4). In particular computations C will often have a specific form, and we will want
C to have the same form. In such cases (a), (b), (c) and (d) will be designed so this
form can be efficiently regained by applying more numerically stable transformations.
If this is done by applying orthogonal transformations from the right to the relevant
parts of (2.3) to (2.5), and (2.8), then these will just be further continuations of (1.1)
and as such will make the computations numerically stable, or in (d) as numerically
stable as can be expected for the problem.
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3. A Property of Orthogonal Matrices. In order to prove the numerical stability
of column deletion in (1.1), we will use the following general property of orthogonal
matrices. Let

3.1) <hGT i)

be a partitioned orthogonal matrix. If y=+1theng=h=0and G is orthogonal;
otherwise

(3.2) G=G + ogh”

is orthogonal when a = —(y — )7 or—(y + 1)7!, and then

(3.3) Gh=tg, gTG==zh".

This can be shown as follows. From the orthogonality of (3.1)
(3.4) Gh+1 =0, GTg+yn=0,

(3.5) GGT +ggT=1 glg+y*=nTh+7*=1,
)

GGT =I-[1 +2ay—a®(1 -7*)]eg” =1
for the given values of a. Next
Gh = Gh + ahThg = (@hTh — v)g = [a(1 - 7*) = 7]g = tg,
GTg = (agTg—7)h = th.
These results will be useful to us when llg|| is small.

4. Analysis of Column Deletion. To analyse the computations required for (d)
in Section 2, we assume that the computed C and Q satisfy (1.2) to (1.4). The com-
putations described by (2.6) and (2.7) will then give computed C, ¢, and N satisfying

c+sC \s_[C
(4.1) g p=<0 fl>,
e, 0+ 6q -

(4.2) I5gll = €5, 1N~ QPIl = e,
43) I5¢,ll = ¢/l

where 80,- are the columns of §C7, and P and so QP is orthogonal. In order to use
the result of Section 3 we write

I G g
4 =
@4 0P <hT 7>,

where from (4.1) and (4.2)
(4.5) WTh+ (y 1) = €3.
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This combines with (3.5) to give
(4.6) 1¥y=¢/2,
4.7) hWTh=gTg = €3(1 - €3/4).

If vy ~ 1, we take @ = —(y + 1)7! in Section 3; otherwise, ¥ ~ — 1 and we take o =
—(y — 1)7!, but in either case we have an orthogonal matrix

4.8) G=G+ogh?,
(4.9) llagh®ll = lalhTh = €5/2.

This shows that the leading part of QP is within €2/2 of an orthogonal matrix, which
is a better result than might initially have been expected. From (4.2) we see that the
leading part O of N satisfies

(4.10) IG-Gll=1I0~G+G-Gll<e + €2,

and so our computed result 0 is close to an orthogonal matrix. Next from (1.2) and
“.1)

(@.11) B+ 6B +8C0T)QP = (C, o,
or if we write 8 + 8CQT = (88", 5b) and use (4.4) and (4.8),
C=(B+6B)G+ (b+sp)nT
(4.12) =(B +8B")(G —aghT) + (b + sb)iT
= (B + 5B)G,
which has the form of (1.2). From (1.4), (4.3), (4.7) and (4.9)

~ G ~ [~
588G = (55", 6b)(hT> + (B b)< ‘l"g>hT,

16 b,” < (el' + ejn + 64)||b]~”,

(4.13)

where 8’5]. is the jth column of 8BT.

We see that (4.12) and (4.10) have exactly the same form as (1.2) and (1.3), and
(4.13) has similar form to (1.4), different rows of B having no effect on each other.
However, the bound (4.13) depends on B = (B, b) rather than just B; and if ||b]| >>
I BIl, the new decomposition C=B0Q might not be as accurate as if it had been com-
puted directly from B. However, (4.13) shows that if some elements of b are reason-
able, the corresponding rows of C will be as accurate as if they had initially come from
B. The updating difficulty with large elements of b is inherent in the problem, and is
the equivalent of cancellation for scalars. Suppose || >> |al, |7], and we form ¢ :=
B+ a;n:=¢+ v u:=n-p;on a floating-point computer. Then u will probabI;'
have a large relative error as an approximation to « + . Nevertheless, we have shown
that method (d) in Section 2 is as good as is possible for the problem.
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A final reassuring feature of the algorithm is that in (4.11), using (4.6), (4.7),
(1.4) and (4.3),

c=(B +5B")g+ (b + 5b)

g ~AT\[&
=+bh+B + (6B + 6C07)
@.14) <¢ €z /2) <7>
=*bh + bc,
(4.15) 87,1l < (4 + € + €Iy,

where 67,- is the jth element of 6¢ and bjT is the jth row of B = (E, b). So we see the
computed ¢ will be very accurate, unless ||b|| >> |I§I|.

5. Comments and Extension to C = ZTBQ. We have shown that if we have an
orthogonal decomposition (1.1) and we update it using any combination of (a), (b),
and (c) in Section 2, then the result (1.2) to (1.4) will hold for our final matrices B, C
and Q. If we also include (d) in the combination, then ”bi” in (1.4) must be the largest
such norm encountered for the jth column of BY during the computations. These re-
sults are as good as can be hoped for the problem; and in particular, the most compli-
cated computation (d) was seen to have some very nice properties. These results hold
no matter what stable transformations of the form (1.1) are carried out in between the
updating steps.

If we now consider updating (1.5), we see that whether a row or a column is
appended to B, the updating technique and its analysis will effectively be the same.
For example, with Q available,

c_(C\_[(z"Bg\ _(zT o\[B)\, _zrxx
5.1 C_<cT>_<bTQ)_<0 1><bT>Q—zTBQ,

which is a continuation of (1.5), and so the computational results satisfy the equivalent
of (1.6) to (1.8). Also, deleting a row from B in (1.5) is effectively the same as de-
leting a column; but these involve a computation of the form (d) in Section 2. For
example, with Q available we note that deleting the column b from B = (§, b) is the
same as deleting the column Z7b from ZTB = (ZTE, ZTb), so Section 2 (d) is identical
except that (2.8) becomes, with Z=2

(5.2) (C,e)=cp=2TBoP=(ZTBQ, +Z7h).

The analysis of this is identical to that in Section 4, except for (4.3), which becomes

(53) ICIl = egllBll,

and in (4.11) and the following, B and 8B are replaced by Z7B and Z76B to give
(5.4) C=ZT(B + 8B)G,

(5.5) 8Bl = €, I1BII,

s0, with (1.7) and (4.10) still holding, the bounds are similar to those of (1.6) to (1.8).
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We see that (1.5) can be repeatedly updated, and orthogonal transformations can
be applied to the left and right to give c any desired form, and the results (1.6) to
(1.8) will still hold at any stage of the computation, except that if deletion occurs at
any stage, then || B|| in (1.8) must be the largest such norm encountered. This exten-
sion is important for proving the numerical stability of some updating techniques for
some methods that solve the generalized least squares problem [3].
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