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On the Convergence of an Algorithm Computing
Minimum-Norm Solutions of Ill-Posed Problems

By J. T. Marti

Abstract. The paper studies a finite element algorithm giving approximations to the
minimum-norm solution of ill-posed problems of the form Af = g, where A4 is a
bounded linear operator from one Hilbert space to another. It is shown that the algo-
rithm is norm convergent in the general case and an error bound is derived for the case
where g is in the range of A4*. As an example, the method has been applied to the

problem of evaluating the second derivative f of a function g numerically.

1. Introduction. Let X and Y be real Hilbert spaces and 4 a bounded linear

operator from X into Y. The problem of determining, for given g in the range A(X)
of A, solutions f in X of

(1) Af=¢

is said to be ill-posed if A has no continuous inverse on 4(X). If there are more than
one solutions of (1) one is frequently interested in the solution which has minimum
norm in X, the minimum-norm solution f, of (1). The existence and uniqueness of
fo is a consequence of the well-known result (see e.g. [6, p. 124]) on the existence of
a unique nearest point to the origin of X in every closed convex set in X. Solving (1)
for g not in the closure of the range of A4, in the sense that the solution f has to satis-
fy lAf — gl = min{ |4k — gll: h € X}, is easily seen to be equivalent to the problem
of solving Af = Pg, where P is the orthogonal projection from Y onto the closure
;1_(7') of A(X)in Y. There are numerous examples of problems of the form (1), e.g.
Fredholm integral equations of the first kind, where the mathematical formulation of
a host of applications is leading to such equations (see e.g. [13] or [14]).

Usually, ill-posed problems are extremely difficult to solve numerically. Several
schemes leading to approximate solutions of (1) have been proposed, e.g. the colloca-
tion method (e.g. in [1], [2], [4]) or Tikhonov’s method [3], [10], [11], [12]. But
up to now, little is known on the convergence of both methods in the general case
(e.g. if A4 does not possess an inverse), as on the crucial choice of regularization pa-
rameters occurring in Tikhonov’s method. The reason for the lack of a convergence
proof for the first method lies in the fact that there are still no results available on the
influence of the collocation errors in solving (1) by this method.

Received November 16, 1978.

AMS (MOS) subject classifications (1970). Primary 65R0S5; Secondary 65F20.

Key words and phrases. Ill-posed problem, algorithm, minimum-norm solution, Fredholm
integral equation of the first kind.

© 1980 American Mathematical Society
0025-5718/80/0000-0060/$02.75

521



522 J. T. MARTI

In this paper we consider an algorithm for solving (1) numerically. This algo-
rithm, giving the minimum-norm solution of (1), has been proposed in [7], [8]. The
algorithm has no restrictions on the operator A (such as the existence of an inverse of
A, a condition which is often required for the Tikhonov method; see e.g. [12, p. 45]
or [3, p. 870]). Furthermore, the algorithm studied in this article uses a technique
whose computational part has some similarities with Galerkin’s method, though it is
conceptionally much different from Galerkin’s and also from Tikhonov’s methods. An
upper bound for the rate of convergence is derived for the restricted class of problems
(1), where A is an arbitrary bounded linear operator and g is in the range of 44*, 4*:
Y — X being the adjoint operator of 4. More generally, if g is in the range of 4,
then a convergence proof for the algorithm follows as a corollary. In case of Hermi-
tian operators 4 (X = Y, A* = A4) an upper bound for the error norm in computing
the minimum-norm solution of (1) has been derived in [7] for g in the range of 42
and a convergence proof has been given for the case of arbitrary 4 and g in [8].

2. Description of the Algorithm. Let {P,} be a sequence of orthogonal projec-
tions of finite rank in X such that

limlP,f, - f,I =0,
n

where f,, is the minimum-norm solution of (1). The above condition is obviously sat-
isfied if the sequence {P,(X)} is increasing and the union of the sets P, (X) is dense
in X, e.g. if the P, are the projections associated with an orthonormal basis {u,, . . .,
u,} of X, where P,v = 27, (v, uu;, v € X. Several well-known bounds for P, f, —
fo Il are available in the literature, e.g.

1P, fo = fol = O®*)

if f, has an absolutely continuous (k — 1)th derivative, the kth derivative of f, is in
L, [a, b] and P, (L, [a, b]) is the set of polynomial spline functions of odd degree
>k -1 with knots a,a + h, a + 2h,...,b —h, b (see e.g. [9], where a proof is
given for the case kK = 2 and 4).

If the sequence {a,, } is given by

(22) a, = inf{lAf - gl: fE P (X)}

and the sequence of positive numbers {b,,} is chosen such that
(2b) IP,fo —foll =o(b,) and b, =o(l),

then an algorithm for solving (1) is established by the construction of a sequence {f,,}
such that

(20) f,€S, and If,I =inf{lfl: fES,},

where S, is the intersection of the sets P,(X) and f, + (a, + b,)4~'(U) and U is the
unit ball of X. The existence of a unique element f,, again is a consequence of the
fact that each S, is a closed convex set in X, having a unique nearest point to the



MINIMUM-NORM SOLUTIONS OF ILL-POSED PROBLEMS 523

origin of X. If {v;, ..., v, (n) 1 is any basis for P, (X) it is clear that the vector x,,
of basis coefficients x,,,, . . ., Xm(n) of f,, can be computed by evaluating

a, = inf{[y"B,y - 2wly + (g, g)]*, y € R™(M}

and by solving

x,{Mnxn = inf{xZMnxn x, € R (") xZann - 2w;xn +@ 8 =2(@,+ bn)2}
for x,,, where M,, is the Gramian [(v;, v].)] of the above basis and B, and w,, are given
by

B, = [(Av;, Av)l, W, = (A0}, 8), - - - , (AVpy (> )

We recognize B,, as the so-called stiffness matrix of the finite element method. It is
easy to verify that the matrix B, + A\M,, is (Hermitian and) positive definite for all

positive numbers A. Now, it follows that x,, is the solution x of the system of linear
equations

(3a) B, + M, )x =w,,

obtainable by the Cholesky method, where X is the unique positive solution [7] of
the scalar equation

(3b) -MTMx - wlx + (g, 8) = (a, +b,)* =0.

Here, Newton’s method is applicable, since the derivative of the left-hand side of the

above equation, as a function of A, is 2)\xTMn(Bn + )\Mn)_anx and this expression,
being the 2\ multiple of the square of the Euclidean norm of an m(n)-vector, is non-
negative.

Summing up, the sequence {f,,} may be computed numerically by solving (3)
for x and X and then taking f,, = Ei";(l") x,v;, where x,, = x.

3. An Upper Bound for the Convergence Rate. For a large class of problems
the following theorem shows that the ultimate convergence rate for solving (1) by the
algorithm (2) is almost of the order of the square root of the error norm of the best
approximation in P,(X) to the minimum-norm solution f, of (1).

THEOREM. For every g in AA*(Y) the error norm for the algorithm (2) has
the property that

If, = fo Il = 0%,
where [ is the minimum-norm solution of (1).

Proof. Since by (2b) IP,f, — fu I = o(b,,) there is, in view of (1), an integer
m such that

14P, f, — gl < MAWIP, £y - foll <a, + b,, n>=m
Thus
P fo€fy+ @, +b)A" (1), n>m,
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which by (2¢) implies that
) I, I <P, fl < lfyll, n>=m.

Since Af, = g = AA*h for some & in Y and since by a known theorem [5] f, is in
the closure 4*(Y) in X of the range of 4%, one has

fo — A*h € A¥(Y) N A71(0).
It is well known that the above intersecting sets are orthogonal. Therefore,
fo = A*h.
By a twofold application of the Pythagorean theorem it is now easy to see that

(%) 15, = foI? S 2(fy = £, £o)-
By (2¢) and (2a) this yields

wllf, = fol? <sup{(f, f,): Af € (a, + b,)U}
= (a, + b,) sup{(Af, h): Af €U}
< lall b, + inf{1A(f =~ f)I: fE P (X)}]
< |hl@, + 1ANIP,fy - f,), n>m.
Due to (2b) one then has the estimate
15, = fol* <2lnlb,(1 +0o(1)), n>m,
hence

If, = f, = 0(6”). O

COROLLARY. For every g in A(X) the sequence {f, } generated by the algo-
rithm (2) converges in X to the minimum-norm solution fy of (1).

Proof. Let {fk(n)} be any subsequence of {f, } given by (2). Since by (4), f,, €
U, n = m and since U is weakly sequentially compact in X, there is a subsequence of
{'fk(n)}, which we also denote by {fk(n)}, converging weakly to an element, say f of
U. Clearly (5) shows that

6) lim sup Ify () = fol <2(fy = £, £p).

Next, using (2¢), (2a) and (2b), one obtains
(fo = £, A*h) = lim(fy, = iy, A*h)
n
= lim(g — Af} (y> 1) < Ihllim(a, + b,)
n n

< Iltim(IANIP, £y = fo I +b,) =0, hEY.
n
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Since f, is in the closure of A*(Y) in X it then follows that

(fo=ff)=0
and finally by (6) that
limllfy ) = foll = 0.
n

Finally, since we have shown that any subsequence of {f, } has a subsequence which
is norm convergent to f,), the proof of the corollary is complete. [

4. The Example of Computing the Second Derivative. The second derivative f
of a function g satisfies the well-known Fredholm integral equation of the first kind

f; (s — 0f(t)dr = g(s) —g(0), s=>0.

Defining the integral operator K from L, [0, 1] into itself with kernel
s —t, t<s,

k(s, 1) =
0, t>s,

the above integral equation obviously has the form (1), Kf = g, for all g with g(0) =
0. It is clear that K is compact. The following argument shows that K is injective on
L,[0,1]:

Let f be in K~!(0). Then, since f is integrable on [0, 1], (K)(s) = 0, s € [0, 1],
and for s in (0, 1) and sufficiently small 4,

[, fyar =1 [(Kf)(s +ny= [T s+ - ofyde - (Kf)(s)]

s+h
= —fs K(s + h - £ f(r)dr.
This implies
N s+h
If f(r)dt|< tim [ 1f@ldr =0, s€ (1),
0 h—=0 s

and thus f =0 ae. on [0, 1].

Now, since K is injective, there is only one solution of Kf = g for every g in the
range of K. Therefore, choosing

g(s) = (s* —4s® + 652)24, 0<s<I,

the function f given by
=@ -2+ 12, 0<r<1,

is the minimum-norm solution fo of Kf = g
For the numerical computations we assume P, (L, [0, 1]) to be the set of
spline functions of degree one with knots 0, 1/n, 2/n, . . ., 1 with a basis {v,,
-5 U4} of B-splines satisfying v;, ,(j/n) = 8;; (the Kronecker symbol), 0 < j,
J < n. The advantage of such a basis (of finite elements) is the minimality of the
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support of each v, (being of length < 2/n) which facilitates the numerical integra-
tion of the elements of B, and w,. Here, the mass matrix M, is tridiagonal and
can be evaluated exactly, the ijth elements of 6nM, are 1 fori #j,2 fori =j =
lorn+1and4for2<i=j<n. For the evaluation of Kv; at desired points,
use has been made of two-point Gaussian quadrature on each subinterval of length
1/n. On the other hand, the scalar products occurring in the definition of B, and
w,, have been computed by the trapezoidal rule with nodes coinciding with the
above n + 1 knots. The basis {v,, . . ., v,,,} has the property that I P, f, —
fol = O(n™?). In general, if g is in the range of KK* (the hypothesis of the con-
vergence theorem in Section 3) or in the range of K?, then we still have the same
property. Therefore, it is justified to take, e.g. b, = 10731~ 2log n, where n runs
over the higher powers of 2. The expected convergence rate based on this choice
of b, is, according to the theorem in Section 3, O(n"'log n). Finally, the follow-
ing Table 1 gives the error norms llf, — f, Il for a number of approximations f,
for f,, computed by algorithm (2), i.e. by its numerical variant described in Section
2. Table 1 also indicates the ratio of If, — foll to n”'log n.

TABLE 1
n If, = fo W, = foll/(n™ 'log n)
4 21E -3 6.0F — 3
8 1.0 -3 3.8E -3
16 49F — 4 28E-3
32 23E -4 21E -3
64 1.1E -4 1.7E - 3
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