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Inductive Formulae for General Sum Operations

By Daniel Minoli

Abstract. In this note we report some computer generated formulae for the sum of
powers of numbers with nonunitary increments; these reduce to the well-known cases

when the increment is one.

1. Introduction. Inductive formulae for sums of powers of consecutive integers
are well known; the left side of Table 1, based on [1], depicts such formulae for powers
up to 10. These are usually derived directly from the fundamental theorem of sum
calculus, or via the Bernoulli polynomials as
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Formulae for the case where the incremént is not one, cannot apparently be found
explicitly in the literature; [4]—[10]. Conceptually these formulae are simple to ob-
tain; however, the algebraic manipulations required tend to be overwhelming. In this
note we present the first ten formulae, as obtained on a computer by formal string
manipulations.

2. Approach. Let
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where ¢ = (m — 1)/d is an integer, d > 0. We desire a formal closed-form expression
for S"*(1,d, m). Clearly
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The individual terms in the second expression are indeed the entries of the left side of
Table 1. The only remaining task is obtaining a formal expression for the first sum-
mation, by collecting appropriate terms; this is a rather long and tedious task, particu-
larly for high values of n.
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The algebraic manipulations have been carried out by a computer program. CPU
time on a dedicated DEC PDP 11/70 was 2 hours; the code consisted of about 400
statements. The results are depicted on the right-hand side of Table 1. We now have
closed-form expressions for summations such as Z;(1 + jvA)? or ;1 + jm3.

3. Related Facts.

Fact 1. Besides brute force computation, the results of Table 1 may be proved
by induction on g, for a fixed d, and n.

The following facts can also be proved.

Fact 2. For all n, d,
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which is exact for n = 1.
Fact 3. For sufficiently small d, f (x) Riemann integrable, m = 1 mod d, and
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there exists a § such that
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This is related to the Euler-Maclaurin sum formula [2], and a result on the generalized
factorial, [3].

Fact 4. The sum of the odd integers up to m is equal to the sum of the cubes
of all integers up to m, divided by m?; namely, S3(1, 1, m)/m? = S(1, 2, m).
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