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A Stable Quotient-Difference Algorithm

By A. N. Stokes

Abstract. This paper shows how the arithmetic of the quotient-difference algorithm
can be performed using the forward and backward difference tables of each column.
This removes the tendency of the algorithm to amplify errors. As an application, 70
continued fraction coefficients are calculated for the modified Bessel function Ko(2)
in single-precision arithmetic. There is no significant build-up of error.

Introduction. A quotient-difference algorithm is formed in the following way
[2]. Two columns of numbers eé”) and qf") are given. The table is continued using
the relations

elgn) _ e]gr‘t_-!l-l) — q£n+l) _ qlgn), qlgr-’i-)lelgn) — elgn+l)q,£n+l)’

possibly with some boundary relations. Stability problems arise because of the forma-
tion of differences in the g-columns. The instability cannot be removed by rearranging
the procedure; it can be shown that elements of the later columns do depend on higher-
order differences of the columns used earlier.

Some methods of overcoming instability are described in [1]. They are referred
to in the example below; none are very successful.

The present approach overcomes the problem by doing the calculations with
higher-order differences. Each column is stored as a set of differences, and the set of
differences characterizing a new column is formed from earlier differences in such a
way that accuracy is not lost.

It is necessary that the differences of the initial columns should be accurate, so
they cannot be formed simply by subtraction. If the initial columns are given by an
analytic relation, the higher-order differences can probably be derived from this too.

The stabilized algorithm is useful for calculating continued fraction coefficients.
Its usefulness is extended by the demonstration in [3] that the g-d algorithm can be
used to produce continued fractions approximating series expansions for a function
about two different points. Such fractions can be used as global approximations in
the region between the points.

Difference Arithmetic. Consider two sets of numbers a = {a;;i =0, ..., n} and
b={b;i=0,...,n}. The following operations on such sets are defined:

atb={e;+b;i=0,...,n},
a®b=1{ab;i=0,...,n},
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AW@)={a;,, —a3i=0,...,n— 1},
L(@) = {a;i=1,...,n}.

The symbol A¥(a) represents the result of k applications of the operator A, where
k<n. Then A¥(@) = {Ak(a)ym=0,...,n-k}.

The array A (a) is called the difference table of the set a. Then the difference
tables of the results of the above operations can be formed:

Ak(@+b)=AF @+ ak®B), m=0,...,n—-k;k=0,...,n

A¥ (L(@) = AF | (@), m=0,...,.n—-k—-1;k=0,...,n-1,
Ak (Aa) = Ak Y (), m=0,...,n—-k—1;k=0,...,n—1,

while for multiplication the following analogue of Leibniz’s rule applies [4]:
Ak (@ ® b) = Z (k>Am+k_](a)Ak"’(b) m=0,...,n-k;k=0,....n

The Algorithm. Suppose the columns e((,k), k=1,...,N, and qfk), k=
0, ..., NV, together with their difference tables, are given to the required accuracy,
where N is even, for convenience. Suppose the relations mentioned previously are to
be used without boundary conditions to form a gq-d table, so

(1) P =ef 4 gkt — g j=1  N2,k=0,... ,N+1-2j

and
@) afr e =gkt DD =1, N2,k=0,...,N-2]

Let e; andq represent, respectively, the sequences {e(k) k=0,1,...,N+1-2j}
and {g*); k= 0,1,...,N-2j+2}.
From (1), ¢; = ( ej_1) t Ag;). So

Anm(ej) = A:,n.p.l(ej_l) + A:,n+l(ql'),

(€))
m=0,...,.N+1-2,n=0,...,N+1-2j-m
From (2) q;,., ® ¢; = L(q;) ® L(e)). So
S~ (m
A4, Be) =3 ( )Am+n——/(q]+ VAT e
i=0
(O]

= (m) VA _Aapanie)

form=0,...,N-2j;n=0,...,N-2j—-m
The algorithm uses Egs. (3) and (4) in the following way. Suppose the difference
tables for e;_; and g; are known. Then (3) gives the difference table for e;, without

forming dlfferences of column elements by subtraction. Then Eq. (4) is solved for
AN_2j-m(q) form=0,1,...,N-2j
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Then the full difference table for g;,, can be formed using the relations

(%) Ax:éj—m(qhul) = Aﬁfi?fm(qj+ Dt Az'c——;j—m—l(fIﬁ ",

form=1i,...,N=-2j;i=1,...,N—2j This gives the values qj(f)l = Ag(qi+1),
k=0,...,N-2j

It is possible to avoid storing a full difference table at any time by retaining only
the leading diagonals Aﬁ_zj_m(qj“) and A;G_zj“_m(ej), m=0,1,.... It is nec-
essary to form the required diagonals of the difference table of e; in (4), but this can
be done sequentially, storing only one diagonal at a time.

The procedure uses more arithmetic than the usual way of implementing the q-d
algorithm, but it eliminates the differencing of adjacent elements which makes the q-d
algorithm unstable. There are approximately NV 3/3 additions and N 3/3 multiplications
of differences, and also N3/3 multiplications by binomial factors needed to form a full
q-d table. The normal q-d algorithm uses N'2/2 additions and N?/2 multiplications.

Application to Continued Fractions. To find the first n coefficients a; of the
continued fraction
| a, x| ayx|

1
1 +

| ¥ ¥ e

which corresponds to the power series P =1+ b;x + b2x2 + -+ two initial columns
of a g-d table are formed with e((,i) =0,i=0,...,n— 2, and qfo) =-b,, qfi) =
—b;iy, /b,., i=1,...,n—1. New columns are formed as shown above, and the coef-
ficients are, in sequence, the initial elements of the columns of the g-d table; that is,
a, = qfo), a, = efo), a3 = q§°> etc.

To use the above algorithm as a stable way of finding {a;} requires an accurate
method for forming the leading diagonal of differences of the column ¢; = qfi). Some
methods which may be applicable are:

(i) Ifc; = 1/ + a), then

k!
Ane-1(0) = nta-1) - (m+a+tk-1)

(i) If ¢; = f(i), where f is an analytic function whose circle of convergence
about i = n — 1 strictly includes the point i = 0, then by Taylor series expansion of
each value f(n — 1 —j) about (n — 1),

= Dy - K o
o= R R (Do

All such series converge.

(iii) If ¢; = [ot'f(D)dt, then Ak(c) = [t *(zr — D f(t)ar.

(iv) Any sequence {c;} which can be expressed as a number of sums, products,
and quotients of sequences which can be dealt with by methods (i) to (iii) can have
its differences formed by the processes described earlier.
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Example. Gargantini and Henrici [1] have extensively analyzed the stability
problems in forming the continued fraction corresponding to the asymptotic expan-
sion for large z of the modified Bessel function K,(z). They considered three modi-
fications of the q-d algorithm, but found only one feasible. This, which they called
the incremental form, relied on the similarity between the q-d table for K,(z) and an
explicitly known table. The arithmetic was performed on the differences.

TABLE

Comparison of continued fraction coefficients for K (z)

(1) given by Gargantini and Henrici [1]
(2) obtained using 8-figure precision and the difference-table algorithm
(3) obtained using 15-figure precision and the difference-table algorithm

n 6] (2 3)

10 24175126 24175125 24175126
20 4.9120470 4.9120468 4.9120470
30 7.4094526 7.4094523 7.4094526
40 9.9075635 9.9078297 9.9078301
50 - 12.406680 12.406680
60 — 14.905804 14.905804
70 - 17405103 17.405104

This method is equivalent to using extra precision; it reduces the errors which
arise initially, but does not remove the tendency to amplify them. Consequently, as
the authors found, calculations in double precision were satisfactory for only 20 coef-
ficients, compared with 14 with no modification at all. Using triple precision, they
calculated and tabulated 40 coefficients.

The asymptotic series used is that for

: 2y~ & CD T+ %? 1
* Jrrkat~ £ QIR

n=0 2"n!

The ratios of successive coefficients are

2
(n) — =!2n +1) _ _ )
Cp TCES) n2+1/8n+1), n=0,1,2,....

Then
Alg)=12-1/8n+1n+2), n=012,...,
and for k > 1,

—1)*k!n!
@) = g R T

The algorithm described above was implemented to find the first 70 continued
fraction coefficients. For comparison the work was done on a PDP-11 computer,
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working to about 8 significant figures, and on a Cyber-76, working to about 15 signi-
ficant figures. The results agreed to seven significant figures. They were also consis-

tent with the triple-precision results of Gargantini and Henrici up to the 39th value. A
table of the results is shown.
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