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Nonlinear Curve-Fitting in the L, and L_, Norms

By Richard I. Shrager and Edward Hill, Jr.

Abstract. In extending the Levenberg-Marquardt L, method for nonlinear curve-fitting
to the L, and L. norms, the following problems arise, but are dealt with successfully:
(1) Trial parameters are generated by linear programming, which can be time-

consuming.

(2) Trial parameters are not uniquely specified in some cases.

(3) There are intervals of the search parameter for which the trial parameters remain
constant.

(4) In L, the trial parameters are discontinuous with respect to the search param-
eter.

It is shown that linear constraints on the parameters are easily included in the

computations. Finally, some numerical results are presented.

I. Introduction. Given a set of independent variables
t={t,i=1tom}
(in general, each ¢; may be a vector), a set of dependent variables
y=A{y;,i=1tom},
and a set of parameters to be found
p={p;j=1ton},
we must match the vector y as closely as possible by a computed vector (the model)
f=1{ft;p)i=1tom
by adjusting the elements of p. Our task is to minimize
1.1) S) = lirll,

where r =y — f, and ||| is a k-norm 1 < k < oo to be specified in context. The k-
norm is defined as

m 1/k
Il <Z |r,-|k> l<k<e,

i=1
=max;r;l, k=c°.

(Weights may be introduced by substituting w,y; for y; and w; for f;.)

The choice of k is not entirely arbitrary. For data y whose errors are normally
distributed, k = 2 is a good choice because of the vast literature on the resulting dis-
tributions of the parameters p (e.g. [23, Chapters 2, 5]). If the data y are plagued
with outliers, k = 1 is a good choice because in L, outliers tend to be completely
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ignored [3]. Finally, if the errors in y are negligible (e.g., if the residuals » are expected
to be much larger than the errors in y), then k = o« will produce the smallest maximum
deviation |r;|.
A model f is called linear if at each point, f; can be written
(12) fi=aypy *app, + - taup,,
or considering all the 4;; as a matrix 4,
(1.3) f=A4p.
The a’s may be any functions of ¢, e.g., a;; = sin(z;), but they may not contain p. In
other words, A must remain constant when p varies. If the p’s appear in exponents
or in denominators or in any manner not expressible by (1.2), the model f is called
nonlinear.
Linear models are important here because for the linear model in three norms,
Ly, L,,and L, there are effective methods for minimizing S either globally or with
linear constraints (e.g. [3]—[10], [24]—[26]). Levenberg-like methods, among others,
regard the ai]-’s as fixed in each iteration, and use repeated applications of a linear
solver to generate increments to p [2], [14], [15], [17], [18], [21], [24], [25].
In order to describe the Levenberg-Marquardt method, we introduce the following
notation:
A = the Jacobian with elements
a; = 0f;/op; (= w;3f;/0p; in the weighted case).
B = diagonal matrix of k-norms of the columns of 4. If any b;; is zero, it should
be reset to 1.
x = increments to p, hopefully to improve S.
R = |IBx||, a measure of step size.
T = |Ir — Ax||, a good approximation to S(p + x) when f is nearly linear in the
region of interest, e.g. for small enough R.
& =ascalar, 0 <a<1.
U = ||{aT, (1 — ®)R}| the function to be minimized over x for any choice of .
({aT, (1 — )R} is a vector with two elements.)
The method is as follows, where ‘«— denotes assignment of right-side value to
left-side variable:
1. Set initial p and tolerance on S.
2. (An iteration begins.)
Sotd < SP); Sgoa1 < So1q (1 — tolerance);
Compute 4, B, and r at current p.
3. (Sampling procedure. See formulas (2.3), (2.4), (2.6) for details.)
For several a, 0 < a < 1:
find any finite solution of min U(x);
compute S(p + x).
4. If S(p + x) = §,,4 for all x’s in step 3, stop.
If S(p + x) = S, for all x’s in step 3, then for that x of minimum S,
p <— p + x and stop.
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If S(p + x) < Sgqq for some x in step 3, then choose that x of greatest
R that satisfies S(p + x) < S

goal®
Note in step 3 that any general method for minimizing T" will also minimize U,

p <—p + x and go to step 2.

since both problems are linear, but U involves solving m + n equations:

o4
14 [(1 - a)B]" [?)r]

Some pleasant properties of this method in L, are discussed in [13], [14], [16],
[17]1,[23]. InL, and L, Osborne and Watson [21] show, essentially, that if R > 0
can be made arbitrarily small by adjusting «, then the method is convergent. They
remark that the L, method just described does not meet such a requirement. As a
result, Anderson and Osborne [2] choose to generate x by:

min max (a7, (1 — )R],

a mixed-norm method.

We will show that, with slight alteration the pure L, algorithm can be made con-
vergent. This is useful in three ways:

1. A linear L solver can be used without alteration, making one code serve
both linear and nonlinear problems.

2. Linear solvers for L are constantly being improved, while the mixed-norm
problem receives relatively little attention. As better methods develop, one need only
replace the old linear solver with the new one for improved performance.

3. Linear solvers are available with contrasting merits. Some users will want
speed [4], [16]; others prefer stability [9]; still others are concerned with constraints
on p [6], [7], and so on. Such variety is not available in mixed norm.

Finally, we will show that some other difficulties in both L, and L, are re-
solved by careful choice of a.

II. Special Problems in L, and L. In this section, several statements are made,
without proof, as to the nature of a particular norm or justification of the search pro-
cedure. More formal treatment of these is available in a supplementary paper [26].

In the smooth norms, 1 < k < o0, x(a) is unique and continuous (with the ex-
ception of & = 1 in the rank deficient case), while T(a) and R(c) are unique, con-
tinuous and strictly monotonic. These properties are partially or totally missing in L,
and L, problems, resulting in the following difficulties:

1. Linear programming, a possibly expensive procedure, is required to minimize
U. Consequently, we have chosen heuristics, described in this section, to keep the
number of such computations small. We have chosen the most efficient available linear
methods, those of Barrodale et al. [4], [S]. Also, work by McCormick and Sposito
[16] indicates that a good starting estimate reduces the linear computations substan-
tially. Since our nonlinear methods involve exploring several nearby p + x values, we
were pleased to learn that our first guess, namely p, was very good on the average,
yielding x with much less computation than one would expect from a random problem
of the same size. See the section on results.
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2. x may be nonunique at special values or entire intervals of «. For this, we
rely on the linear solver to choose one solution. The linear solvers given in [4], [5],
[6], [9], [10] have this capability.

3. In L, x(e) is discontinuous in « (e.g. see Figure 1). This property interferes
with our control over the search of x, and may prevent convergence. The best
S(p + x) may be in a region skipped over by the locus x(a). We propose a ‘continuous’
version of the L; method using linear interpolation between the discrete points gen-
erated by x(o).

L2

I /le

X1 gl ’
L
i L
o- Ly
a
FIGURE 1

x as a function of « in three norms. The problem data is
Yi=5 ya=1 wy=1; wy, =2
- f =f, =p,; initial p; = 0.

The function minimized over x for each « is then
L,: Ux)=al5—xy|+ 21 —x;] + 3(1 = a)bx,|
Ly: Ukx)=a2(5-x,)* +40®(1 —x,)* + 5(1 - &)*x?
L,: Ux) = max(al5 — x|, 2al1 = x|, 2(1 — a)bx ).

4. There are level intervals, i.e. intervals of a in which x or its associated R and

T remain constant. If one has generated an x in such an interval, one certainly wants
to avoid the expense of generating that same x again.
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The following remarks on L follow from the linear programming nature of
solving linear L, problems. The L; norm is unique in that there is a solution x(a)
(that minimizes U and) that satisfies a subset of the m + n equations in (1.4) exactly.
For o < 1, there is an x that satisfies at least n equations exactly, and these are a sub-
set of rank n. If there is more than one x for a given «, then there is more than one
full rank subset; and the set of possible solutions consists of all x, which minimize U
and satisfy some full rank subset plus all convex combinations of such x. If we can
control which x is chosen, we will have at our disposal a continuous sequence of line
segments or possibly a band of x’s in 0 < o < 1 ranging from x = 0 all the way to
those that minimize 7. But linear solvers based on linear programming are primed to
select only those x uniquely determined by the full rank subsets, of which there can
be only a finite number. So T(c) and R(«) instead of being continuous and strictly
monotonic, become sums of step functions with coincident discontinuities at a finite
number of critical « values.

Let EI. be the jth critical value. Let 7_"] and 1§ be the values of T and R in
o <a<a;, ;. Ata critical value a;, U(a;) is of course unique, being the minimum
over x, but T and R can range from 7; ST <T;_;,and R,_; <R <R. As remarked
above, if two distinct x’s minimize U, then any convex combination of them will do
likewise. So we see that linear interpolation between x’s generated by the linear solver
is not merely an expedient for controlling the step size R. It is a natural completion
of the Levenberg method in L, creating a continuous locus x(«) all of which minimize
U for some «, and permitting convergence as described in [21].

In L, then, we are left with three very practical questions. First, how do we
avoid repeating samples, i.e. choosing two o’s in the same level interval? Second, how
do we know when to stop choosing «, and start interpolating? And finally, how do
we stop the search?

At any critical value &]-, the following relation holds:

Uey) =oT_; + (1 —a)R;_, =oT; + (1 — )R,
or

@.1) %=®R-R_)R-R_, +T_, ~T).

Suppose we are given R and T from two distinct (not necessarily adjacent) level inter-
vals # and v, u + 1 <v. Then in the formula

(2’2) Upew = (Rv - I_Qu)/(l_zv - Ru + Tu - 7_"v)

the numerator is the sum of the numerators of (2.1), u + 1 <;j <, and similarly for
denominators.
Remembering
a
b
it is easily shown that for nonadjacent intervals u + 1 <v, a,,; <a

<& implies %<Zifi<§l fora,b,c,d >0,

new < 0, holds.

Le., a does not lie in either of the original level intervals. The only exception is

new
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when # + 1 = v. In that case a repeated R may be generated, but this is easily detec-
table, and one may then switch to linear interpolation between the neighboring x’s.
There will be at most one repeated x per iteration, and rarely that.

Let x["W] be the newly-generated x, with an associated retinue of values
@ ows R Tpew> and S, .- Let xli"] and x[°¥!) have similar retinues.

The sampling procedure for x is:

new?
initially: @, <—0; a < 1;

2.3) asearch: @ . “— (Ryut ~Rin)/Rout ~Rin + Tin — Tout)-

If R o = Rin or R ., = Ry, sWitch to:

(24)  x search: x[meWl «— (1 - gyxlinl + gxlout]
where 8 < 1 is a refinement constant.

(B = .25 in the authors’ programs.)

replacement: If 7. <S

goal and S, .y, =S,

goal>

then xlovtl (_x[new]; else x[inl (_x[new]’

where x[=] «— x[neWI denotes replacement of the entire retinue.

The rules for stopping the search are:
1. Go to the next iteration if
(@) S(a = 1) <Sgqq, 01
(b) Sin < Sgoal and Rin = BRout’ or
(©) S(p + x) <7584 for any x.
2. Stop (signal convergence) if

Si >Sgoal’ Tin>Sgoal’

and R;, =GR, -
Formulas (2.3) and (2.4) are analogous to interval halving. In effect, a root (not the
smallest) of S(R) = S, is being refined to a crude tolerance, with the final provision
that § <.S,,,, must hold to insure convergence. The object of this search is to choose
x with rather large R for faster convergence as noted in [1], [15].

In L, there is only one level interval, and it can be easily located. From the
formula

U = max(aT, (1 — a)R)
we see that (1 — )R will have no effect on the result until it becomes as large as aT.
Let
T* = the global minimum of 7,
R* = minimum R(x) for which T(x) = T, and
of = R*I(R* + T*), i.e. where o T™ = (1 — &™)R™.
In the interval 0 < a < a*, T(«) and R(a) can be shown to be strictly monotonic,

with all the properties necessary for convergence. For some formal results, see [2],
[26]. But repeated iterates can occur in the interval a® < a < 1. To locate &* in a
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problem with x(a = 1) unique, one simply minimizes U(a = 1) over x, with results
T(x) = T* and R(x) = R*. If x(a = 1) is nonunique, R(x) > R* will cause a* to be
overestimated, but if the next a is chosen in a* < & < 1, then 7(a) = 7™ must hold.
Using this last equality and the relations

(1 —e)R(e) < al.T*,
we can show that the sequence of a: o < o <o, < < a =1,where
(2.5) ;41 = BR(a;)/(R(ey) + T™)
produces a sequence R(e;, ;) < BR(e;), so that x is guaranteed never to repeat. The
L, sampling procedure is similar to that of L, but the a search becomes
Xpew — (1 - B)ain + Baout‘
If T,.,, = T(a=1) then replace a,.,:
a — Rnew/(Rnew + Tl‘l

new

(2.6)

ew)

without recomputing x["¢%1, etc.
Since there are no discontinuities in x(a) for L, there is no need for the line search
in (2.4).

II. Linear Constraints. Sometimes, it is desirable to constrain parameter values

to certain regions. The most commonly used constraints are linear, i.e., of the form
n

(3.D 2 epind, i=1tol,
=1
where the relation 7; may be <, =, or 2, and the ¢’s and d’s are constants. A param-
eter vector that satisfies all the constraints is called feasible.
In order to impose linear constraints on p, the major change in the method is at
step 3, which should now read:

(32) minimize U over x subject to i cixifd; = i ey 1= 1tolL.

To use the method, one must now invo]kela procedure] thlat solves the constrained
linear problem. Methods for such minimization are available in L, and L, [6], [7],
[18].

One further change is advisable. Initial p should be feasible in order to insure
the convergence property that R can be made arbitrarily small. If a user provides in-
feasible initial p, it can be corrected by minimizing ||x|| subject to the constraints.
This is done by setting 4 =1,, r = 0, @ = 1, and executing (3.2). Thereafter, the
algorithm will never generate infeasible p + x.

IV. Results and Comparison. We refer to the methods described above as
Levenberg-Marquardt (LM). In the L,, L,, and L., norms, there is another well-
known method called damped Gauss-Newton (DGN). Both methods start by finding
an x, call it %, that minimizes 7. Thereafter, if X # 0 and S(p + X) > S,,,;, DGN
searches on y, 0 <y < 1, for the relation S(p + vx) < Seoal: The theory behind
this search is explained in the papers of Osborne and Watson [19], [20] where they
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prove that if T(x) <S4, then X is a downhill direction in §. In Lemma 3.4 [20]
and Lemma 2.2 [19] they show that given smooth enough f, S(p + v¥) <S4 must
hold for some small 7.

Osborne and Watson require that y be searched for a minimum of S. In a later
paper, Anderson and Osborne [1] require that v be chosen large while still satisfying
an improvement criterion. We have found that the latter strategy works best, so we
used it in the test cases. As illustrated in Table 4, y was assigned nonpositive powers
of 10 in the search, as in [1, Table 3].

Let X be some x produced by the LM method. An important result of mini-
mizing U in any k-norm is that 7(X") is minimized for a given step size R(X) [26].
Therefore, for equal step sizes R(X) = R(yX), and for sufficiently smooth f, the re-
lation S(p +X) < S(p + vx) holds in a right neighborhood of R = 0. Marquardt
[15] observed that in L,, the directions taken by the two search paths near R = 0
are often quite different. We have observed the same effect in L, and L. In fact,
there are some cases in which DGN direction X is so far from the gradient, that
Sl + vx) > Sgo a1 holds in the entire interval 0 <y < 1, whereas substantial im-
provement is seen in S(p + %) for small R. This contrast in behavior of the two
methods is especially common when the Jacobian is ill-conditioned, as illustrated by
the following studies.

For each of three functional forms, a solution p™* and a singular point p® (at
which the Jacobian becomes rank deficient) were chosen, and the initial estimates
p(® were generated by

p©@ =(1-pp® +pp*, 0<p<L

The object was to measure the amount of work required to find p™ as a function of p.
The entire study involved every combination of three functional forms of f, two
norms, two methods, and eleven values of p, 132 problems in all. As a compromise
between completeness and brevity, we will describe all the test problems, but we will
give only representative results, other results being very similar.

In all cases, the values of p were

(7,.5,.3,2,.15, .1, .07, .05, .03, .02, .01).
The values of ¢ (the independent variable) were
t;=@G{—-1)48, i=1to049.
The values of y (the dependent variable) were
Ly:y; = f;p™) + e
where e = (0, —.1, .1, 0, =1, .. .,.1, 0)7.

L.:y;, =f(t; p™) + .01 cos((n + 2)mty).

The second term of y; was designed to avoid the exact fit case (which is rare)
without changing the solution p*.
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The three test functions with associated solutions and singular points are:
1. Sums of exponentials:
model: f(t;; p) = P exp(-P,1;) + P 3exp(-P4t;)
solution: p* = (1, 3, 1, DT
sing. pt.: p® = (1,2, 1,2)7
For models 2 and 3:
let Zl(ti) =( -‘pz)/pg,’ z,(t) = (4; — ps)/P6-
2. Sums of Gaussians:
model: f(t;; p) = pexp(-23(1;)) + paexp(-z5(,))
solution: p* = (1, 4, 4,1,.7, 2)T
sing. pt.. p® =(1, .55, 3, 1, .55, .3)T
3. Sums of derivatives of Lorentzians:
model: f(t;: p) = pyz,(t)/(1 + 23D + Pazy(DI(1 + 23(1)?
solution: p™ = a, 4, 4,1, .7, .2)T
sing. pt.:p®) = (1, .55, 3, 1, .55, 3)T
note: although p* and p®) are the same in models 2 and 3, the functions f
are quite different, as are the intermediate iterates in the test problems.

TABLE 1

‘Amount of work done in the three major time-consuming phases of
solution for the exponential model in the L, norm. * indicates failure to
find any minimum of S.

o M DGN

ITs Fs  LPITS ITs  FS  LPITS
g | s 6 37 5 6 37
s | 6 10 66 7 9 53
31 e 11 72 13 26 96
2 | 6 12 75 23 65 175
as | e 14 96 36 103 286
a |7 15 104 >30
o1 | 7 15 103 >30
05 | 7 15 106 g*
.03 | 6 16 115 "
02 6 16 114 1
o1 | 6 16 118 .

All arithmetic was done in double precision (=15 decimal digits) on an IBM
370/168 computer. In all cases, the runs were terminated when S failed to achieve
relative improvement of .0001 in an iteration, i.e. S > .9999S,,4. Three indicators of
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efficiency were recorded:

1. Number of iterations, denoted ITS in Table 1. These are significant because
partial derivatives are computed at the start of each iteration. These are sometimes
very expensive to produce.

2. Number of functions sampled (exclusive of partial derivative calculations),
i.e. number of parameter vectors tried, denoted FS in Table 1.

TABLE 2

Amount of work done in the three major time-consuming areas of
solution for the Lorentzian model in the L, norm. ™ indicates failure to
find any minimum of S.

0 M DGN

ITS FS  LPITS ITS FS  LPITS
.7 7 8 98 7 8 98
.5 8 15 195 10 14 141
.3 10 19 246 — local min., —
2 | 10 19 235 33 93 512
as | 8 16 213 >30
.1 10 19 234 >30
.07 | 10 20 255 >30
.05 | 10 20 267 12"
.03 | 10 19 247 1
02 | 10 19 247 1"
.01 | 10 19 244 2*

TABLE 3

Selected iterates for the exponential model in L, using the LM
method. p = 0.2. Note immediate departure from the singular subspace
Py = D4. @ =1 corresponds to the undamped Gauss-Newton method.

IT # Py Py Py P, a S

0 1.00 2.20 1.00 1.80 - 4.98
1 0.97 2.20 1.00 1.26 0.95 3.56
2 0.97 2.85 1.00 0.95 0.97 3.55
3 0.99 3.02 1.01 1.00 1.00 3.21
4 1.00 3.00 1.00 1.00 1.00 3.20
6 1.00 3.00 1.00 1.00 1.00 3.20
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3. Number of LP iterations, as described in McCormick and Sposito [16], denoted
LPITS in Table 1. This is a sum of iterations from all LP solutions invoked in solving
the nonlinear problem, and constitutes a reasonable measure of work in generating
trial parameters.

These three activities are the major time consumers. Any measure of total work
for varying p(®) (with a given f, computer system, compiler, and implementation)
would be very close to a weighted combination of the above three measures. A
“typical” measure of work might be

work = (1.57)(ITS) + (FS) + (1/6)(LPITS),
but the particular weights chosen are unimportant for this discussion.

TABLE 4
Selected iterates for the exponential model in L, using the DGN
method. p = 0.2. Note the tendency to linger near the singular subspace
P, = D4 in the early iterations. y = 1 corresponds to the undamped
Gauss-Newton method.

T # Py Py Py P, Y s

0 1.00 2.20 1.00 1.80 - 4.98

1 1.03 2.20 0.97 1.79 .001 4.97
9 1.18 2.18 0.82 1.74 .001 4.95
10 1.19 2.18 0.81 1.73 .001 4.95
11 1.31 2.18 0.69 1.68 .01 4.92
12 1.36 2.18 0.64 1.63 .01 4.92
13 1.38 2.19 0.62 1.60 .01 4.90
14 1.47 2.27 0.53 1.32 .1 4.61
17 1.21 2.51 0.79 1.22 .1 4.07
18 1.17 2.57 0.82 1.19 .1 3.96
19 0.90 3.05 1.10 0.96 1.0 3.82
20 1.00 2.99 1.00 1.00 1.0 3.22
23 1.00 3.00 1.00 1.00 1.0 3.20

Typical results are shown in Tables 1 and 2. In all cases, (qualitatively) as p(®
was moved from p™* to p®), the amount of work increased linearly for LM but hyper-
bolically for DGN. If, after 30 iterations, there was any evidence of progress toward
the desired solution, the problem was run to completion. Otherwise, the ITS entry
reads > 30 with no other statistics. The ITS entry “N*”, where N is an integer, indi-
cates spurious convergence to a nonminimum. In every such case, LM could start from
the final GN parameters and find substantial improvement in S, often reaching the de-
sired solution.
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Any method will fail on occasion, but DGN does so in problems where sub-
stantial local improvement in S is easily found by, say, steepest descent. The problem
seems to be DGN’s affinity for singular subspaces (e.g. in model 1 when p, = p, and
in models 2 and 3 when p, = ps and p; = p¢). Given a first guess or an intermediate
iterate near such a subspace, DGN tends to stay there longer then we would prefer,
perhaps to the point of stopping before a minimum is reached. Tables 3 and 4 list
intermediate results for one problem using both DGN and LM. This problem illustrates,
in mild form, the comparative attraction that singular subspaces hold for DGN.

V. Summary. The four apparent liabilities of LM methods, summarized at the
beginning of Section II, can be overcome to produce effective methods in the L, and
L., norms. The discontinuities of x(c) in L, are eliminated by interpolation in
formula (2.4). Repeated iterates are avoided by formulas (2.3) in L, and (2.6) in L,,.
Efficiency seems competitive with DGN methods in cases where both work well, but
LM appears more reliable in the test problems. In addition, Anderson and Osborne
have noted superior behavior of their own LM methods when the multiplier condition,
defined in [1], [2], fails to hold. Watson [27] shows that one may solve continuous
L, problems (where y and f are used for all ¢ in an interval) by solving discrete L.,
problems with suitably chosen abscissas. He makes use of both DGM and LM, favoring
some LM features when the Jacobian becomes singular at the solution. It appears, then,
that despite the apparent expense of generating x in LM methods (one LP problem for
each x in LM, but only one LP problem for each iteration in DGN), robustness and
convergence in fewer iterations makes LM the more attractive of the two approaches.
It may be possible to merge the two in some way to get the best of both worlds.
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