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An Incomplete Factorization Technique
for Positive Definite Linear Systems

By T. A. Manteuffel

Abstract. This paper describes a technique for solving the large sparse symmetric linear
systems that arise from the application of finite element methods. The technique com-
bines an incomplete factorization method called the shifted incomplete Cholesky factori-
zation with the method of generalized conjugate gradients. The shifted incomplete Cho-
lesky factorization produces a splitting of the matrix 4 that is dependent upon a param-
eter a. It is shown that if 4 is positive definite, then there is some « for which this
splitting is possible and that this splitting is at least as good as the Jacobi splitting. The
method is shown to be more efficient on a set of test problems than either direct meth-
ods or explicit iteration schemes.

1. Introduction. High speed computers have made possible truly three-dimensional
models. The increased complexity of such models is transmitted to the linear systems that
often form an integral component of the model. The linear systems that result from an
application of finite element methods can be especially complex. This work was moti-
vated by a model of structural deformation in three dimensions that produced linear
systems with 18,000 unknowns, a half-bandwidth of 1,300, and an average of 115
nonzeros per equation. The direct solution of such a system would require approxi-
mately 15,000,000,000 arithmetic operations and 23,000,000 words of storage. For
that reason iterative methods were pursued; see Section 6.

Characteristically, finite element methods yield positive definite linear systems
that are sparse, but much more dense than their finite difference counterpart. The
zero structure of finite element matrices reflects the complexity of the domain of the
model and irregularity of the mesh. There is little pattern. These matrices do not
possess Young’s property-A, (Young [27, p. 41]), nor are they M-matrices,* nor are
they diagonally dominant. We can, however, extend some of the results for these
special cases.

The iterative technique to be described is a variant of the incomplete Cholesky
factorization—generalized conjugate gradient method (ICCG) described by Meijerink
and van der Vorst [17]. In their paper it is shown that if 4 is an M-matrix it can
.always be split into

(1.1) A=M-N,
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*A matrix 4 = (a;;) is an M-matrix if a;; < 0 for i #j, A is nonsingular, and A—l
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where
(1.2) M=LZU

and L and U are sparse unit lower and upper triangular matrices and Z a positive
diagonal matrix. The splitting (1.1) is a regular splitting. If 4 is also symmetric, then
M will be symmetric and this splitting can be used in conjunction with the generalized
conjugate gradient algorithm. If 4 is not an M-matrix, this splitting may not

be a regular splitting, and in fact, the factorization of M may not always be positive;
see Section 3. This paper will describe the implementation of a similar procedure
called the shifted incomplete Cholesky factorization (SIC) on general symmetric posi-
tive definite matrices and discuss its efficiency.

Unlike the SIP splitting (Stone [24]) which is only applicable to 5-point differ-
ence matrices, the SIC splitting can be applied to any positive definite matrix regard-
less of structure. The SIC splitting has an advantage over the SSOR splitting (Axels-
son [1]) in that a more accurate approximate inverse may be brought into play. In
fact, one can move from the extreme of no splitting to the extreme of complete fac-
torization with iterative refinement by adjusting the amount of fill-in allowed in the
factorization (1.2).

Section 2 will establish notation with a brief description of the generalized con-
jugate gradient iteration. In Section 3 the result of Meijerink and van der Vorst will
be extended to H-matrices.** It will be shown that for M-matrices allowing more fill-
in improves the condition of the splitting. In Section 4 it will be shown that the pro-
cedure is invariant to diagonal scaling, and a measure of the positivity will be proposed.
The shifted incomplete Cholesky factorization will be discussed in Section 5. It will
be shown that a factorization is possible for any positive definite matrix and that the
resulting splitting is at least as good as the Jacobi splitting. It will be shown that for
a Stieltjes matrix,*** the best shift is nonpositive. Numerical results on a test prob-
lem will be discussed in Section 6.

This paper is mainly concerned with symmetric positive definite matrices. How-
ever, the results of Sections 3 and 4 will be given in terms of possibly nonsymmetric
matrices. Many of the details have been omitted. They may be found, along with a
description of the implementation of the procedure, in the report [16].

2. Generalized Conjugate Gradient Iteration. The conjugate gradient method
was first described by Hestenes and Stiefel [9] in 1952. Because numerical properties
of the conjugate gradient algorithm differed from the theoretical properties, the meth-
od saw little use as a method for solving linear systems until 1970 when it was shown
by Reid [22] to be highly effective on some large sparse systems. The generalized
conjugate gradient method, described by Hestenes [10] and later by Faddeev and
Faddeeva [5] and Daniel [3], was shown to be effective for some large sparse systems
by Concus, Golub, and O’Leary [2].

**The matrix 4 = (ai].) is an H-matrix if the matrix B = (bij) with b; = a ~ 1
i # j is an M-matrix.

**%A Stieltjes matrix is a symmetric M-matrix.

i by = — layl,
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Given the linear system
2.1 Ax =b,
we split 4 into
2.2) A=M-N,

where M is easily invertible and the behavior of M in some sense approximates the be-
havior of 4. The preconditioned system

(2.3) M1'4Ax =M 'b

may have much better condition than the original system (2.1) and, therefore, be
easier to solve by iterative techniques.
If A and M are both positive definite, then M” exists and the system

24) Ay = b,
where
A=m2am V2, b =M, y=MT12k,

is positive definite and equivalent to (2.1). The generalized conjugate gradient algo-
rithm is equivalent to applying conjugate gradients to the system (2.4).
The algorithm is as follows: given x,, let

r, = b — Ax,, (residual),
hyg =M 'r,, (generalized residual),
Po = hy.
The general step is
_ (r;, p;) B {r;, hy) ‘
%= (Ap;, p;) B (Ap;, py ’

Xip1 =% T opy,

2.5)
L =5 odps =M'r,

i =h.. +Bp 8 =—<Api’hi+l>=<ri+l’hi+1>
i+1 i+1 i i (Apia pi) (ria hi>

With M = I, the identity, this is the same as the conjugate gradient method.

It has been shown that the convergence properties of the conjugate gradient
algorithm of system (2.4) depend upon the entire spectrum of A4 (Greenbaum [8]).
However, upper bounds for the A-norm of the error can be found in terms of the
condition of Z,

K(A) = 14114711,

where 4] is the spectral norm of the operator. These bounds are useful for deter-
mining stopping criteria for the algorithm. If we let e; be the error of system (2.1)
and 'E;. be the error of system (2.4) after i steps of iteration (2.5), then the relative
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error of system (2.4) is bounded by

I'e; ! ~ Il ~ (r, h,) \1/2
(2.6) — < K(A) —=~ = K(A) e W)
lyll bl (M b, b)
and the relative error of system (2.1) is bounded by
lle, I I'e; | ~ (r;, h) \1/2
(27) _;< K 1/2 __’_< K 1/2KA [y i S .
] < KO0 T < RO PR (2

Since M is constructed it will be possible to estimate K(M); see Section 4. An
estimate of K(Z) may also be computed by exploiting the relationship between the
Lanczos algorithm and the conjugate gradient algorithm; cf. Concus, Golub, and
O’Leary [2], Manteuffel [16]. Numerical experience has shown that good estimates
of the largest eigenvalue are achieved after a very few steps, but estimates of the small-
est eigenvalue have poor relative accuracy until the algorithm converges. This is due
to the fact that the algorithm minimizes the error in the A-norm (Z-norm) which neg-
lects the smaller eigenvalues. The A-norm can be considered to be a weighted norm,
where error in the direction of an eigenvector of A is weighted by the corresponding
eigenvalue. Because of the larger weights, error in the direction of the eigenvectors
associated with large eigenvalues is suppressed first. This is borne out in experimental
results by comparing the I,-norm of the error with the A-norm of the error (see Sec-
tion 6).

3. Incomplete Factorization. If 4 is positive definite, a triangular decomposi-
tion of A4 yields

(3.1) A=LAU,  A=diaglp,,...,08): 0;>0,

where L and U are unit lower and unit upper triangular. Incomplete factorization is
a method by which the positive definite matrix A is split into 4 = M — R, where

(3.2) M=L3U, 2 = diag(o,, ..., 0,)

and L and U are unit lower and unit upper triangular. If 4 is symmetric, then C =
L% yields M = CCT, which is known as incomplete Cholesky factorization.

The incomplete Cholesky factorization was first described by Varga [25] as a
method of constructing a regular splitting of certain finite difference operators. Mei-
jerink and van der Vorst [17] showed how it could be applied to M-matrices with
arbitrary zero-structure, and that L and U could be constructed to have a predeter-
mined zero-structure. Given G, a set of ordered pairs of integers (i, /), 1 <i,j <N,
we construct L and U so that l:.f #0(>)),u; 0@ <j)onlyif ¢ /) €G. We will
refer to G as the nonzero set of the factorization.

Once G has been chosen the factorization (3.2) is defined recursively by

-1
(33) 0; =a;~ kZ Lty iOgs
=1
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and forj=i+1,...,N,
'il -
~ a.. — la -0, (]’ l')EG’
(3.4) oilji {7 Pt Tk*ki%
0, (D¢ G,
i—l 7 ~ . o
(3.5) ol = G~ kZl L0, G ) EG,
iy =

0, GNHEG

If we write M = LU = 4 + R, we see we have the exact factorization of the matrix
A + R. A quick calculation shows that 4 and M match on the diagonal and the non-
zero set G.

Suppose that the nonzero set G includes the nonzero set of A. Then M and A
match at each nonzero of A. The graph of M looks like the graph of A with a few
more edges. For each edge common to both the graph of 4 and the graph of M the
corresponding matrix elements match. If the matrix A4 is the result of the discretiza-
tion of a physical problem, then the graph of A often represents the physical domain
(see Figures 6.1 and 6.2). It is instructive to view M as an approximation of 4 with
more connectivity. It is the magnitude as well as the location of these extra edges
that determine the usefulness of M as an approximation.

When implementing this procedure the elements of L and U are computed only
if they are not to be set to zero later. Thus, the entire computation of L U and T
can be carried out in the storage space that L and U will eventually occupy. The diag-
onal matrix ¥ can be stored over the unit diagonal of L. If 4 is symmetric, then L
= UT and only L need be stored.

The decomposition defined in (3.3)—(3.5) will be stable as long as o; # 0 at
each step. In addition, we would like o; > 0, ¥i. Otherwise, M~ A4 would be indefi-
nite. In general, indefinite systems are much harder to solve using iterative techniques
than definite systems. If 4 is symmetric and the GCG iteration is to be used to accel-
erate the splitting, then the iteration as defined in Section 2 may break down unless
M is positive definite. We make the following definition.

Definition. The incomplete factorization of the matrix 4 using nonzero set G
is said to be positive if

(3.6) 6;>0, i=1,...,N

Meijerink and van der Vorst [17] (see also [6], [26]) showed that if 4 is an
M-matrix, then the incomplete - factorization using any nonzero set will be at least as
positive as complete factorization. Their method of proof involves showing that the
class of M-matrices is invariant to setting off-diagonal terms to zero. The result that
the class is also invariant under one step of triangular decomposition completes the
proof. We can expand their result to H-matrices.

LEMMA 3.1. Let A = (a;) be an M-matrix. If A} = (a,(j")) is the submatrix
remaining after k — 1 steps of triangular factorization and A, = (fz,(]-")) is the submatrix
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remaining after k — 1 steps of incomplete factorization with any nonzero set G, then
3.7 0<dP <ad), i=k, ..., N,
dP) <a) <0, j=k,...,Nj#i
Proof. The proof follows from the proofs leading up to [17, Theorem 3.2]. O
COROLLARY 3.2. If the complete factorization of the M-matrix A yields
A = LAU, A = diag(p,, . . ., Ppy)s

and the incomplete factorization with some nonzero set G yields

A=£El}—R, 2 = diag(oy, . . ., o),
then
0<p;<0; i=1, , N,
(3.8) i < i <0,

R j=i+1,...,N
u.<u,; <0,

Proof. The proof follows from the lemma above since
pi=ay, o =12,

and

S S Lo
i = oD 4Gy (z)al

i = ;(17)5}; iy = ;(lsa('>. o
ll
If A is an M-matrix, then not only do we have positivity for any nonzero set G,
but the pivots of the incomplete factorization are larger than those of the complete
factorization. We can use this result to show that the pivots will be positive for an

H-matrix as well.

COROLLARY 33. IfA= (a,-j) is an H-matrix with positive diagonal elements
and A = (a” sy = ay, 4; = laijl is the associated M-matrix, then incomplete factori-
zation with any nonzero set G will yield

A=LZU-R, z = diag(o,, . . ., Oy)s

3.9) X
A=LZU-R, z = diag(0,, . . ., Op)s
with 0< 6, <a,i=1,...,N,
I, <-l,1 <o,
(3.10) AJt j=i+1,....N
u; <= lu;l <0,

Proof. The proof follows from induction on the equations (3.3)—(3.5). O
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Thus, the incomplete factorization of a positive definite H-matrix with any non-
zero set will be positive. Note that a diagonally dominant matrix is an H-matrix.

The pivots produced by the incomplete factorization of an H-matrix A are larger
than the pivots produced by the incomplete factorization of the associated M-matrix
A using the same nonzero set. However, they are not necessarily larger than the
pivots produced by complete factorization of 4. Consider the H-matrix

4 1 0 -1
1 4 1 0
01 4 1
-1 01 4
Complete decomposition will yield
_ 196
Pg = 5_6 .

Incomplete decomposition with nonzero set

(1,2), (1,4), (2,3), (34)
@0, 4,1), (3,2), @3)\
will yield
195
04 = 3¢
If the nonzero set is large enough, then incomplete factorization becomes

complete factorization and the splitting has perfect condition. For M-matrices it can
be shown that the improvement in condition is essentially monotone with respect to
the nonzero set.

CorOLLARY 34. If G, CG, are two nonzero sets which yield incomplete
Jactorizations of the M-matrix A,

A A A

A=LTU-R, I =diag®,,..., 0oy

A=L3U-R, Z = diag(o,, . .., oy),
respectively, then
0<0;<0;, i=1, , N,
(3.11) -
lﬁ < <0, o
R j=i+1,... N
U Suy <0,

Proof. The proof is analogous to the proof Lemma 3.1 and Corollary 3.2 where
incomplete factorization with nonzero set G, is substituted for complete factorization.
O

Note that we may write the unit triangular matrices as
L=1-T, U=1-7,

where T and V are strictly triangular. We have

GIRYL'=+T+T*+---+TVY, Ul=@+V+V2+---+pNY
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Consider the complete factorization of an M-matrix 4 and the incomplete factoriza-
tions with nonzero sets G, C G, denoted as

A=(I-DAI-V),
(3.13) A=M,-R,=(I-Ty)Z,I-V,)—R,,
A=M -R =(I-T)Z,(I-V,)—R,.
If 4 is an M-matrix, Egs. (3.8) and (3.11) yield
(3.14) O0<A<Z, <X, OS<T,<T,<T, O<V,<V,<VW
In light of (3.12) we see that
(3.15) ATV =Mt =Mt >o.

As we increase the nonzero set, M~ ! moves term by term closer to 4™1. This would
lead one to suspect that the condition of the splitting with M, is better than the con-
dition of the splitting with M,. This can be shown for M-matrices up to a factor of
2. First, we will need the following result due to Perron and Frobenius; see Varga
[26, pp. 30, 47].

THEOREM 3.5. Let A = 0 term by term. Then, there is a positive (real) eigen-
value of A equal to the spectral radius of A. Further, if 0 < |Bl < A, then the spec-
tral radius of A is greater than or equal to the spectral radius of B.

We have the following result:

THEOREM 3.6. Let G, C G, be two nonzero sets that yield incomplete factori-
zations on the M-matrix A as in (3.13). Let u; be the eigenvalue of smallest modulus
of A; =M;'A fori=1,2. Then

(3.16) ‘ 0 <y <y
and if A is symmetric,
1 ~ 2-
3.17 =< KA)<—, i=1,2.
(317) p <K <—

Proof. The second result follows from the fact that the incomplete factoriza-
tion of an M-matrix with any nonzero set yields a regular splitting; see Meijerink and
van der Vorst [17, p. 151] and Varga [26, p. 87]. To see the first result, let

W, =21 - v)TA~ (1 - T)z}H?.
We have that Zl—l = A7'M; is similar to W,. Now
W, =2 - v)Ta - vy TA\q - 1 'a - T)z}?
=P -+ -V)Ia-VWWTA I -T7 (- D+ (T - T)HZ}?
=S+ A- vy V- V) ATN A+ A - T (T - T))ZH2.
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From (3.14) each term in the above representation of W, is positive and yields
W, =W, =0.

Since incomplete factorization yields a regular splitting, the spectral radius of /7 — Zi
is less than 1 for i = 1, 2. The eigenvalues of ;1; and thus W, have positive real part
for i =1, 2. By the Perron-Frobenius theorem, W; has a positive eigenvalue, say w;,
equal to its spectral radius and further w, < w;. Thus,

1 1
O<m = -S<m=_-,
1 2

which completes the proof. [

4. Measure of Positivity. Although many applications yield matrices that are
M-matrices or H-matrices, the application of finite element techniques seldom does.
The above sufficient conditions are very strict, and certainly not necessary. In fact,
it is not even necessary for A to be positive definite for the incomplete factorization
with some nonzero set to yield positive pivots, even through complete factorization
of a symmetric indefinite matrix must yield nonpositive pivots. In general, positivity
depends upon the nonzero set. We know that if A4 is positive definite there is some
nonzero set for which the incomplete factorization is positive. In this section we will
discuss a way to measure how positive a factorization is.

If one of the pivots becomes negative then it is clear that the factorization is
not positive. However, even if all the pivots stay positive it is important that they
not become to small. A small pivot would yield a nearly singular M and thus M !4
would most likely have poor condition. We may ask: How small is too small? We
need a way to compare the size of the pivot to the size of the elements of A.

Consider the positive definite matrix 4 = (aij). Since a; # 0 we can rewrite
the system

Ax =D
as

(.1) Ay=b, A=DAD, Dy=x, b=Db,

where D. = diag(: - - ai"i’/2 - - +) is a diagonal scaling matrix. Here A has unit diagonal.

If we perform an incomplete factorization on A4 to get pivots £ = diag(o, . . ., oy),
then it is easy to see that 0, = 1,0, <1,i=2,..., N Hence,

(42) $ = 1/min (g,)

yields a good measure of the positivity. We next show that the ICCG procedure is
invariant to diagonal scaling. We use the following easy result.

TIt is shown in Forsythe and Straus [7] that this is the best scaling in terms of K(4) if 4
has ‘property-A’.
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LEMMA 4.1. Let A = PAQ where P and Q are nonsingular diagonal matrices.
If an incomplete factorization on A with nonzero set G is positive and yields

A=M-R=L3IU-R,

then an incomplete factorization on A with nonzero set G will yield

where
L=PLP ', U=0'LTg, ¥ =P20 R =PRO.
Thus, M~ A is similar to M~ 14 since
M'A = (PMQ)"1(PAQ) = 0" 'M 1 4Q.

Since the convergence of the GCG iteration is dependent upon the entire spec-
trum of M~'A4, the ICCG procedure is invariant to diagonal scaling. Thus, we may
scale the system before factoring and use S as a measure of positivity. Notice also
that

(4.3) S = 1/min(o;) < K(M).

The measure of positivity can be used to approximate K(M) in the bound (2.7).

Let us assume that 4 has been diagonally scaled as in (4.1). If we knew the
spectrum of M~'A4, we could predict the convergence of the GCG iteration. Unfortu-
nately, this information is computationally unavailable at the time of the splitting.

In fact, even K(4) may not be known accurately. We do know that for the optimal
splitting, the complete factorization, we have M™! = 4™, K(M) = K(4). 1t is also
clear that the condition of M should not be allowed to be significantly larger than the
condition of 4. If an estimate of K(A) is available, then a reasonable computational
strategy is to accept the factorization only if

4.4) S < K(A).

This bound has worked well in practice. In fact, in the examples to be described later
the factorizations which performed best corresponded to values of S many orders of
magnitude smaller than K(A4).

5. Shifted Incomplete Cholesky Factorization. In the remainder of this paper we
will be concerned with symmetric positive definite systems. We will assume that the
nonzero set is symmetric also; that is, (i, /) € G implies (j, i) € G. The most conve-
nient nonzero set in terms of storage and handling is the nonzero set of A. There are
many examples of symmetric positive definite matrices for which incomplete factori-
zation with this nonzero set is not positive. We can still apply this method by per-
forming an incomplete factorization on a matrix that is close to 4. One way to do
this is to make 4 more nearly diagonally dominant. Suppose we write

A=D-B,
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where D is the diagonal of 4 and B is the off-diagonal. Clearly, there is some value
of « such that the matrix

(5.1) (1 +aD-B

is diagonally dominant. Incomplete factorization of this shifted matrix will be posi-
tive. Although diagonal dominance is sufficient, it is not in general necessary and an
incomplete factorization may be positive for much smaller values of a. This motivates
the following splitting of A4.

Consider the pencil of matrices

(5.2) A(@) =D - B

1+a

Suppose that incomplete factorization of A(«) with nonzero set G yields
(5.3) A(o) = LTLT — R(0) = M(c)) — R(w);

(here L, ¥ depend upon « also) then, we may write

1 «
A=D-B=D-1 7 B-13,8
(5.4)
= M(c) - <R(a) + 1%& B> = M(0)) — N().

For each o for which the incomplete factorization is positive, we have a splitting of
A. With a = 0 the splitting is the incomplete factorization with nonzero set G.
Consider the difference between 4 and M(e). For a = 0, M(«) matches A on the
diagonal and on the nonzero set G; that is, if (i, j) € G, then a; =m For a > 0,
some of the error is shifted onto the off-diagonal terms of M.
In incomplete Cholesky factorization, just as in complete Cholesky factorization,

i

the factors L and 2 are rational functions of the elements of 4(a). Since for all «
sufficiently large A(a) is diagonally dominant and thus the incomplete factorization
is positive, we have
(5.5) lim M(a) = D, lim N(a) = B, lim R(ax) = 0.
Q—> a—> o o—>
If the nonzero set G includes the nonzero set of A, then the limit in (5.5) is
quickly achieved. A straightforward calculation (which we omit) yields

(5.6) 6 —a,——— 3 Zk (1
R B kz<:,- Oyx 1+ a)?

aj; 1 1 a;.a; 1
G.7) b = L - "L+ 3>,
(I+®a; (1+a)? a46<i Gy a +a)

1 A a; 1
(5.8) T = > > 27X+ 0 3>
(1 + @) k<i 1+ a
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Thus, as « increases the terms in NV(a) quickly approach B. From (5.4) and (5.8)
we can write

Ne) = —— B + 0 ——
(a)_l‘l'a <(1 +a)2>,

so that
a 1
D—-B=Mo)-——B+0(——],
l+a (1 +a)?
or
(5.9) M(e) =D ! B+0 :
. a) = - .
1+a (1 + a)?

The generalized conjugate gradient algorithm is sensitive to the spectrum of
M Y (w)A. Suppose we write

M) ="' +E).

A simple calculation shows that

1 1
E= DBD! + 0 ———],
l1+a (1 + a)?

so that

1 — —1 ! —1 —1 1 — —
M‘(a)A—<D t o DTIBD +0<(1+a)2>>(0 B)
(5.10)

(1+ a)2> '

In the limit this is equivalent to a Jacobi splitting. From Section 2 we see that the
generalized conjugate gradient algorithm on the Jacobi splitting is equivalent to the
conjugate gradient algbrithm on the diagonally scaled system (4.1). Let the eigen-
values of —D™ !B be given by n; Sn, < - <ny and the eigenvalues of MY (o)4
be given by 0 < u; <u, <-:-<py. Then for large @ we have

1
=I-D'B+ Tra (D7'B-(D7'B)?) + 0<
«

1
(5.11) w1 +"7i_l_+;(77i +17?)~
If we differentiate the right-hand side with respect to a we have
TR
(.12) alN (m; + n}).
o (1+ a)?

If n; > 0, then in the limit u; is increasing to 1 + m; or u; < 1 + n; for sufficiently

large a. If m; <0, then, because I — D B is positive definite, we must have —1 <

m; < 0. Thus, y; is decreasing to 1 + Mg or w; > 1 + n; for sufficiently large . We
formalize this discussion with the following theorem. First, let

(5.13) A(@) = M2()AM V2 (@)
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and
(5.14) A= lim A(e) =D 24D71/?,
Q—>
THEOREM 5.1. Suppose the nonzero set G includes the nonzero set of A. If
1 . . . ~ . .
D™ "B is indefinite, then there exists o, > 0 such that for a > «,,, K(A()) is strictly
increasing and

(5.15) K(A(c)) < K(A).

Moreover, if u() is an eigenvalue of Z(a) and u; is the corresponding eigenvalue of
A, then for u; > 1 and o sufficiently large, u o) is strictly increasing and

(5.16) 1 < po) <y,
and for u; < 1 and o sufficiently large, u, o) is strictly decreasing and
(5.17) My < p() S 1

Proof. The result is clear from the discussion above. A more rigorous argument
can be made from the fact that (5.10) is actually a matrix each of whose elements is
a rational function in 1/(1 + «). Thus, there is an «,, large enough so that for a >
a,, both sides of (5.12) have the same sign. If o, <a; < a,, then the splitting
Z(al) will perform better for any initial error than the splitting X(az) when acceler-
ated by conjugate gradients because of the eigenvalue structure defined by (5.11),
(5.16), and (5.17) (see Greenbaum [8]). D

For large a, K(A(a)) is majorized by K(A) It is also clear that if o were allowed
to decrease without bound there would be some « for which M(a) has a zero pivot.
Let o; be the first such « as a decreases from «,,. We have

lim K(A(¢)) = +o,
a—ag+
because M~ !(a) becomes unbounded. We would like to find « that satisfies
min  K(4(®)),

<asay

(5.18)

or more specifically, find the o for which the convergence properties of Z(a) are
best. The relationship between o and K(X(a)) is not clear, but experimental results
seem to indicate that it is roughly a unimodal function on the interval (o, e,,). It is
not difficult to approximate o; by trial and error in that the factorization will not be
positive for & < o; and the measure of positivity proposed in (4.3) will be large for a
near o;. In the test problems the best a in terms of convergence was very close to a;.
The minimum of K(Z(a)) occurred at a larger value of o and was fairly insensitive to
overestimation. In short, a good guess was good enough. More will be said about the
choice of « in the next section.

We can combine the results of Section 3 with the above discussion to show that, up
to a factor of 2, the best value of « for a Stieltjes matrix is « < 0. Observe that a; <
0 for a Stieltjes matrix because the factorization is positive for « = 0. If 4 is not
Stieltjes but is diagonally dominant, the best value of & may be nonzero.
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THEOREM 52. Let A = (I — T)A(I — T)T be a Stieltjes matrix. Suppose a shifted
incomplete Cholesky factorization with nonzero set G yields

A= - T@)Z(@){ — T(e))T - <R(a) T B>.
1+«

If oy <a; <a, <o, then
(5.19) 0 < R(ay) < R(a).

If in addition 0 < a; < «,, then

(5.20) 0 <A< Z(a)) < Z(ay),
(5.21) 0<T(a,) <T(e;)<T,
(5.22) AT M) =M (ey) >0

Moreover, if u,(a) is the smallest eigenvalue of Z(a), then u,(a) is maximized over
the interval [0, =) at a = 0 and

~ 2= py(o)
< KA@) s —.
My () uy ()
Proof. Let A®) = (a,(]-k)), A(k)(a) = (al(].k)(a)) be the submatrix remaining after
k — 1 steps of complete factorization on 4 and shifted incomplete factorization with
nonzero set G on A(e) =D — (1/(1 + @))B, respectively. If a; < a,, then as in (3.7)
we have
0<aP(e)) < a(1>(a2) i=1,...,N,

5.23
( ) a(l)(al) a( )(012) j=1,...,Nj#i

If in addition 0 < a; < @,, then we have

(5.24) 0<aP <aP)<aP(,), i=1,...,N,

a) <a(P(a)) <a{e,) <0, j=1,...,Nj#i

The induction proof of Lemma 3.1 follows through intact. We may replace the
superscript (1) by (k) in (5.23) and (5.24). Now

@, GHEG
5@ = .
0! (l’ ]) e G’

which yields (5.19). For 0 < a; < a,, the proof of (5.20), (5.21), and (5.22) is
equivalent to the chain of proofs leading up to (3.14).

To see that u, (@) has a maximum at a = 0, consider &« > 0. Then, as in Theo-
rem 3.6, we have that 4~ !(a) is similar to

B + T =~ T7HT = T@)T AT + (- T (T~ T@)E2(@).

By the Perron-Frobenius Theorem 3.5, the spectral radius of Z_l(a) is monotonically
increasing in a.
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The last statement of the theorem follows from the fact that the shifted incom-
plete factorization of a Stieltjes matrix yields a regular splitting for any « = 0. O

6. Numerical Results.

(a) Motivation. As was mentioned in the introduction, this work was motivated
by a three-dimensional model of the structural deformation of a cylinder with varying
thickness and holes (see Figure 6.1). Assuming linear deformation and using isopara-
metric 20-node brick finite elements, the model required the solution of a positive de-
finite linear system with approximately 18,000 unknowns, a half-bandwidth of 1,300
and 1,040,000 nonzero elements in the upper triangular part. The number of un-
knowns varied slightly according to the boundary conditions imposed. The condition
of the matrix was estimated to be on the order of 108.

=

0 : / )
\ —
=

FIGURE 6.1
Motivating problem: Cylinder

A direct solution to this system was sought but never achieved, due to the large
amount of storage required for the upper triangular band (23,000,000) and problems
with the computer system. It was estimated from partial runs to require 9,000 CP
seconds on the CDC-7600 at Sandia Laboratories in Albuquerque, or 50,000—70,000
CP seconds on the CDC-6600 at Sandia Laboratories in Livermore.

Conjugate gradients with diagonal scaling, that is, acceleration of the Jacobi split-
ting, was only moderately successful. This implementation required 2,000,000 words
of storage for the matrix. A series of runs were made in which the algorithm was re-
started at each run using the solution from the previous run as an initial guess. (It is
well known that restarting, rather than resuming the iteration will slow convergence.)
Some of the runs were made on the CDC-7600 and some on the CDC-6600. The [,-
norm of the residual was reduced by a factor of 107% after a total of about 4,000
iterations which is estimated to cost 7,000 CP seconds on the CDC-7600 or 40,000—
45,000 CP seconds on the CDC-6600 (see Table 6.1).
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The shifted incomplete Cholesky factorization was more successful. It required
3,000,000 words of storage. Using nonzero set G equal to the nonzero set of A, the
factorization required 700 CP seconds on the CDC-6600. The problem was solved for
several sets of boundary conditions on the CDC-6600. Using ad hoc values of a rang-
ing from .05 to .10, an acceptable solution was achieved after approximately 200 iter-
ations or 6,000 CP seconds. A solution of much higher resolution was achieved in
approximately 700 iterations or 20,000 CP seconds (see Table 6.1).

TABLE 6.1
Error
Time (6600) Reduction Storage
DIRECT 50,000-70,000 - 23,000,000
CG 40,000—45,000 107¢ 2,000,000
SICCG 6,000—10,000 1073 3,000,000
20,000—-25,000 10-10

It is clear that the savings in both time and storage were significant. Also notice
that the time required to perform the factorization was small compared to the overall
effort. In such a problem it is feasible to spend time searching for a good value of the
parameter a.

(b) Test Problem. The SICCG procedure was tested extensively on much smaller
problems—where the advantage over direct methods is no longer clear. The algorithm
behaved similarly in each case. The remainder of. this section will be devoted to ex-
ploring in depth the results from one test problem.

FIGURE 6.2

Test problem: Tapered slab

The test problem was a three-dimensional model of structural deformation in a
tapered slab (see Figure 6.2). Again linear deformation was assumed and isoparametric
20-node brick finite elements were used. The boundary conditions corresponded to
pressing the thin edge against a wall like a wedge. This gave a system with 3090 un-
knowns, a half-bandwidth of 286 and 170,000 nonzeros in the upper triangular part.
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The matrix was scaled symmetrically to have unit diagonal as in (4.1). The condition
of the system was estimated to be on the order of 10% 8.
With known solution, the following norms can be easily constructed as the iter-

ation proceeds.

1. (e, e}
2. (Me,e)= ||e||]f,l M-norm of error,

I€1>  1,-norm of error of system (2.4),
||e||f1 A-norm of error,

Irl?  1,-norm of residual,

llel?  1,-norm of error,

3. (de,e)
4, Ar, 1)

= IIeIIjz A?-norm of error,
5. {r,h) =(T,T} I,-norm of residual of system (2.4),
= | ’(?IIJ%,2 A?-norm of error of system (2.4).

Recall from Section 2 that llell , = I €ll;.

Figure 6.3 demonstrates the behavior of the log of the relative error in each of
the above norms for the test problem with & = .005 using graph-set G equal to the
graph-set of A. Time is measured in CP seconds on the CDC-6600. The initial plateau
represents the time required for the factorization.

LOG (RELATIVE ERROR)
&
| SN B S S BN N R e R

T T

rl U S WD WA UNNN WA SR SN SR NN GNN G SN SN U N SN SN G S e
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
TIME

FIGURE 6.3

Relative error in 5 norms

Figure 6.3 demonstrates several points of interest. The error appears to fall off
of a cliff when the algorithm finally converges. This behavior is more pronounced
when « is near its optimal value. This may be due to bunching of the eigenvalues of
M4 so that the minimal polynomial of M~1A4 can be approximated at its roots by
a polynomial of much smaller degree. Such behavior was demonstrated by D. Ker-
shaw [13] for certain M-matrices.

Notice that the two norms that can be computed without knowledge of the so-
lution, namely the residuals, oscillate whereas the other three decrease monotonically.
The A-norm will decrease monotonically because the algorithm is optimal with respect
to this norm, as will the M-norm (Hestenes and Stiefel [9, p. 416]). Also, notice
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that the residual errors actually increase just before the cliff. A user unaware of this
characteristic might tend to abandon the iteration on the brink of convergence.

Notice that the I,-norms llell and II'€l lag behind the other norms. This is
again due to the fact that the method minimizes the A-norm of the error. The A4-
norm can be considered to be a weighted norm, where the error in the direction of
an eigenvector is weighted by the corresponding eigenvalue. Because of the larger

weights, the error in the direction of eigenvectors associated with large eigenvalues is
suppressed first.

FIGURE 64

Convergence surface: Error versus time versus o
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FIGURE 6.5

Iterations to convergence
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The ,-norm of the error is frequently the norm of greatest interest among
those measured. It was decided to use this norm to measure error. The cliff gives

491

an easy criteria for convergence. As a was varied, the time required to reach the cliff
varied. Figure 6.4 shows a three-dimensional surface representing the log of the rela-
tive error in the /,-norm versus CP time on the 6600 for different values of & using
nonzero set G equal to the nonzero set of 4. Figure 6.5 gives a “top view” of this
surface by comparing the number of iterations required to reach the cliff for various
values of a. It was found experimentally that the factorization was not positive for
o < .0036 and that convergence was fastest for &, = .0055. Notice that for a = .05,
an order of magnitude larger, convergence still occurred within a reasonable number

of iterations.

Near «,, the factorization was very positive. Table 6.2 shows the measure of
positivity, S, for various values of . Even a = .0036 gave a surprisingly small S.

TABLE 6.2
« Anax S
0036 36.0 146.7
.004 14.0 372
0045 8.95 26.2
.005 6.62 22.0
o, =  .0055 5.29 20.6
.006 442 19.5
.007 3.37 17.8
010 2.21 154
011 1.92 149
.012 1.77 144
a, = 015 1.51 13.1
.020 140 11.5
.050 1.34 7.24
.10 1.30 4.64
1.6 2.03 1.21
9.0 3.90 1.02
100 5.50 1.00019
o 5.78 1.0
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(c) Choosing a. Figure 6.6 shows a superposition of the graph of the iterations
versus « of Figure 6.5 with a graph of K(Z(a)) versus . Notice that the minimum
of K(Z(a)) does not correspond exactly with the value of a that produced convergence
in the fewest number of iterations. This pattern was repeated in other test problems.
This may be due to a bunching of eigenvalues of K(Z(a)) that occurs near the optimal

value of a.
400 7.5
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320

ITERATIONS
2801

ITERATIONS

240

CONDITION

1
3
o
LOG (CONDITION)

160

L | i 1 1 1 1 1 1 i1 1 1 1 1 1 1 1 1 1 1 5.5
0 .005 010 015 020 .025 .030 .035 .040 045 .050  .055
ALPHA
FIGURE 6.6

Iterations to convergence and condition

Figure 6.6 shows that in the absence of prior knowledge of ,, the value «,
that mlmmlzes K(A(a)) will still yield acceptable results. Unfortunately, good esti-
mates of K(A(a)) are only available after convergence occurs. Figure 6.7 shows a
superposition of the graph of the log of the relative /,-norm of the error and the log
of the estimated condition versus iterations for & = .005. The condition is estimated
by the procedure described in Section 2. Notice that the estimated condition is in-
creasing until after convergence.

CONDITION

»
T T T T T 1T

ERROR

LOG (RELATIVE ERROR)
LOG (CONDITION ESTIMATE)

ES
T T T 1T T 177
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20 40 60 80 100 120 140 160 180 200 220 240 260

(=]

ITERATIONS

FIGURE 6.7

Condition estimate and relative error
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However, a good estimate of the largest eigenvalue of Z(a) is available after only
a few steps. In each test the estimate of the largest eigenvalue was accurate to 2
places after only 10 steps of the iteration. Figure 6.8 shows a graph of the largest
eigenvalue of Z(a) versus «. The same data is presented in Table 6.2. As « goes to

infinity, the largest eigenvalue approaches the largest eigenvalue of the Jacobi splitting
of A.

351

30

251

)‘max

20}

ALPHA

FIGURE 6.8

Largest eigenvalue of splitting
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FiGURE 69
Comparison of splittings with G(1) and G(2)

Notice that a, yields a largest eigenvalue, A ,, = 5.29, which is on the
same order of magnitude as the largest eigenvalue of the Jacobi splitting, A, ., =
5.78. On the other hand, a, yields a largest eigenvalue A, = 1.51. In the
absence of mathematical analysis to better explain the choice of a, the parameter
was manipulated so as to yield a largest eigenvalue of Z(a) between 2 and the
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largest eigenvalue of the associated Jacobi splitting. The largest eigenvalue was com-
puted by performing the factorization, then iterating for ten steps and finding an esti-
mate of the largest eigenvalue as described in Section 2. This procedure gave good
results on a variety of test problems.

(d) Extended Nonzero Set. Using nonzero set G equal to the nonzero set of 4
may be thought of as allowing fill-in in location (i, j) of L whenever unknown i and
unknown j are neighbors in the graph of 4. Suppose we extend this association and
allow fillin in location (i, j) of L whenever unknown i and unknown j have a common
neighbor in the graph of A. Not all such locations will actually fill in. We need only
have (i, j) € G whenever there exists k <j < i such that (i, k) and (j, k) are in the
nonzero set of 4.

TABLE 6.3
ALPHA STEPS CONDITION Amax
.0005 82 361+ 7 519
.00051 80 184 +7 26.3
a, = .0006 78 407 + 6 5.64
.0007 79 259 +6 346
.0010 82 167 +6 2.04
a, = .0015 91 148 + 6 1.55
.0020 98 A52+ 6 1.39
.0030 111 175+ 6 1.28

We will refer to the nonzero set of 4 as G(1) and this first level of extension as
G(2).Tt Clearly, the nonzero set may be extended any number of levels until all pos-
sible fill-in is accounted for. With increasing levels it is assumed that M~ () more
closely approximates A~! and thus fewer iterations are required. However, more work
and storage is required for a factorization with a higher level of extension and each
iteration requires more work. The optimal level of extension will depend upon the
problem as well as the computer to be used. In the work of Meijerink and van der
Vorst [17] the first level of extension was an improvement, while in the work of
Kershaw [13] it was not an improvement in terms of total work. For the test prob-
lem above the first level extension was an improvement. Figure 6.9 shows a compari-
son of the log of the /,-norm of the relative error using nonzero sets G(1), « = .005,
and G(1), a = .0015 versus CP time. Notice that the plateau representing the factori-
zation is much larger for G(2) but the total time is significantly less. Figure 6.10

T+ This corresponds to ICCG(3) in Meijerink and van der Vorst [17] and Kershaw [13].
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shows the iterations to convergence and the condition of Z(a) for various values of
a. The largest eigenvalue is given in Table 6.3. In this example, the best value of «

gave a largest eigenvalue close to the largest eigenvalue of the Jacobi splitting.

In general, one can expect the smallest a for which factorization is positive to
be smaller for a higher level of extension. This is not strictly true. In one test prob-
lem the factorization with G(1) was positive for @ = 0 while the factorization with
G(2) was not.
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(e) Comparison to Other Methods. In order to compare this method with other
iterative methods, the test problem was run using straight conjugate gradients of the
scaled matrix (CG) and a Tchebychev acceleration of the shifted incomplete Cholesky
factorization (SICTCH) with dynamic estimation of parameters (Manteuffel [15]).
Figure 6.11 shows the results. This figure takes into account the differences in time
required to perform the various iterations.

7. Conclusion. The shifted incomplete factorization provides a method for
splitting any symmetric positive definite matrix and accelerating by a conjugate gradi-
ent iteration. We have seen in Section 5 that this splitting is at least as good as the
Jacobi splitting.

The SIC splitting has an advantage over the SIP splitting (Stone [24]) in that
the matrix need not be a 5-point difference matrix. It has an advantage over the
SSOR splitting (Axelsson [1]) in that one can extend the graph-set to higher levels
and bring a more accurate approximate inverse into play. In fact, one can readily
move from the extreme of no splitting to the extreme of complete factorization with
iterative refinement by adjusting the graph-set.

The results on the motivating problem showed that significant savings in both
work and storage can be realized over direct methods on large problems. This savings
should increase for even larger problems. The results also showed that with nonzero
set G(1) or G(2) the factorization was inexpensive compared to the total solution
time. Thus, a trial and error approach for finding an acceptable value of « as described
in Section 6 is feasible. Hopefully, further analysis will reveal an a priori estimate of
a,, for certain classes of matrices.
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