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Calculation of the Regulator of a Pure Cubic Field

By H. C. Williams, G. Cormack and E. Seah

Abstract. A description is given of a modified version of Voronoi’s algorithm for ob-
taining the regulator of a pure cubic field Q(\3/B). This new algorithm has the ad-
vantage of executing relatively rapidly for large values of D. It also eliminates a com-
putational problem which occurs in almost all algorithms for finding units in algebraic
number fields. This is the problem of performing calculations involving algebraic ir-
rationals by using only approximations of these numbers.

The algorithm was implemented on a computer and run on all values of D
(< 105) such that the class number of Q(\s/B) is not divisible by 3. Several tables
summarizing the results of this computation are also presented.

1. Introduction. Let § be the real root of
x3-Bx?+Cx-D=0,

an irreducible cubic equation with rational integer coefficients B, C, D and negative
discriminant A. Let ((8) be the cubic field formed by adjoining & to the rationals,
and let Q[8] be the ring of integers in (8). The regulator of Q(8) is R = log €,
where €, (>1) is the fundamental unit of (8).

When B = C = 0, we say that Q(8) is a pure cubic field. In Williams [8] an
attempt was made to tabulate several pure cubic fields Q(Q/E) which have D a prime
= —1 (mod 3) and class number 1. In doing this it was necessary to evaluate the
value of R for each Q(\3/l_)) This was done by using the algorithm of Voronoi [6] as
described in Delone and Faddeev [3, pp. 282—290] and Beach, Williams and Zarnke
[2].

Calculations had to be terminated when D > 35100 for two reasons. The first
reason was the immense amount of time needed (up to 10 minutes of C.P.U. time on
an IBM 370-168 computer) to calculate an individual R value; the second, and more
important reason, was that the values of D were getting too large for the precision
available to the computer, even using double-precision arithmetic. All methods of
evaluating R known to the authors, with one exception, require that it be possible to
determine when an algebraic irrational a € () exceeds zero. The computer can
only calculate an approximation 4 to a, and when D is large it is not always true that
if 4 > 0, then a > 0.

Received January 15, 1979; revised September 12, 1979.
AMS (MOS) subject classifications (1970). Primary 12A30, 12A50; Secondary 12—04.

© 1980 American Mathematical Society
10025-5718/80/0000-0065/$12.25

567



568 H. C. WILLIAMS, G. CORMACK AND E. SEAH

The purpose of this paper is to describe a modification of Voronoi’s technique
for calculating R in Q(Q/B) which (1) executes rapidly and (2) minimizes the number
of calculations which have to be done with irrational numbers. The method of [3,
pp. 290 ff.] satisfies (2) but requires large precision when D is large and executes
rather slowly. We also present, in the last section, some results of running the pro-
grams which were written to implement our algorithm.

In Table 1 we summarize some of the notation used in this paper.

TABLE 1
Symbol Description
Z The set of rational integers
8 The real zero of an irreducible (over the rationals)

cubic polynomial with negative discriminant A

O] The cubic field formed by adjoining & to the rationals
Q[s] The ring of integers in Q[8]
M N M=(m, +m,6+ m362)/o,N =(n; +nyd + n362)/a, where

my,m,, my,n,n,,ny, 6 €Z,0>0,and
ged.(m,,my,my,n,,n,,n3,0) =1

0 A lattice with basis [1, M, N]
R The real lattice derived from 0
O, Relative minimum of the second kind adjacent to 1

in a lattice which has 1 as a relative minimum

R, Real lattice which has as a basis an integral basis of Q[§]

0§,’ ) 6,) Relative minimum of the second kind adjacent to 1 in R, (R)
0;,’) An element of R, such that [1, Oi,’), 0;,’)] is a basis of R,
Rt1 Real lattice with basis [1, 1/6$", 857/6{"]

®, e, =[I:= Gg)

0, 0, = N(©,), the norm of ©,
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Symbol Description
M, N,, e, M, = (m, + m,8 + my8®)/a,, N, = (n, + n,8 + n;8%)/o, where

my, m,, My, N, Ny, N3, 0,2, 0,>0,

gcd.(m,, my, my,ny,n,,n5,0,)=1and [1,M,,N,] isa

basis of R,. e, = myn; —n,m,

(m* + m3s + m362)/o, = 1/67"1

(n* + n%s + n%6%)/o, = 02’_1)/6?“1)
here m¥, m%, m%, n¥, n3, n§ € Z and
g.cd.(m¥, m¥, m%, n¥, n%, n%, 0,)=1

Q, 9, Q" € is an element of R, i.e.
Q=aM, + bN, + c (a, b, c € 2).
Also Q = (q, + q,8 + q36%)/0,, where
d1>q4,495 €Z. Q' and Q" are the
conjugates of .
E; Euclidean 3-space
Cq C, is the normed body of ; that is
Co ={(x », DI(x, ¥, 2) € By, Ixl < 1Ql, 2 + 22 <Q'Q"}
w w is the puncture (¢, n,,) of Q.
Here
(¢us 10) £, = Q-9 -Q")02,
n, =@ -QM2i @*=-1),
$a $q = « + Q"2
when §% = D (D € 2),
£, = 38(q, +438)20,, 1, =V/38(q, — 438)/20,,
fg = (241 —Q25 - Q362)/20r-
44,45, 95 a) = 43— Daya5. 45 = D45 — 4,4,, 45 = 45 ~ 4,43
M, v The punctures of M, and NV, respectively
— (/2 T — (v + 1/932
g(k) gK) = (V3K + 1/2) =/1 = (k + 1/2)*)/2
8 B=(2-3)4
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Symbol Description
a 1 1 a 0 a
K@o)  K@n=(5 o). K= (g 5).K@n= (] 5)
K,(a, b)
K5(a, b)
E, E, = lgm, — En,l
fx, ») fix, ) =x% + lxyl + »?
XwsYw x, =1a, +a;l1,8],y,, =I1,a, —a5,3]
;w J—’w = [12\/55142 Uk [12\/562]
X, Yy, X, = [136]‘72 +(Z3[]352], Y, = [136]q2 _Q3[I382]

2. Preliminary Observations and Definitions. For a more general discussion of
the ideas presented below see [3] and Steiner [5].

Let O be a lattice [3] with basis [1, M, N], where

M=(m, +m,8 +my8®)o, N=(n, +n,bd +ny8)o,
o, my, m,, my, n;, n,, ny € Z (the set of rational integers), ¢ > 0,
g.cd.(o, my, my, my, ny, ny, n3) =1, and 6 is defined as in the first paragraph of
Section 1. Then O is made up of the collection of ordered triples (2, ', Q"), where
Q=x+yM+ zN, x,y,2€2,

and Q', Q" are the conjugate roots of £2. Since Q' and Q" are complex, we often
discuss the real lattice R which is the collection of points (2, (' — Q")/2i,

(&' + 2")/2) of E; (Euclidean 3-space). Here i = —1. Since, to each £, there corre-
sponds a unique point of R, we often identify this point of R by using the symbol

€2 only and writing

Q~(Q, Q- Q"2 Q' +Q")2).
We define the value of e for R (or () as
e =myny — myn,.
If Q € R, we define its parameters to be 12| and
QQ" = (@ - Q")2)? +(Q +Q")2)%.
We also define the norm of S, written N(£2), to be Q2’2" and the trace of £ to be
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Tr(Q) = Q + Q' + Q". Note that since Q'Q" = Q12 >0, then Q and N(£2) have
the same sign. It should also be noted that [3, p. 274] if & and ® are two points of
R such that ®'®" = Q'Q", then ® = £ Q.

If Q € R, we call the collection of all points (x, y, z) € E; such that |x| < Q|
and y2 + 2% < Q'Q" the normed body Cg, of Q. That is, the normed body of £ is
a right circular cylinder of radius +/Q'Q” and length 21QI. It is oriented in E, asil-
lustrated in Figure 1.

FIGURE 1

We say that & (#0) is a relative minimum of R (or () if the only points of R
which are in the normed body of € are £, — and 0. For example, if [1, M, N] is
an integral basis of Q[8], then the point 1 ~ (1, 0, 1) is a relative minimum of R.
For the norm of 1is 1 and the value of Q'Q" for any © € R is a rational integer; con-
sequently, no point of R except 0, 1 and —1 can lie in the normed body of 1. For
the same reason we see that any unit € of (§) must also be a relative minimum of R.

If ©, ® are relative minima of R such that

0<d<Q, &d">0'Q"
and there does not exist a ¥ € R such that ® < ¥ < Q and ¥'¥" < ®'®", we call
D the relative minimum of the first kind adjacent to 2; and we call 2 the relative
minimum of the second kind adjacent to ®. See Figure 2 below.

Geometrically, we see that, given ®, we find Q by increasing the length of the
cylinder Cy until it includes a nonzero point of R. The first such point encountered
is Q. That £ must exist is guaranteed by the lemma of Minkowski [3, p. 80]. For
a given £2, we find @ by increasing the radius of the cylinder C, until it includes a
point ® of R such that & > 0.

Consider now the sequence

2.1) 0,,0,,0,,...,0,,...,
where ©, is a relative minimum of R and ©,, , is the relative minimum of the first

kind adjacent to ©; for i = 1,2, 3,... . We call such a sequence a chain of relative
minima of the first kind.
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FIGURE 2

FIGURE 3

If ©,, , is the relative minimum of the second kind adjacent to ©;, we call (2.1) a
chain of relative minima of the second kind (see Figure 3). Voronoi’s algorithm for
determining €; !(¢,) consists of a method for obtaining a chain of relative minima of
the first (second) kind for R when R has as a basis an integral basis of Q[8] and ©,
= 1, together with a method for determining which member of the chain is e;l(eo).
Suppose the basis of R = R, is [1, M, N], where [1, M, N] is an integral basis
of Q[6]; and suppose we have found the relative minimum of the second kind ©,
adjacent to ®, = 1. Put 0&(,1) = @, and suppose [1, f)g,l), {7 is a basis of R,. We
let R, be the real lattice with basis [1, 1/6{!), 0511)/0?)]. Clearly 1 is a relative min- -
imum of R,, and we find 0§2), the relative minimum of the second kind adjacent to
1in R, and @, = 6£19(?). We continue in this way finding [1, 6¢), 8{™] a basis
of R, and then defining R, ., as having a basis [, l/f)g,”), 0},")/0§")] and determin-
ing Gi,”'“), the relative minimum of the second kind adjacent to 1in R, ,,. We
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have ©,,, = eél)()?) -+ 00+ D When for some k (>1), Ry and R, are the same
lattice or, equivalently, N(®,) = 1 (and k is the least integer (> 1) such that this is
s0), then

€ @ — 0 1 0 2) ... 0 k—1
and

k=1 .
R =logey = log 6.
i=1
In a later section we shall require the following theorem concerning Bg,’ ).

THEOREM 2.1. If BE,’ ) is the relative minimum of the second kind adjacent to
lin R,, then 1 /Gg ) is the relative minimum of the first kind adjacent to 1 in Rov1-

Proof. Let [1, 00, 6{7] be a basis of R,; then [1, 1/6"?, 65/6{"] is a basis
of R,, . Also, since 0;’ ) is the relative minimum of the second kind adjacent to 1
in R, ,, we have 1/0&(,’) <1 and 1/6&(,')'02,’)" > 1.

Let ¥ be the relative minimum of the first kind adjacent to 1 in R, ;. Now if
O©ER,,;,0#¥and 0<O< I, we must have ©'0" > ¥'¥"; for, if 0 <O < ¥,
then since Cy, contains no points of R, , except for 0, ¥ and — ¥, we get 00" >
¥'¥". On the other hand, if ¥ < ® < 1, then ©'®" > ¥'¥" by definition of the
relative minimum of the first kind adjacent to 1. Thus, if ® = 1/62,’ ), we see that

0<¥<1 and WV <1/6 0",
Since ¥ =a + b/G&(,') + 005,')/0?) (a, b, ¢ €Z), we have
— 90Ny = 49 () (
Q=00¥=a0P +b+ ) ER, 0<Q<O,

and Q'Q" < 1. This contradicts the fact that Gg,’ ) is the relative minimum of the sec-
ond kind adjacent to 1 in R,. O

We conclude this section with some simple results concerning the points of R,
when 83 = D (D € Z). Note that when we deal with the case 83 = D, we assume
that D is not a perfect integral cube.

If @ €R, and 8> = D, then
Q=aM, +bN, +c,
where a, b, ¢c €Z, [1,M,, N,] is a basis of R,, and

M, = (m, +my6 + m352)/0,,, N, =(n; tnyé+ n362)/0,.

Hence Q = (g, + q,6 + q362)/0,, where q,, q,, 43 € Z. fQ =@, v win R,
then

3
u=9, v= %% (q,6 — q382), w=2q, —q,6 - 738%)/20,.
¥
Also,

Tr(2) = 3q,/0,, N(Q) = (q? + Dqg +D2qg - 3Dql‘12‘13)/0r3,
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and
Q" = (¢, + 436 + ¢38?)/a,
where
ay =41 ~Dayq3, a3 =Dq%-q,q,, q5=4q3-4q,4;.

We also have e, = m,ny — myn,. Now an integral basis of Q[8] is given by
[1,8,8%/g,] when D # +1 (mod 9) and by [1, 8, (5% + g36 + g3)/3g,] when D =
t1 (mod 9). Here we assume D = glgg, where g, and g, are square free and
(8,, 8&,) = 1. Thus, 0, =e¢,.

3. Some Results Concerning the Bases of R,. If [1, M, NV,] is any basis of
R,, then

1 { 1
rl| = 0(,_1) Jr—l Mr—l 4
NI‘ g r—1

where [1, M,_,, N,_,] is any basis of R,_, and J,_, is a 3 x 3 matrix with integer
coefficients and I/,_,1 = +1. From this we get the result

1 s
M, )= g7 M),
N, T \W,

where J is a 3 x 3 matrix with integer coefficients such that |/l = +1. It follows
that ®,, ®M,, ® N, € R,. In this section we restrict ourselves to the case in which
the basis of R, is an integral basis for Q[6], when (8) is a pure cubic field, i.e. 83
=D. Put o =0, and O, = N(®,). The proof of the following theorem makes use
of the methods of Section 36 of Voronoi [6].

THEOREM 3.1. If 83 = D and Q, = N(®,), then e,\a, and
@3.1) 0, = oZ/le,lo.
Proof. Since ©,, @ M,, ® N, € R,, we have

2 - 2
00, =1y, +1150 1,387, 0OM, =1, + 15,8 + 1,387,

0ON, =ty 13,8 + 13387 (1;€2).

If
o O 0
S={my my my],
n, n, ng

where oM, = m, + m,5 + m;82, oN; =n, + n,8 + 1,82, then T = JS, where T
= (t;)3x3- It follows that IT| = teo (e = ¢,).
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Let ['=©,0,. Since ©, € Q[8], we see that ' € Q8] and, therefore, oI' =
g, tg,6+ g362 (g, 83, 83 € Z). Thus, we find that

0?0, = (g, + 8,8 +8382)(t), + 1,26 +1,36%),
POM, = (8, + 8,8 + 8382ty + 1358 + 1536%) = u, +uy8 + uy82,

OPQN, = (8, + 8,8 + 8387)t5, + 1358 + 13382) = v, + 0,6 + v3582,

and
o>, 0 0 & & &3
up u, uz |=T|\Dg3 & &
v, v, Uy Dg, Dg; &,

Thus, by taking determinants of both sides, we find that

2
020, (u,v; — Vyu;) = ted* N(T) = teg®Q? and wuyvy —vuz = teo’Q,.

If we put d* = g.c.d.(u,, Uy, U, vy, Uy, U3, Q,0%), we get 0, = Q,0%/d* and e, =
Mynsy —nymy = £eo?Q,/(d*)? = teo,/d*.
Since I and ©,M,, O,N, € Q[5], we have
©,IM, = (u; + u,8 +u48%)/a* € Q[6]
and
©,IN, = (v, + v,8 + v382)/a% € Q[8];
therefore, o is a factor of g.c.d.(u,, u,, us, vy, vy, v3) and old*. Since d* =
teo,/e, and 0 = e, we have the theorem. [
COROLLARY 3.1.1. ¢lg,.
COROLLARY 3.12. Q, = 1 if and only if le | = 0, = 0.
THEOREM 32. If Q € R, and Q = (q, + q,8 + q48%)/o,, then dle,lo, is a
factor of N(0,) and e,|q; (i = 1, 2, 3), where ¢y = 43 = Dq,q3, a3 = D43 —4,4,,
’ — 2 _
d3 =45 —4,93-
Proof. Since 2 € R, we have Q =aM, + bN, + ¢ (a, b, ¢ € Z); also, since ©,,
©,M, and O,N, € Q[8] sois A = 0,2 € Q[8]. Tt follows from (3.1) that
N(0,) = 02N(Q) = 63N(A)/Q, = ale,la N(A).

Since N(A) is an integer, we have the first part of the theorem.
Now Q'Q"/N(Q) = 1/Q = ©,/A = A'A"©,/N(A) and consequently Q'Q" =
A'A"©,/N(©,). Using the fact that 62Q'Q" = ¢’ + g, + ¢38%, we have

4} +q58 +q58% = ale,INA"O,.

Since ©, A'A" € Q[8], we have A'A"® € Q[5]; and, therefore, e,lq; (i = 1, 2, 3). O
In the remainder of this section we discuss a method of finding the basis [1,
1/eg-1), 0},’—1)/9‘(?’"1)] of R, when we have the basis [1, G‘g’_l), 0¢~D] of R,_,.
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Let my = m} — Dmymy, my = Dm3 — mym,, my = mj = m,my, where 0‘(;—1)
= (m, + m,8 + my8%)/o,_,; we have
03_19g_1),0g—1)" =m)| +m,ys + m'’y8*
and
3 N@OUD) = "D T+ ;
0,_ N6, =mym, (mymy + maym,).

Put d, = gcd.(m), my, my), m; = myd, (i = 1,2, 3) and 0, = mym, +
D(mymy + mym,). We have

1/95(;_1) =0,_,(m; + my8 + m35>)o,
and
egr—l)/og—l) = (n'l + n'25 + nl362)/—0—r’

where

ny =mn, + D(yn, + myny), ny =m,n, +mn, +Dmyns,
ny = mgn, + myn, + mns.
If d, = (n, ny, ny), we get
n, (3 — mym,) =ny(Dimy —m,;m,)  (mod d,)
from the last two equations. Now
m3 — myim, =mso,/d,, Dm}—m,m,=m,0,/d,;

hence, d,d,10,e,_,. Also, since ©, = ©, ,0¢"1), we have 0, NOY™V) = 0Q,.
Fr(im (3.1), we have Q,_, = 02_,/le,_, | a; thus, since N(Bfg’_l)) =d,o0,/o2_,, we get
d,o, =gle,_,lo,_,0,. Ifd=(d,,0,_,)=(n}, ny, ny, 0,_,), thene,_,dld, 0, and

dd,lo,e,_,; therefore, dlo,. We have proved

TueoreM 33. If [1, 0071, 0{ V] is a basis of R,_,, then [1,M,,N,] isa
basis of R,, where
M, =1/6¢"D = (m% + m3s + m%6%)/o,,

N, = 0§1/00~1) = (n% + ngs + n%8*)a,,

0, =0,/d, m¥ =o0,_mjdd,, n¥ =njd (i =1,2,3).

r

It should be noted here that since d, = le,_, lo,0

,0,_,/le,ld, we have

(32) m; = le,_ lom¥/le,l (=1,2,3).

Let B = [1, M, N] be any basis of the lattice R, and let K = (kij)2 xp be a ma-
trix with integer entries such that |K| = £ 1. We say that we transform the basis B
by K when we replace [1, M, N] by [1, M, N], where

M = (m, +m,s +my)o, N=(,+n,+n8%)o,
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and
my n m; n
m, n,|=\m, n, |K
My 1y my ng

Since |K| = +1, we see that the transformed basis is also a basis of R. Now, if my
# 0 and

where* k = [n3/m;], then m, = m,, my = my,n, =n, —km,,and ny = ny —
kmg; thus, Iny/myl < 1. Also, since e, = m,ny — myn,, we getlny | <le,l/Imyl +
Im,|. If my = 0 and k = [n,/m,], we have |n,/im,| < 1. Thus, if [1, M, N] is a
basis of R, we know that there exists a basis [1, M, N] of R such that if m5 # 0,
then

(B3) My, =m,, my=my, Ingl<Imgl, In,l<lel/lmsl + Im,l;

or, if my = 0, then

(3.4) i, =m,, fy=0, lnyl<lm,l.

4. Some Lemmas Concerning the Lattice R. As in Section 2 we let R be any
lattice with basis [1, M, N]. Suppose further that R has 1 as a relative minimum. In
Section 5 we show how to determine a small set of possible values for Gg, the relative
minimum of the second kind adjacent to 1 in R; however, in order to do this we
must first prove a number of lemmas concerning R.

We define the puncture of any Q € R to be a point w = (¢, n,,) in the x-y
plane of Ej, where

' [/ .Q.I - Q” B
f,=QQ-Q'-Q"2, n,="7— @=-D.
That is, if Q ~ (4, v, w), then w = F(u, v, w), where F(u, v, w) = (u —w, v). Thus,
w is simply the point at which a line passing through £ and parallel to the line joining
the origin of E5 to (1, 0, 1) meets the x-y plane. We denote the set of all these punc-
tures by L. We also denote by {, the value of (' + Q")/2; hence, Q = £, + {q.

When 82 = D, we see that if Q = (g, +q,6 + q362)/0, then
£, =38(q, + 45820, m, =38, — 4,0)/20,

$o =24, —q,6 _4362)/20'

We note here that, if
wo (B B
N, My

where (£, n,) and (§,, n,) are, respectively, the punctures of M and NV, then when we
transform the basis by K, we replace W by WK.

*We denote by [«] that rational integer such that 0 < a — [a] < 1; we also denote by {a}
the value of o — [a].
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Since F is a linear mapping, we see that L is additive; thus, if ® and ¥ are any
two points of R and Q2 = a® + b¥ + ¢ (a, b, ¢ € Z), then the puncture w =
(¢,,n,)of Qisgivenby &, = ak, + bzw and n,, =an, + bnw , Where ¢ = (%, n¢),
Y= (Ew s nw) are the punctures of ® and ¥, respectively. Also, { = afq + bSy + .
It follows that L is a two-dimensional lattice with basis the punctures of M and V.
Thus, if Q, =a M+ b/ N+c,,Q, =a,M+b,N +c, (a,,a,,by,b,,c,, ¢y €2Z),
then £, and 2, have the same puncture if and only if ¢, =a,, and b, = b,. Let
Q =aM + bN + ¢ (a, b, c €Z) have w as its puncture. We say that Q belongs to w
if =1 <¢o < 1. That is, Q belongs to w if it is one of the two points on either side
of the x-y plane of E; which has w as a puncture and is closest to the x-y plane. In
Figure 4 below both Q, and £2, belong to w.

N

(1,0,1)

Y “a,

FIGURE 4

We have 2, — 2, =1 and ¢; = [~a, — bS] + 1.

Let C be the set {(x, y, 2)I(x, y, z) € E; and 2?2 + y2 < 1}, ie. the set of all
points of E, in or on the cylinder z2 + y? = 1, and let C, be the normed body of 1.
Note that only two points (* 1) of R lie on the surface of C and no points of R except
0 and +1 are contained in C,. Note also that §, € C. We have the following

Definition of Q*. Let Q, and £, be the two points which belong to w. If just
one of these is in C, denote it by Q*. If both are in C, put Q* = Q, if 1Q, 1 < 1Q,1;
else put Q* = Q,. If neither £, nor Q, is in C, 2* is not defined.

Note that in order for Q € C, we must have §'§2 + ni) < 1; hence, if In 1> 1,
Q* does not exist. On the other hand, if In | < \/3/2, then Q* must exist. Further,
if In, | >\/§/2 and Q* exists, then I{q 41 <1/2 and Q* = ¢ + aM + bN, where ¢ =
[1/2 = agy, — bEN]. If I, <+/3/2 and $a, >—1/2, then §, € C and since Q; =
Q, + 1, we must have 2, = Q*.

We are now able to present several lemmas. These results are analogous to re-
sults given in [3] for the case A > 0. Wada also made use of results of this type to
produce his table [7].
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LemMma 4.1. If w = (&, n,,) is a puncture such that Q* (> 0, #1) exists, then
—1<¢q. <1 =V1-1n%
Proof. Since 2* € C and * > 0, we must have Q* > 1; also, by definition

[$ol <1 If§qs =1-4/1 —ni , then (§g« — 1)? + nfd < 1 and, consequently,
Q* — 1 € C. Since 0 < Q* — 1 < Q% this contradicts the definition of Q*. O

LEmmA 42. If w = (§ ) is the puncture of , £, > 0,and In | < V3/2,

then Ew >\/1 —nz.

Proof. Since |nw| < \/5/2, there must exist 2* € R with puncture w. Since
£, > 0 and no point of R except 0 exists within C,, we must have Q* > 1; thus,
since Q* = £+ §{g«and {q. <1 -4/1 —nwi ,we get £ >+/1 —17(‘)7 . O

w’nw

LEmMmA 43. Let w = (§,,, n,,) be the puncture of a point Q such that £, >
0, In,| <+/3/2 and let T = (§,, n,) be the puncture of a point T € C. If £, > &,
and nn, >0, then T > Q*.

Proof. Suppose T < Q*. Since £, > ¢ and T =& + (<&, + (g« = Q%
we see that { < {q«. Since {7 >—1and —{o« > —1/2, we have —=3/2 < {p — o«
< 0. Thus, the absolute value of one of {; — {q+« or {7 — {+ + 1 must be less than
1/2. If In, = 0,1 <+/3/2, one of T— Q* or T— Q* + 1 € .

Since 1, and n, have the same sign, In_ —n | = lIn | = In Il If In -7,
= In, | — In,l, then In_—n I <lIn, I <+/3/2. Suppose that In, —n,l=Inl-
In, 1> \/3/2; then In. 1> \/3/2. We now assume without loss of generality that U
> 0 and consider Figure 5 below.

N

FIGURE 5
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Here P, = (n,,, $q+)s P, = (n,, §7). If weletd, = OP,, d, = OP,, d; =
P,P,, then

(, = 1,)° + Cp—qe)? =di =d® +d2 - 2d,d, cos(a + p).

Now 0Q = /3/2 and QR = QS = 1/2; thus, if P, lies above the line OP, or if P, lies
below OP, and ¢, >0, then o + § < 7/3 and cos(a + 8) > 1/2. It follows that

di<d?+d%-dd, <max(d, d%) (d,,d,>0).

Since d; and d, < 1, we have d3 < 1. If P, lies below OP, and ¢, < 0, then since
$q+ > §r, the angle between OP; and P, P, exceeds m/2; hence, d; <d, <1. In
each of the cases above we find d; <1 and, thus, (n, — 17“,)2 +(@r—¢ge)<lor
T-Q*€eC.

Thus, under the assumption that T < Q*, we see that either T — Q* + 1 or
T—-Q* €. If, however, T— Q* € C, then {. — $q+ >—1 and, consequently, T — Q*
>§p —§q+ >—1. Since T — Q* <0, we have T — Q* € C;, which is impossible. If
T-Q*& Cp,then—3/2<§¢p—¢qs <—1/20r T—Q*+1>-1/2; also, T — Q*
+1<1; and we have T — Q* + 1 € C,, which is also impossible. It follows that T
>Q* 0O

LEmMMA 44. Let g(k) = V3(k + 1/2) =1 = (k + 1)2)D/2. If0<k <
3 = 1)/2 and g(k) < A < 1, then

(k + 1201 =02 =01 - (x + 1/2)2< 1/2.
Proof. If A > (\/3(k + 1/2) = /1 — (k + 1/2)?)/2, then
M HEMWNT =+ 122+ 1/4-(k +1/2)2 >0;

consequently,

(k +1/2*A =N <N - (k +1/2)) + W1 = (x + 1/2)2 + 1/4,
and

K+ 1201 =22< W1 - +1/2)2+1/2. O

LEMMA 45. Let w = (§,,, n,,) be a puncture of a point Q such that lnwl <
12+ Kk (0<k <(3-1)2),and let 7 = (., m,) be the puncture of a point T € C.
Suppose further that £, =1+ \ + £, where A\> 0. If X > g(x), we must have
Q*<T

Proof. Suppose Q* > T;since &, =1+ \ + (£, wehave 1 +A={q. +§p
< 0. From this we see that, since {, > —1, we get {5« > N> 0. Also, $ax <1/2
(Lemma 4.1) and ¢, — {q« > —3/2; thus,

=3/2<¢p—§q+<-A-1 and A<{<1/2,

where { =g+ —§p— 1. Now In | <1/2 +« <+/3/2 and (Lemma 4.1)

0<$qs <1-V1-m2,<1-v1-(/2 + )2,
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hence,
§pl >80 =87 =S > ¢ +V1 - (12 + 12,
If 7— Q* + 1 is not in C, then
Cr—Sa«t D+ @ —n,)*>1 and In —n,l>/1-¢2.
Hence,
In > 1In, —n I =ln | >V1-¢2-k—-1)2
and
GAM>EHVI-A2+ D) + V-2 - k- 1)2)
=220 + 121 - 2+ 201 = (k + 1/2)2
>2 =2k + 1201 =22 + 201 = (k + 1/2)?

=1 (by Lemma 4.4).

Since T € C, it follows that we must have T — Q* + 1 € (.
Since Q* > T, we have T — Q* + 1 <1 and since

T-Q*+1=§ +¢p—§, e t1=2+p 8ot

we have T— Q* + 1> 1/2. Hence, T - Q* + 1€ (C,,ie. T— Q* + 1 = 0; this,
however, is impossible since &> & |

5. Determination of Gg. We now consider the following algorithm [3, p. 453 ff],
which we refer to as Algorithm A. We perform the steps in the indicated order;
and we denote by K, (¢, b) a matrix of the form (" l) by K,(a, b) a matrix of the
form ( “) and by K3(a, b) a matrix of the form (¢ 4

(i) Transform the basis by K = (X1 ,?2) where k, = sgn(£,), k, = sgn(&,).

(i) If &, <%, transform the basis by K, (1, 1) and go to (iii) unless n,n, <0
and In,| > |n#|. If this latter case occurs, transform the basis by K, (0, 1)
and go to (v).
(iii) If n,M, < 0, omit the rest of step (iii) and perform step (iv).
(a) If [&,/8,] = [n,/n,] = k, transform the basis by K, (=, 1) and con-
tinue to perform this step until [&,/¢,]1 # [nv/ny] .
(b) If [gv/g“] +1= [nv/n“] = k, transform the basis by K, (k, —1) and
go to step (iv).
(c) If k= [£,/8,] = [m/n,] + 1, transform the basis by K, (—k, 1) and
go to (iv).
(d) If [&,/¢,] < [n,/n,] — 1, transform the basis by either of K, (k,,~1)
or Ky(k,, —1), where k; = [£,/8,] + 1,k, = {n,/n,1. Go to
step (V).
(e) If [&,/&,]1 > [n,/n,] + 1, transform the basis by either of
K (=ky, 1)or K,(=k,, 1), where k;, = [EV/EM], k, = [nv/n“] + 1.
Go to step (v).
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(iv) If In,1 > In,l go to (v); otherwise, transform the basis by either of
m v
K (—ky, 1) or Ky(k,, 1), where k| = [£,/,], k, = [|nv/n”|].
(v) At this point £, > £, >0, n,n, <0, and In,| < In,l.
(a) If In,1 > 1/2 and lnnl < 1/2, terminate the algorithm.
(b) If Inul < 1/2, transform the basis by K, (=k,, 1), where k, =
[£,/£,] until In, | > 1/2. At this point the algorithm terminates.
(c) If In,1 > 1/2, transform the basis by K5(1, k,), where k, =
[In”/'nvl], until In,| < 1/2. At this point the algorithm terminates.

After this algorithm has terminated we have a new basis [1, M, N] of R and
for this basis it is not difficult to show that u, v form a basis for L, &, > Eu >0,
nyn, <0, In,| <1/2, |n“| > 1/2. In the following theorem we assume the exis-
tence of ® and ¥ € R such that [1, ®, ¥] is a basis of R and £, > £y >0,myny, <
0, |n¢| < Inw L Ingl <172 + 8, Inwl > 1/3. Certainly, in view of Algorithm A, such
a pair exists. The difficulty occurs in attempting to find them by using an algorithm
which uses only a finite amount of precision. We discuss such an algorithm in a later
section.

THEOREM 5.1. If 0 is the puncture of Gg, then

0 =agp + by,
where (d, b) €S = {(_1, 2), (19 —2)’ (19 0)’ (0’ 1)’ (1, 1)’ (1’ _1)’ (2’ 1)}

Proof. Clearly, 6 = ap + by for some (a, b) € Z?; also Bg € C and, therefore,
Ing | < 1.

If 2 <0, then b > 0; also, In,| = lal In¢l + bln\pl < 1. Since |nw| > 1/3, it
follows that b < 2. Since &, = bt, — |a|£¢ > 0, we have lal < b and, therefore,

(a, b) =(—1,2).

If = 0, then since £, = b, and Ingl = bln‘p [, we see that 0 < b < 3. If b
= 2, then |n‘p| <1/2, and 1, and Ny have the same sign. Also, since Gg < I* we
have a contradiction to Lemma 4.3. Thus, if @ = 0, we can only have b = 1.

Ifa>1and b <O, then In,| =alnyl + 1b] |n¢,| < 1;hence, |5l < 2. Suppose
b = —2; we have ng and Ny ~ Ny with the same sign and since n, = 2(n¢ - nw) +
(a— 2)n¢, we see that, if @ > 2, n, has the same sign as Ny — My and |n¢ —ny I <
1/2. But & > §¢—\p and 0, <(® - ¥)* contradicts Lemma 4.3; thus, (a, b) =
(1,—2). Suppose next that b = —1; then 7, and g have the same sign, In¢l < \/5/2
and, ifa =2, ¢ > £¢. This also contradicts Lemma 4.3; hence, (a, b) = (1, —1). If
b =0, then a = 1; for, otherwise, we would again contradict Lemma 4.3.

We are left to consider the case of ¢, b > 1. If b >a, let b = a + ¢, where ¢ >
0. Now 74, and ny have the same sign and if |n¢+wl > 1/2, we have In‘pl >1/2
and In, | =alng,! telnyl>@+c)2>1whenc,a>20ra=c=1. Asn,
and 7y, , have the same sign and &, > £44y > We cannot have |n¢+‘p | <1/2 by Lem-
ma 4.3. We see that (4, b)) = (1, 1). Finally, we note that if ¢ > b > 1 and a > 3,
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then
Ep =8, +(@— Dy +bE, = + A+ 1,
N=(a— 1), +bE, —1>25,-1>2/1-(1/2 + )2~ 1 (Lemma 4.2)
> g(9).
From Lemma 4.5 we must have ¢ <2 and (g, b) = (2, 1). O
CorOLLARY 5.1.1. If Iny | > (1 = Inyl)/2, then (a, b) # (=1, 2) or (1, -2).
Proof. 1f 6 = £(¢ — 2¢), then Iny| > 1. O
COROLLARY 5.12. If &, > 256, then (a, b) # (2, 1).
Proof. If &, > .256 and (a, b) = (2, 1), then
=2k, +E, =5+ AT 1,
where
A=k, +E, —1>256++/1-(1/2+ 62— 1> g
Since |n¢| <+/3/2, we cannot have 0, < ®* by Lemma 4.5. O
COROLLARY 5.13. If Iny, | <~/3/2, then (a, b) # (1, 1), (2, 1); if In, | > 3/2
and £, < 1/2, then (a, b) # (0, 1).

Proof. If Inw | <+/3/2, then ¥* exists. Since ®* also exists, neMy <0, and
£y > E\p, §¢ when 0§ = ¢ + Y or 8 = 2¢ + , we see that Og cannot be less than
both ¥* and ®* by Lemma 4.3.

If In\pl >+/3/2 and ¥* exists, then $g+ < 1/2; hence, if £y < 1/2, we get ¥*
={gys + gw < 1, which is impossible as 1 is a relative minimum. O

The corollaries of Theorem 5.1 allow us to restrict even further the set S from
which the possible value of (¢, b) can be obtained such that 8 = a¢ + by. We sum-
marize these results in Table 2 below. It is assumed in this table that lnw | >
(1= Inghy2.

TABLE 2

Restrictions on

¢ and ¥ S

Iny | </3/2 {(1, 0), (0, 1), (1, = 1)}

£y > 256 {(1,0), (0, 1), (1,-1),(1, 1)}

ln, | >/3/2, {(1,0,(1,-1D, 1, D, 2, 1)}
S\,, <1/2
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We now have an algorithm to find Og. We first determine ® and W, then create
the subset made up of those members of the set {a® + b¥l(q, b) €S} such that
(a® + bW)* exists. Since |n¢l < \/_37/2, this subset is not empty. Put 6, equal to
that element of this subset such that (a® + bW¥)* is least. If 6, = ®*, put 6, equal
to one of the points which belong to ¥; if Og # ®*, put 6, = ®*. Since [1, ®, ¥]
is a basis of R, sois [1, 0, 0,].

6. Some Useful Inequalities. If [1, M,, N,] is a basis of R, and u = (§,, n,),
= (£,,m,) are, respectively, the punctures of M,and N,, put E, = lg,n, —§,n,l. Tt

is a simple matter [6, Section 29] to show that E, = le, IWTAT [Al/202. Since the value
of le,| is the same for any basis of R,, so is the value of E,. Voronoi [6, Section 30]
also showed that £, > \/5/2 and that if © is a relative minimum of the first kind adja-
cent to 1in R,, then 0'0" <P + 1/4, where P is the minimum of a certain quadratic
form Ax? + 2Bxy + Cy?, with AC — B®> = E? [6, Sections 27, 28]. In this section
we make use of these results to find inequalities which will be useful in the following
sections.

We first note that when we are dealing with pure cubic fields, |Al = 27D2.
Since E, > \/5/2, we have

(6.1) o?/le,| < 3D;
and consequently, (Theorem 3.1)

6.2) le,l < g, < 3D,
(6.3) a,/le,| <+/3D,
(6.4) 0,0, < 3D.

In several of the following sections we shall be concerned about developing a
means of finding a B-basis of R,. This is a basis [1, ®, ¥] of R, such that the punc-
tures ¢ = (£, ne) and Y= ¢y, n\l,) (of @ and ¥, respectively) possess the following
properties:

1) &, >%,>0,

() Ingl <lnyl, nyn, <O,

@) Ingl <172+ 8 =1-+/3/4,In,1 > 1/2 — p =/3/4.

(6] Inwl >1- |n¢|)/2
It follows that, since |'f?¢| < \/3/2 ®* a5 defined in Section 2 must exist. Further,
since 1/2 — 8> 1/3, by Theorem 5.1 and Corollary 5.1.1, we see that if 0 is the punc-
ture of 05,’ ), then 0 = a¢ + by, where (a, b) is one of the elements of the set {(1, 0),
(09 1)’ (1’ 1)’ (19 —1)’ (2’ 1)}°

In Lemma 6.1 we derive some important inequalities concerning $-bases when 83
=D (D € Z). Indeed, in all the remaining sections of this paper we shall confine our
discussion to lattices R, where 3 = D (D € 2).

LEmMA 6.1. Let @ = (§,, n¢), ¥ = (zw, nw) be the punctures of ® and ¥ re-
spectively, where [1, ®, ¥] is a B-basis of R,. If ®* = (s, + 5,6 + s382)/0r and ¥,
= (1, + t,8 + t36%)]0, (i = 1 or 2) is either of the two points of R, which belongs
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to ¥, then
0<t, +1,6 <s, + 855 <482, |s, —8s,1 <282, 1, — ;81 <3.6582
and
s, 1, 18551 <382, lt,l, 18251 <3.838%; |51, 1£,1 < 5D.
Proof. We first notice that
E, =kylny | + InylE,;

hence, £,1n, |, Ingl&, <E,. Also, since In,l < \/3/2, we must have £y > V1- nd,2
by Lemma 4.2. Thus,

VI-n3 <t <E[In,l, 0<§g, <f,

and
Iny| <lIny | <E,/lg,| <EJN1T - n3.

Now In, | > +/3/4; hence,

38(s, +5,8) 4 6le,|D
20, 3 o;
and
0<s, + 538 <4le,|D/0,8 <48% (by (6.2)).
Also,
381s, — 5,81 _
Ingl = ————— < 1 -+/3/4;
20,
consequently,
2(1 = /3/4)a
ls, = 5381 < ——L < 282

V38
It follows from the results on s, + 538 and Is, — 5,8 that Is, |, 18551 < 382.

Since ny <1 — \/3/4, we have V1- né > \/\/§/2 — 3/16. The results involving
t, and t3 can be easily derived from the inequalities

g, <& and In,| <E,AB2-3]16.

Clearly, |§\I,il, [$ps! < 1 and 0<%, £, <2; thus, since 5,10, =$ps + £,/3,
we get |s; | < 5D. Similarly, I¢,1 <5D. O

LEMMA 62. If O = Bfg’) =(m, + my6 + m362)/0r is the relative minimum of
the second kind adjacent to 1 in R,, then

Imyl + lmy1s < (2 + 24/3)82
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and
—3D<m, <3 +S5/2D; Im,l, 18myl < (1 +2v3)52.

Proof. By the construction technique of Algorithm A we know there exists a 8-
basis [1, ®, ¥] such that In¢l < 1/2 and In‘p | > 1/2. If we refer to Lemma 4.5 with
k =0 = g(0), we see that £, <%, + 1. For,if § > £, +1,then g, =1+ N+ &,
where A = £, — £, —1 >0 = g(0). Hence, from Lemma 6.1 we get

38(m, + m,5 3V3le ID
<——2———3—)<2E,+1=———’——+1;
20',, 03
and since In,| <1, we also get
38(m., — m,d
V/38(m, 3%) <1
20,

Thus, Im, + m;8| < 2(/3 + 1)82 and Im, —m,61 < 24/382. Tt follows that Im, | +
Imy16 < (2 + 24/3)82 and Im, |, 16my] < (1 + 24/3)82. Since (Lemma 4.1)
-1<§g<1/2, we have =1 + £9/3 <myfo, <1/2 + &,/3; thus —0, <m; < 50,/6
++/3le,|D/g, and the result for m; follows. O

We now give two very simple lemmas which will be needed in the proofs of the
last three lemmas of this section.

LEMMA 63. Ifx2 +y% =aandc >0, then |x| + cly| </(? + Da.
Proof. Since 2clxy| < ¢2x? + y?, we have
(Ixl +cly)? = x2 + 2clxpl + 22 < (2 + DE? +y?) =(* + Da;
hence, Ix| + clyl <V + 1)a. O
LEMMA 64. Ifx2 +y%2 =aand b > 1, then
1+2Ixl +x2 +by2<1+ab+@®-1)"L.
Proof. This result follows from the fact that (1 + (1 — b)Ix)> > 0. O
Lemma 65. If M, = 1/6¢™1) = (m¥ + m$6 + m%5)/o,, then
Im% + m%8| <+f6le, 15, Im%—m;5l <+/5le,ls
and
~\5D<mt < (1 +/5)D; Imkl, Im3s] < (1 ++/5)82.

Proof. By Theorem 2.1, M, = 1/0}; ~1) > 0 is the relative minimum of the first
kind adjacent to 1. Since it is well known that the minimum P of a quadratic form
Ax? + 2Bxy + Cy? does not exceed 24/4C — BZ/r/3, we have

4 " 2
MM'<—=FE, + 1/4

V3

by the remark at the beginning of this section. Thus, if (¢ ) is the puncture of

w Mo
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M,, then
2, 4k <=E + 14,
M, np, \/g r /9

and since M, = $m, + 2“ <1, we get

| 2 1 2 1
erI’ I'f?“|< \7§Er+2’ |§#|< \7_§Er+z+1'

Since E, = 3\/§D|er1/2of, we have, on using (6.1),

V15Dle,| V15Dle,l
Inyl < — g | <——

20, ® 20,

+ 1;

hence,

Im% — m3s1 <+/5le, 18,  Im¥ +m38l <+/6le,ls.
Since 0 <M, < 1 and I§y, | <(2AV/3)E, + 1/4, we have

/2
0 <m} +m3s + m38* <o, |2m*—8(ms+ sm¥)l <20, EE, + 1/4;

thus, from (6.2), we get —\/S_D <m¥f<(1+ \/§)D.
Since

0"
36

r

— (0 _
(¢, ++3n,), om%= % (¢, —V3n,) and g l1<1+ a1

o 2 _
Im¥|, lsml < — |1 +2 /—=E, +1/4 )< +/5)82
2 3 38< \/3 r / ( \/)

from Lemma 6.3. [
From (3.2), (6.3) and the results of the above lemma, we get

G 'mplle,_ | <(1 +SW3ED? (i=1,2,3)
Also, by using the above results, we see that £, + Clﬂul <1+ |§Mr| + clnyl, where

* —
m2—

we have

2
S, + 12 <$E, + 1/4 < 45D 40%;
hence,

lg, ! +eln, I <1+3DV5(c2 + 1)/20, (c >0).
Another result of this type is given in

Lemma 66. If (¢, d) €{(1,9), (1/3,27), 9, 1), (3, 3)}, then ct2 + dn} <
307D?/o?.
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Proof. When d/c < 1, this result follows on using the results of Lemma 6.5.
When d/c > 1, we use Lemma 6.4 to show that

gl +dnl = c(El + nldfe) <c(l + 205y, | + 3, + nZd/c)

3|€r|53 d c
<c|l+ +1/4) =+
o? ¢ d-c

<307D%*/o?. O

Let [1,M,, N,] be a basis of R,, where
M, = 1/0071) = (m% + m38 + m%62)/o,,
N, =05 D[00™D) = (n + ngs + n%6)/o,;

and let [1, M, N] be the basis formed by transforming [1, M,, N,] by K, where K =
K,(-k, 1) and

{[n’;/m’;] when m% # 0,
k j—

[n3/m%] when m% = 0.

Our final lemma of this section is

LEMMA 67. If M = (7, + m,8 + m38)/0, and N = (n, + n,8 + ny82)/o,,
then

7,1 < (1 ++/502% + le,l and |m,l, 8limyl, 8lngl < (1 ++/5)52.

Proof. From (3.3), we see that if m% # 0, then

— ok — n m n * *
m, =m%, my=m%, Ingl <Imgl, Inyl <lel/Im%l + Im%l.

In this case the lemma follows easily from Lemma 6.5. If m% = 0, then m, = m%,
my =0, ln,| <lm,l|. Also,since [1, M, N] is a basis of R,,and [1, ®, ¥] is a ba-
sis of R,, there must exist a matrix K = (kii)z %, With integer coefficients such that

Kl =+1 and
s, & m, n,
= _ _ JK.
S3 I3 msy nHj

Since m3 = 0, we have s3 = k, 73 and by Lemma 6.1, In;| < 35. We also have
7,1 < lim,| < (1 ++/5)52 by Lemma 6.5. O

We conclude this section with a summary of the several inequalities derived
here. We give this as Table 3.
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TABLE 3
Description of Symbols Number Inequalities
(6.1)  o?/le,l <3D
See Table 1. (6.2) le,| <o, <3D
6.3) o,/le,| < 3D
64 0,0, <3D
(s, + 5,0 +538%)0, = @, (65) 0<t, +138 <s, + 855 <452

(t; + 1,6 + 13870, =T,

ls, = 8551 <28%; I, — 1,81 < 3.658>

where [1, @, W] is a -basis (6.6) s, I, 81551 <3825 It,1, 16251 < 3.8382
of R,and ¥; (i =1 or 2) is
either of the points which 6.7) Is;1, 12,1 <5D
belong to the puncture of ¥
(6.8)  Imyl + Imy18 < (2 + 20/3)82
9((;) =(m, +m,8 +m48%)/o, —
(69) -3D<m <3 +5/2)D,
Im, 1, 81myl < (1 + 24/3)82
l/eg—l) - 6.10) Im% + m%51 \'~,,"6|er|6
(m* + m% + m*5?)/o, ’ Im% — m381 <+/5le,l8
(6.11)  —/5D<m* <1 ++/5D
(6.12)  Imgl, Im¥ls < (1 ++/5)82
m' =m? —Dm m, o
my = Dm3 —m, m, (6.13) 87 'm}/le, | < (1 +~/5W3D32,

_ 2
my =mj - myms,
where Gg,’) =
(my +m,8 +m48%)/o,

where i = 1, 2, 3.




590 H. C. WILLIAMS, G. CORMACK AND E. SEAH

Description of Symbols Number Inequalities
(¢, m,) is the (6.14) |$“| +cln,l
puncture of 1/6;’_1) <1+ 3DV5(? + 1)/20, (c <0)

(6.15) ¢k +dn’, < 307D%/o,,
where
(c, ) E{(1,9),(1/3,27), (9, 1), (3, 3)}

[1, M, N] is the basis of R,
formed by . transforming (6.16)  In,I < (1 ++/5)8% + le,l;
[1’ 1/0&(,"‘), eglr—l)/eér—l)]
by K,(—k, 1), where

{[ng/mg] when m¥ # 0

lm,y 1, 8lmsl, 17,1 < (1 ++/5)82

[n%/m%] when m¥ =0

7. Modifications of Steps (i)—(iv) of Algorithm A. The object of this section
is to develop an algorithm (Algorithm B) to find P, A € R, such that [1, A, P] is a
basis of R, and such that if (§,, m,) is the puncture of A and (£,, n,) is the puncture
of P, then

£, >§& >0 and Inp|<|n}\|, mn, <O0.

That is, we are searching for a basis of R, which satisfies properties (1) and (2) of a
B-basis. We can certainly find such a basis by using steps (i)—(iv) of Algorithm A;
however, on a computer this algorithm must make use of approximations which may
not be of sufficient accuracy to guarantee a correct answer. We show here how these
steps can be modified such that only rational integer arithmetic is needed at any point.
In order to do this we first require several lemmas.

LeEMMA 7.1. Ifr, s € Z and at least one of r and s is not zero, then

1 1

lr + 561 > > .
P+ slrsl + 8252 (Irl + 1518)?

Proof. Follows easily from the fact that r® + 3D is a rational nonzero integer. [J
Define f(x, y) = x% + 8lxy| + 8%2y%. We now prove

LEMMA 72. Ifr,s,t €Z, D> 12,and s, t are not both zero, then
.

3.18%f(Gs, )

Proof. PutA=r+s8 +18%, 0, =A—r, 0y =A" -1, a3 =A4" —r. Since

lr + 58 + 1821 >

IN(4)l = 144'4" = 14114"1% > 1,
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we have

Al >1/14"12,

Now if vy = la; — a, |, we have

v? = 382%(s® + st6 + 126%) > 15.72;
hence,

v +

Also, |4'1 < 1Al + y; thus, if we assume that |41 <3/3.192, then |4'I <y + 3/3.1¢?
and 141> 1/14"12 > 3/3.12. Since this contradicts our assumption, we must have
|41 > 3/3.192.

COROLLARY 72.1. Ifr,sE€Z, s+ 0,and D > 12, then |r + s61 > 1/3.182s2.

LEMMA 7.3. Ifr, s, t, D are as defined in Lemma 7.1, then r + s6 + 82 and
rl + s[81] + t[8%1] have the same sign when I > 3.182(Is| + 1t1)f(s, 7).

Proof. Let A =1Ir + s[8I] + ¢t[8%] and T = I(r + s6 + t6%). By Lemma 7.2,
ITI > Isl + 1zl > |4 — TI; hence, A4 and T have the same sign and the lemma fol-
lows. O

LEMMA 74. Ifr,s €Z, s+ 0,D > 12 and I > min{3.1151382, Islf(r, 5)},
then r + s6 and Ir + s[81] have the same sign.

Proof. By Corollary 7.3.1 and Lemma 7.1,

(r + s8)| > Isl > 1I(r + 56) — (Ir + s[I16])].

Hence, by the same reasoning as that used in Lemma 7.3, we have our result. [J
For the remainder of the results in this paper we assume that D > 12.

LEMMA 75, Ifr, s, bt u€Z, t +us +0,k= [(r + s8)/(t +ud)],r =r—kt,
"= —ku, lul, 1S s —ul <c,and ft, w), (7, 8, FGF -1, 8 —u) < ¢y, then

[lr + s[81]

when I > min{c,c,, 3.1¢38%}.
1z+u[61]] terez, 316197}

Proof. The lemma is true when 7 + 8 is a rational integer multiple of ¢ + u§.
Assume that this is not the case and that ¢ + 48 > 0; by Lemma 7.4, It + u[81] > 0.
Now

F+s6>0 and r —t+ (s —ud <0;
thus, by Lemma 7 4

Ir' +s'[I81 >0 and (' — 0l + (s’ —w)[8I] <O.
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An easy computation gives
Ir + [I8]s Ir + [I8]s
It + [I8]u It + [I8]u’

and we have the result above. If ¢ + u6 < 0, the proof is similar. [J

COROLLARY 7.5.1. Ifr,s, tu€Z, t+ud #0,k=[(r+s8)/(t +ud)],d=
ts—ru, lul <cg, lt +udl>cy, 1> 3.18%(ldlfe; + cl)3, then

o [ +spn
RETIns
Proof. Puts' =s —ku. We first note that
r + sé d

s
t+us u u(t+us)

If u > 0, then

d
<s' < + u;
t+ ud t+ ud

and if u < 0, then

+u<s' < .
t+ ud t+ ud
Thus, lul, Is'l, s —ul < 1dl/1t + us| + lul < |dl/d; + ¢, and the corollary fol-
lows from the lemma. O
We are now ready to begin describing how to modify Algorithm A. We first
note that by (6.16), we may assume the existence of a basis [1, M, N] of R, such
thatif u = (Eu’ "u)’ v =(%,,n,) are the punctures of M and N, then M = 1/0;’"1),

3 (my + 8my) \/56( éms3)
=—(m ms), = —— (m, — dmy),
BT 2 3 m 20, 2 3
£ =2 (n, + bm) SELA.
=—(n nj), =—— (n, — dny),
7 20, 2 3 UM 20, 2 3

and

(7.1 nyl <1 +/5)6% + le,l,  Imyl, [8myl, 1601 < (1 ++/5)82.

We must also define the integers that will be used in Algorithm B, below. Let
any  =(q, +q,86 + 438%)/0, € R, have puncture w = (£, n,,). We define

X =1142 + [116]Q3, Yw =11‘12 - []16]‘73, JTw = [12\/56]‘12 - [12\/3_62]‘13,

where /,, I, are arbitrary but fixed rational integers. Since

36 56
£, = 2o g, tq38) and n, = % G, —q59),

14 r
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we see that
72) Ew X _ le, 181, ~ [81,])
£, X, Ix,(p, +p38)°
(7.3) n_w_J_’_gl _ le, 181, ~ [81,])
M Vnl |y"(p2 —p36)| ’
a.4) Xo Yol_ 2, [1,6]le,l
Xe Vg |2 1p2 p3[1 6]2|

where m = (§,, n,.) is the puncture of Il = (p, + p,6 + p382)/0,. We also have the
following simple lemma.

LEMMA 7.6. Let w be the puncture of = (q, + q,8 + q;38%)/0, ER,,
where 1q,| + 1q51 < (3 + 24/5)8%. If I, > 8082 and ly, | <I,o0, we must have
In,| <1=+/3/4and if Iy | >1,0,, we must have |n | >~/3/4.

Proof. We note that

. Ve lg,1+ Iq,! LG+ 2/5)52
“ 20, 20,0, 20,
Thus,
Ve 3+2/58% 1 B3
In,| = +7v, where |7|<(——\/—-—)—<——£;
20, 201, 2 4

and the lemma follows.

LEMMA 7.7. With I, > 3.1(2 + 2¢/5)%6° =~ 840.445° and p and v defined as
above, we can replace &, and &, by x,, and x,, in steps (i) and (ii) of Algorithm A.

Proof. By Lemma 7.4 and (7.1) we see that sgn(x,) = sgn(£,), sgn(x,) =
sgn(£,), sgn(y,) = sgn(n,), and sgn(y,) = sgn(n,). Also, if r = Imy £ n,l, then r <
2(+/5 + 1)8 by (7.1) and consequently, sgn(%, — £,) = sgn(x, —x,), sgn(lm, | = In,1)
= sgn(ly,| —1y,1) by Lemma 7.4. O

We have seen that we can replace £, and £, by x, and x,, in steps (i) and (ii) of
Algonthm Aaslongas/, > (3.1)2 + 2\/ 5)385. We need now to establish how large -
I, should be in order to replace Ev/’.;'ﬂ or nv/ny by xv/x“ or y,,/yﬂ in the remaining
steps of the algorithm.

LemMa 78. Let (£, n,) be the puncture of Il = (p, + p,8 + p;62)/0, ER,
such that £, >0, &, <§,, I, <In,l, and let w = (&, n,,) be the puncture of
=(q, + 4,8 +q38%)/o, €R,. If |[£,/t,] = [n,/n,]| <2 and I, > 70855, then
/8] = [xo/xq] and [ng,/n.] = D, /v.]

Proof. Let ky = [£,/¢,], ky = [0,/ E =&, — k& m =1, — kyny,
andj =k, —k,. Wehave0<£<£" and —j <n/n, <-j+ 1. Now § =
36(t + ud)/20, and n = \/?—:6(t —ud)/20,, where t =q, —k,p,,u = q3 — k,;p5; con-
sequently, 38t/o, = & + \V3n, 362u/o, =§- \/?:n, 38(t—p,)o,=E—- &, +
V3 - n,), and 38%(u — p3)o, = £ — &, — V3(n - n,). Since ljl <2, we have Inl,
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In—n,! <3In,| and &I, 15 = & | <&, |; hence, 352 lul/o, and 36%lu — p,l/o, <
g, | + 331, | < g, I+3\/_|n <1 +3\/35D/20,,by (6.14). Thus, we have
lul, lu - p3|<(1+\/ 5)5. Also,

982f(t, w)o} = (& +/3m)* + 1£ +V/B3nllg —/3nl + (& ~+/3n)?
382 + 307 <38 + 2702 (f £ > 3n%)
B {52 +9n? <g +8In}  (if £ < 3n%)
< 3-307D%/d?;
and similarly,
982(t = p,, u = p3)lo? <3 - 307D?%/o?

by (6.15). Also, since 0 < &, < £, and In, | < Iﬂ“|, one can show, as in Lemma
6.5, that Ip,| < (1 ++/5)8; further from (6.10) and (6.2) we get f(p,, p;) <
(Ip,] + 8lp5)? < 6le,Is < 1854,

Since 7, > 7085° > (1 ++/35)8 (3076%)/3, we have

q, + (I36 X
ky =] ——— =] —=| by Lemma7.5.
2 +p36 X,

By a somewhat similar argument, we can show that k, = [y ,/v,.]. In this case
weput § =&, —kyE and n=mn, —k,n,. Thenj<g/E <j+1 and 0 < n/n, <
1. We use (6.14) again with ¢ = /3/3 and the remaining parts of (6.15). O

LEMMA 79. Let mand w be defined as in Lemma 7.8 and suppose © and
form a basis of the lattice of punctures L of R, If I, > (3.1)(3 +/5)%65 =
445.028° we must have [x,[x,] = [£,/8,] when In, | <1 -+/3/4 and Do/l =
[ne,/n,] when In | >+/3/4.

Proof. Since m and w form a basis of L, we must have |p,q; —p3q,1 = le,l;
also, as in Lemma 7.8, we have Ip;1 < (1 ++/5)5. If In, | >+/3/4, then lp, = p36|
> 0,/28;if In,| < 1-+/3/4 <+/3/2, then £, | >+/A/3]2 = 3/16 > 3/4 (Lemma 4.2)
and Ip, + p;81> 0,/25. Since 2le, |8/, <28 and I; > 3.1(3 + \/5)%8%, the result
follows from Corollary 7.5.1.

LEMMA 7.10. Let m and w be defined as in Lemma 7.8 and suppose m and w
form a basis of L. If |[x,/x,] — o, /vl <1, then [¢ /[¢,] = [x,,/x,] and
[ng,/na] = /v, when I, > 7085°.

Proof. We first note that
1

lp, +p38llp, —p38l = I(lp,| + Ip36D)(lp, | = Ipys )l > —n—
Ip,| + Ip,8l

by a direct application of Lemma 7.1. Also, since

20 20 _
g, | < 1,1, In,l<ln,l, and —?’-g’lgm, \/—3_’6|n”|<\/6|e,15
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(by (6.10)), we see that Ip, | + Ip518 <+/6le,|5. Hence,

7.5) Ip% — p381 >

1
Véle s
Since 3D > le, |, 31885 > le,I\/6le,18, and Ipyl < (1 + V/5)8, we get
22028 + le In/6le, 16 < 2(2(1 ++/5)* + 3n/188° <1,.
Put y = (8, — [6/,])/[,. Then 0 <y <I;! and

(7.6) 2v(2p% + le,1) < <

Véle,Is ele,ls
If we put u = (pr% —pg [116]2)/12, v= p% - 62p§, and d = u — v, then 0 <
d< 267p§. Also, since

[17 1
6le,

[x_‘”] _ [’Yi’—l <1,
X yn_
we have
)_C_"_"_y*“’ <2.
Xp  Vn

From (7.4), it follows that lul > [I,6]le,1/I; = (6 — y)le,|. Since lul/lvl <1 +
d/lvl, we get

7.7) M <1+ d

Ip2 - p382I h |p§~—p§62|'
Adding yle,|/1p2 — p382| to both sides of (7.7) and multiplying through by 2, we
have

268le,l d +7le,l d+vle,l
— <2 +2 ’ 72 2+ >
Ip2 — p2s?! Ip2 — p36°! v(28p% + le,l)
where the last inequalities follow from (7.5). (7.6) and the fact that 0 <d < 2p§76.
Since Ip, | + Ip;18 <+/6le,18, we see from (7.8) and (7.5) that

(7.8)

Ip, = P38, Ipy +p381 = lip, | = Ipslél > 2\/6|er|/3\/g.
Now

x| = 11, (p, +P3d) — I;yp3| > 2 \/6le, 136 — (1 + V5%,

hence, Ix,l1p, + p381 > le,| and from (7.2), we see that |£ /¢, —x /x| <1. Sim-
ilarly, we are able to show that In /0, =y /y,I< 1. By Lemma 7.9 either [&/¢,]

= P oo/x] OF [0,/1,] = [Po/¥,]; consequently, | [£,,/&,] = [n,,/n,]1 <2 and our
result follows from Lemma 7.8. O

LEMMA 7.11. Let wand w be defined as in Lemma 7.8 and suppose that © and
w form a basis of L. If j = [x,/x;] = /vl Uy > 7088%), then j and [£,,/§,] —
[n,,/n,] have the same sign.



596 H. C. WILLIAMS, G. CORMACK AND E. SEAH

Proof. By Lemma 7.10 the result is certainly true when j < 1 and by Lemma
7.8 the result is true when | [¢,,/¢,] — [n,,/n,]| <2. Assume thatj> 1 and
&, /8] — [n,/n,] |_> 2. The sign of [§/¢,] — [n,,/n,] is the same as that of
E,16 — g Iny = 3\/3<S3er/2‘g’ﬁn,T and the sign of [x/x_ 1 — [v,/y,] is the same as
that of I, [/, 8]e,/x,y,. Since x_ & and n,y, >0, the result follows. O

We are finally able to present the main result of this section. We give here

Algorithm B, . Let I, I, be any integers such that 7, > 84185, 1, > 8082.
Also, let [1, M, N] be the basis [1, 1/06(,’_1), 0,(1’"1)/08(,"“1)] of R,; and let M =
(my +my8 +m38%)/0, and N = (n, + n28_+ ny8%)/o,. Perform the following steps in
the indicated order:
(i) Transform the basis [1, M, N] of R, by K,(=k, 1), where k = [n3/m,]
when m3 # 0 and k = [n,/m,] otherwise.
(ii) Transform the new basis by (’gl 22), where k; = sgn(x,), k, = sgn(x,).
(iii) If x, > x,, go to (iv); otherwise, transform the basis by K,(1, 1) and go to
(iv) unless y,y, <0 and ly,| > | »,|. If this latter case occurs, transform
the basis by K, (0, 1) instead of K, (1, 1) and terminate B, .
(iv) Ify,p, <0, go to step (v); otherwise
) If [y,/y,] = [x,/x,] =k, transform the basis by K, (—k, 1) until
Du/y,l # [x,/x,]. When such a basis is found execute one of the
following steps.
(2) If [x,/x,] + 1 =[y,/y,] =k, transform the basis by K, (k, —1) and
go to (v).
(3) If k = [x,/x,] = v,/y,] + 1, transform the basis by K, (—k, 1) and
go to (V).
(4) If [x,/x,] < [v,/y,] — 1, transform the basis by K ([x,/x,] +1,-1)
when |y, | <I,0,; otherwise, transform the basis by Ky (vl = D.
Terminate B, .
() If [x,/x,]1 > [v,/y,] + 1, transform the basis by K [xy/x,1, 1)
when [y, | <I,0,; otherwise, transform the basis by K, (—[y,/v,] =1, ).
Terminate B, .

v) If y,| > v, | terminate B,. If [yMI < |ly,| transform the basis by
K, (=[x,/x,], 1) when [y, | <I,0,; otherwise, transform by K, ([-»,/»,], 1.

THEOREM 7.12. If [1, A, P] is the basis of R, which results on executing Algo-
rithm B,, then £, > £, >0 and In,| < Iny|, ny\n, <O.

Proof. 1f, starting with the basis [1, M, N] which results after performing step
(i) of Algorithm B,, we execute steps (i)—(iv) of Algorithm A, we will certainly pro-
duce a basis of R with the same properties as [1, A, P] above. We have already seen
in Lemma 7.7 that, in this case, steps (i) and (ii) of A can be replaced by steps (ii)
and (iii) of B,.

Ifu= (Eu, 1_1"), v = (Ev, n,) are the punctures of M and N and u = (s s
v = (£,, m,) are the punctures of the basis produced by Algorithm A at the beginning
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of step (i), then |£,| = £, = 38(m, + 6m,)/20,, In, | = I, | and Iny| < 2im;] <
2(1 ++/5)8. Indeed, if n,M, <0, then In,| = In,|. Thus, by Lemma 7.4, sgn(n#nv =
sgn(v,»,). Now at any point in the execution of substep (a) of A(iii), our new punc-
tures u and v satisfy the inequalities |£,| < IE | and In,| < Inﬂl thus, if [[x,/x,] -
D, I <1, then [x /x,] = [£§,/E,], Iy /y”] [n,/n,] by Lemma 7.10. Also, if
[ /x,] > Dp] + 1, then [£,/5,] > [n,/n,] + Land if [, fy,] > [, fx,] + 1,
then [nv/nu] > (£ /gu] + 1 by Lemmas 7.10 and 7.11. Now, if Iyﬂl <I,0,, then |n,| <
1 —+/3/4 and if [y, = 1,0,, then In,| > +/3/4 by Lemma 7.6; hence, by Lemma 7.9,
if ly,| <I,0,, then [x /x,] = [£,/¢,] and if V.l =10, then [y /y,] = [ny/m,]. It
follows that we can replace step (iii) of A by step (iv) of B, and still obtain a result
that some form of Algorithm A would produce.

If we use Algorithm A on [1, M, ]T’] and arrive at the beginning of step (iv) with
a new basis with punctures u = (§,, "u)’ v = (£,, n,), then either 0 < £, = Igul, |7I,L| =
@), In,l = I,) or 0 < &, <&, <[E,l, In,| < m,l, In,| < Im,, the latter case occur-
ring when either (iii)-b or (iii)-c is executed. It follows that in each of these cases we
have |ng, Im4l < (1 + \/5)6. By Lemmas 7.4, 7.6, and 7.9 we see that step (v) of B,
can be used to replace step (iv) of A and the basis [1, A, P] which results on perform-
ing this step will have the required properties. [

In the next section we show how we can modify step (v) of Algorithm A in
order that only integers are used.

8. Modification of Step (v) of Algorithm A. Let u = (§,, n,), v = (§,, n,) be
the punctures of M = (m, + m,8 + my82)/o,, N = (n, +n,6 + n362)/or, respec-
tively. For the result that follows we assume that u, v forms the basis of L which
results on applying Algorithm B;. For this basis we have
3.1 £,>£,>0, Inl>Inl nn, <O0.

We must now prove some preliminary lemmas.

LeEMMA 8.1. For the u and v described above, we have

£,/3, 8,03, 1n,IIN/3, n,IN3 < (3 + 2/5)D/20,.

Proof. We first note that since 1, and Ny have different signs and £, £, > 0,
we have £, In, |, £,In,| <E,. Thus, if In,| <1 —/3/4 <+/3/2, then £, >
VABJ2 = 3/16 > 3/4 (Lemma 4.2) and In,|A/3 < 4E,[3v/3 = 2Dle,1/a? < 2DJo,
by (6.2). Also, if n,, >+/3/4, then £,/3 < 2D]o,.

If we arrive at the end of B, by skipping over all the substeps of (iv) and step
(v), then, since 1£,1, In,| do not change after (i) has been executed, we get

£,/3 < 8/6le,18/20, < 3v2D/20,,
In, V3 < In,IA/3 < 8y/51e,18/20, <~/15D/20,

by (6.10). We also have eiiher £,/3<2¢,3< 6D/20, or Iny| < (1 + \/5)6. In the
latter case, if In,| < 1/24/3, then In, — ny8| < 0,/36 < 8% and 20,%,/36 < 8% +
21+ /582 = 3 + 2562 If In, | > 1/24/3, then In,| > 1/24/3 and £,/3 <
2V/3E,[3 < 6D/2o0,.
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If we arrive at the end of B, by executing step (iv) or step (v), then we must
execute one of substep (4) of (iv) or substep (5) of (iv) or step (v). If u= (E“, M)
is the puncture of M just before either of [(iv)-4, (iv)-5 or (v) is executed, we get

_ 33 9D
g 1, In | <—+/6le,l6 < ,
g1, I, 20, Véle, .

g,

by using the reasoning in Theorem 7.12, (6.10) and (6.2). If, in any of these steps,
we start with I)—zl—ll < I,0,, then, since a transformation of the form K (a, b) is used
to obtain p and », we get v = u. Hence, by Lemma 7.6, we see that In,l <1- \3/4
and, therefore,

In, |3 < (1 -\/B3/4)3 < 3Dlo,, In,IN3<2D/o, £,[3<E/3< 3v/2D/20,.

If we start with |y >1,0,, then a transformation of the form K,(a, b) is used and
p= 1. It follows in this case that In,| >+/3/4 and

£,/3<§,/3<2Do,, In,IN3< In,|\/3 < 3v/6D/20,.

The lemma is now proved. O

LEMMA 82. Let u, v be any basis of L such that (8.1) is true. If Inul > \/3/4,
¥, > 1,0, U, > 808%), In,IN/3 < (3 + 2/5)D/20,, then n,| > V3/4, Iny| + Iny18 <
G + 2582, and In,|, 5ny] < 2 +V/5K%; if In,| <1-+/3/4, | <L0,, £,/3 <
@ + 2V/5)D/20,, then In,| < 1=+/3[4, Im,| + Im318 < (3 + 2v/5)%, and Im,|,
ol < (2 + /52,

Proof. We prove the second part of this lemma here. The proof of the first
part is similar and somewhat easier.

Since In,| < 1-v/3/4 <+/3/2 and In,|&, < E,, we have £, > /1 —n} > 3/4
(Lemma 4.2) and In,| <4E,/3. It follows that Im, —m38| < 4le,182 /0, < 48°.
Since Im, +m381 < (3 + 2V/5)82, Im, | + Im381 < max{(3 + 24/5)62, 482} =
(3 + 24/5)2 and from Lemma 7.6 we see that I, | <1- \/3/4. We also note that
since In, 1§, < g,In,| <E,, we have

82) Im2 — m2821 < 2le, 18 < 68%.

If Im, — my81 <82, then Im, |, 18my1 < (8> + (3 + 2/5)6%)/2 <
(2 ++/5)8%. 1£6% < Im, — m,81< 287, then, from (8.2), we have lm, + 8m;| < 65
and Im, |, 18my| < (282 + 65%)/2 = 48>, Finally if lm, - m48%1 >282, then
lm, + 8my| < 35 and Im, |, I6myl <3.56%. O

We now consider the following algorithm (Algorithm B,). We assume that we
begin with a basis [1, M, N] whose punctures u = (£, )V = (¢,, n,) have the
properties (8.1).

Algorithm B,. If |y, | > 1,0, and ly,1 <I,0,, we terminate the algorithm
immediately. When these conditions are not satisfied and |y, | <7, g,, execute step
(1); otherwise, execute step (2).
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(1) Transform the basis [1, M, N] by K, (=k, 1), where k = [x,/x,]. Con-
tinue doing this until 1y, | > I,0,. At this point terminate the algorithm.

(2) Transform the basis [1, M, N] by K;(1, k), where k = [~y,/y,]. Con-
tinue doing this until |y,| <I,0,. At this point terminate the algorithm.

Put [1, M¥, N*] = [1,1/6771), 01/ 1)], where 07 ~1) and 6( ") are
defined in Section 2. We now prove

THEOREM 83. Letl, >3.1(2 +4/5)%5°5 and I, > 8082, If the basis [1, M, N]
is the basis of R, which results on applying the steps of the Algorithm B, to
[1, M}, N¥], then Algorithm B, terminates.

Proof. Suppose we deal with step (2) of B,. By Lemma 8.1 we have In,| +
8lnyl < (3 + 24/5)82; and since 17,1 >1I,0,, we have In,| >+/3/4 by Lemma 7.6.
From (8.1) it follows that In,| > \/3/4 and from Lemma 8.2, we get Ingl <
(2 ++/5)5. Thus, since

le,1/1n, — 8nyl + Ingl < 28le,lfa, + (2 +/5)8 < (2 + 2/5)8,

we deduce from Corollary 7.5.1 that k = [Iﬂu/ﬂ,,'] = [Iyu/yvl]. If we put n,(,l) =
My 1§ =, k; = [Pyt DI1], we see by Lemma 8.2 that step (2) of B, will
generate a sequence

83) R O N QN

L]

where 1Y D1 >1,0,,n0*?) = kUt 1) + n0), ni*2Inl+ 1 <0 and
In{D1 > 1921 > 3> > IgI> -

By Lemma 8.2, we know that, if 20,17,9‘)/\/55 = ngf ) + ngj)ﬁ, then the values of
Ingf)l and 161’1 are bounded by (2 +4/5)82, thus there can be at most
42 ++/5)*D different pairs (n{), n{?). If 1y > 1,0, forj=2,3,4,...,h>
4(2 ++/5)2D, we must have r < s < & such that (ng’), n(')) = (ngs), n(s)). Slnce
In(’ )| > In(s)l this is impossible. It follows that we must eventually find some & <
4(2 ++/5)D? such that | y(h)l <I,0,. The proof that step (1) of B, terminates when
ly, | <I,0, is similar to the above. O]

When, after being applied to the basis [1, M, N] above, Algorithm B, terminates
we have a new basis [1, ¥, ®] of R,, where

(84) D= (s, +5,8 +538%)0,, W=(t +1,6+ 1,60,
If¢o= (4o n¢) is the puncture of ® and ¢ = &y, ’74/) is the puncture of ¥, then
Ing I <l 1, nyny <0, £, >§, >0, lysl<ol, and yyl=o0,.
LEmMMA 84. If I, > 1284/38°%/3 =~ 73.908%, then [1, ®, ¥] is a f-basis.

Proof. If we find ® and ¥ by executing the steps of part (2) of B,, we have
20,In, I\/38, 20 In¢|/\/36 < (3 + 24/5)62. Also, since n,, precedes n,, in (8.3) we
have ln | >+/3/4 by Lemma 7.6. It follows that ls, + 8s;1 < 482 and |s, — s,
<(@3+ 2\/5)82 and by Lemma 7.6, ln¢| <1- \/3/4 By similar reasoning we can
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show that if we execute the steps of part (1) of B,, we have In,| <1 - \3/4, In\p |
>+/3/4. If ® and ¥ are found without having to execute either step (1) or (2) of
B,, then Inyl <1 —+/3/4 and In, | >+/3/4 by Lemmas 7.6 and 8.1.

Now In\pl = I)_/w 1201, +v=>1/2 = lyl, where |yl < (I2,| + |2318)/20,1, <
282/0,[2, from the proof of Lemma 6.1. Also,

Ingl/2 = \/§¢Sls2 - s381/40, > \/3:8/’40r(|szl + 1s518)*)  (Lemma 7.1);

hence, from Lemma 6.1,
V3 2
>—> |yl

|n¢|/2 > 640D ol, 7!,

and Inw 1> = In,l)2. O
Let Algorithm B be that algorithm which we obtain on using Algorithm B, to

substitute for the first four steps ((i), (ii), (iii), (iv)) of Algorithm A and Algorithm B,
for the fifth step (v) of A with 7; > 3.1(2 + 24/5)>8° and I, > 128/36%/3. We
have now proved the following

THEOREM 8.5. If 0 is the puncture of 0, the relative minimum of the second

kind adjacent to 1 in R,, then
0 =ap + by,

where (a, b) €{(1, 0), (0, 1), (1,-1), (1, 1), (2, 1)} and ¢and Y are the punctures
of ® and ¥ found by using Algorithm B on the basis [1, M}, N¥] of R,.

In the next section we show how to find 0;') once ® and ¥ are known. As in
Algorithm B, we wish to use as much integer arithmetic as possible.

9. Determination of 0(’ ). Let [1, ®, ¥] in (8.4) be a B-basis. In order to de-
termine the set S in Section 5 we need to be able to discover when &, > 1 /3, £y <
1/2,and In, | < \/3/2 by using only integers. To this end we define the symbols

Xw = [136]Q2 + [1362]CI3) Yw = [1381512 - [1382]Q3a
where I is an arbitrary but fixed integer. Here w = (¢, n,,) is the puncture of any
Q=(q, +q,8 +q38%)/o, ER,.

Now &, = 3X, /250, + v, where |yl <3(lt,| + 1131)/2;30,. If I3 > 15082,
we see from (6.5) that |yl < 1/25; thus, when 4X, > 0,15, we have 3X, /2130, >
3/8 and £, > 256. Also, when 4X, <o,5, wehave §, <% ;> 15082).

To determine whether or not In\p | <+/3/2 is somewhat more difficult, we first
note that In, | <+/3/2 if and only if € = sgn(o, — |62, = 8%t,1)> 0. From (6.5)
we have It2| +8lt51 <482 and 3.182(It, | + 14512, t3) < 3.162(482)% < 20068,
It follows from Lemma 7.3 that sgn(/30, — IY ) = e when I3 > 20068, It should
also be noted here that if Q = 0(’) then from (6 8) we get g, | + lg518 <
(2 + 24/3)82 and

9.1) 50668 > 3.1(2 + 24/3)%6% > 3.182(Iq, | + lg51)f(a,, 45).
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Hence, we can determine whether or not In | < \/3/2 by checking whether or not
Y, | <oldj;.
We now have

LEMMA 9.1. Let S be defined as in Section 5. Then, if I, > 20088, S is
given by Table 4 below.

TABLE 4
restrictions on
Xy and Y, S
IY\[J|<0V[3 {(l, 0)’ (0) 1)’ (1’—1)}
41X, 1 > oI, {(1,0), (0, 1), (1, -1), (1, D)}

1Y, 1> 0,05, 41X, 1 <oy {(1,0),(1,-1), (1, 1), (2, 1)}

Proof. Follows from the above remarks and Table 2 of Section 5. O
We must now show how to find that element of S to which the puncture of
0&(,’) corresponds. If @ = a® + b¥ + ¢ = (g, + q,8 +q38%)/0,, theng, = 0,c +gq,
q =as, +bt, q, =as, +bt,,and q; = as3 + bt3. Also
[_ai-cp _bfxp] =[(-2¢9 + CI26 + Q352)/20r]
=[(-2q + {Q26 + Q362])/20r],
[1/2 —aiy —bég] = [(0, — 29 + q,8 +¢38%)/20,]
= [(0, —2q + [q,6 +q55*])/20,].

©.2)

We now prove
LEMMA 92. Ifr, s, t €Z and s and t are not both zero, then
[r + 58 + ¢82] = [(r] + s[8I] + t[821])/1],
when I > 3.18%(ls| + 1tDf(s, o).

Proof. In the inequality |r + s& + 821 > 1/3.182f(s, ¢) of Lemma 7.2, we
note that the right-hand side is independent of . If we put T = 56 + 182 and select
rsuch that r + T = { T}, then {T}> 1/3.16%f(s, t). If we select r such that r + T =
1 —{T}, then 1 — {T} > 1/3.1621(s, ).

If we put A = (s[81] + ¢[821])/I, then

4 - Tl < (sl + 1thyr < 1/3.18%f(s, o).

Hence, |14 — T| < min({T}, 1 —{T?}) and we have [T] <A < [T] + 1. The lemma
now follows easily. O
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Now if Q = 0;’ ) then Q* = §; thus by the remarks in Section 4, formulas
(9.1) and (9.2) and Lemma 9.2, we have ¢ = [ or possibly / + 1, where
[0, ~ 24 + X, /I3 )20, (1Y, 1>a,03),
and I3 > 50688. Further ¢ can be / + 1 only when 1Y | < 0,75 and
(94) (20,1 + 29 = q,8 — q38%)[20, <—1/2.
By (9.1) and Lemma 7.3, we see that (9.4) is true if and only if
9.5) X, — 2039 > 150, + 20,1

If, for each element of the set {a® + b¥I(q, b) € S}, we calculate possible
values for ¢ and © = ¢ + a® + bV by using the formulas (9.3) and (9.5) above with
Iy > 50688, we get a set P={Q,, Q,, Q3, . . ., }, where k < 8 and
Q =(,; t 9,8 + q3;5%)/0,. One of these £, is 6;,’), Further, if Q =
(@, + 4g,6 + q38%)/o, is any element of this set, then by (6.5),

©-6) lg,| + lg;18 <a(ls,| + Is518) + b(lt,| + 1£518) < 1282
and

IX /5 —a,8 —q38%1 <(lg,| + lg; )1 <1
Since —2 < [r] —s <1 when Ir — sl <1, we see, on putting r = ([X,/I3] — 29)/20,,
s = (-2q + 4,8 +q38%)/20,, that [§ | <2. Since q,/0, = {q + £,/3, we have
lg,1 <20, + 1283/2 from (9.6) and, therefore,

9.7 lg 1 < 12D, lg,1 <1282, lq,l <128.

For each ; = (q,; + 4,6 + 43;8%)lo, € Pdefine W; = q, 15 + q,;[[38] +
q3;[158%], and let W = {W,|Q; € P}. We now prove

LeEmMMmA 9.3. If W; is the least element of W such that Q]. € C, then 02,’ ) = Q]..

Proof. If Q€ CN P, then {g >—1and £, > 0; hence 2 > —1, and, since 1
is a relative minimum of R,, we must have £ > 1. It follows that 0;’ ) is the least
element of C N P.

Suppose £; = Hé’) # Q5 then X = (x; +x,6 + x38%)/0, = Q-Q,>0.
Further, |x,| + 8lx;1 < lm,| + Imy18 + gyl + 1g5,18 < (2 + 2/3)8% + 1282 <
1852 by (6.8) and (9.6). If x is the puncture of X, we see that, since Q;, Q€ C, we
have I$x!, In, | <2. Now X € R, and 0, 0,le,||N(o,X) by Theorem 3.2; hence,

NX) = 1XI@m2 + £%) > o, le,l/o} = 1/Q, > 1/3D
by (3.1) and (6.4). Since 1% + ¢% < 8, we find that |X| > 1/24D and
I50,1X1 > 506680,/24D > 1852 > Ix, | + lx318 > 30X — W; + W,1;

thus, sgn(X) = sgn(W; — W;). Since X > 0 and W; = W; <0 (by definition of ),
we have a contradiction. O
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It remains to devise a technique, which uses integers only, to determine when
€ € C. We do this in

THEOREM 94. If q, + q,[I38] + q5[1582] is the least element of W such that
02Q? > 371,(0,4)/le,| —q,%) + 22,
where 1, = o,/le,|, ¢y = q% —Dq,q3, a5 = Dq} — q,4,, 493 =42 —q4,q3,and T =
0,4y + D@,q5 + 43a3)/le,lo, then 6 = (g, +q,8 +q38%)/o,.

Proof. If Q € R,, then © € Cif and only if Q'Q" < 1. But Q'Q" < 1 if and
only if QN(Q) < Q2 or NQN(Q — N(Q)) = N(Q2 — QN(Q)) > 0 (since A and N(4)
have the same sign). It now suffices to note that

N(Q — N(Q)) = NMQ)(1 — TH(QL') + N(Q)Tr(R) — N(Q2)?)
_N)

4
o,

(6% -3¢0 + 30,q,N(Q)a? — N(Q)*3})

r r

_ N(Se?

- 4 (U%QE - 3Tr(0rqll/|er| - qlz) - 22)’
¥

from (3.1). O
Note that from Theorem 3.2 both Z and q;/le,lare integers. Also, if Q = 0;’ ),
then

(9.8) z = 2N le,| = 02, \/le,, | = 0,0,,, <3D
by Theorem 3.3, (3.1) and (6.4).

10. The Final Algorithm. We are now able to present the algorithm for deter-
mining R for Q(?/D) in its entirety. We first assume that & = </D has been calcula-
ted with sufficient accuracy that we can determine

d, = 1,81, d,=W30L8], ds=[N3L8%], ds=[I58],
ds = [[38%], where I, = [8418°D] + 1,1, = [8082D] + 1,1, = [506D?82] + 1.

In practice this is easily done by using Newton’s method to determine §. We also de-
termine g, such that D = glg%, (8,,8,) = 1and g,, g, are square-free.

When D = £1 (mod 9), we put m, =0, m, = 3g,, my =0, n, =g§, n, =
ig%, ny =1,0=0, =3g,, e =e, =3g,;otherwise, putm, =0,m, =g,, my =0,
ny =0,n, =0,n3 =1,0, = 0 =e=e, =g,. We also initialize the value of r
to be 1 and that of R to be 0.

Algorithm.
(I) Calculate, by using Algorithm B, the coefficients s, s,, 55, t,, £, #3
of the elements ® and ¥ of the B-basis [1, D, ¥] of R,.
(I) Determine 0&(,' ), 0,(,’ ) and increase R by log 0;’ ). Calculate the coef-
ficients m,, m,, my, ny, n,, ny and o,,, of the basis [1, 1/0¢7,
05107 of R, .
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(Il1) Find e,,, = myny —nymyz. If 0,,, = o and le, | = e, terminate
the algorithm; otherwise increase r by 1 and return to (I).

We now describe the algorithms of I and II in more detail. We define as above
X, =I,m, +dm;, Yu =Im, —dm,, x,=In,+ d,ns,
Yy =Iny —dny,  y, =dymy —dymy, y, =dyn, ~dsns.

Algorithm 1.

(i) Transform the basis of R, by K,(=k, 1), where k = [n3/m;] when
my # 0 or k = [n,/m,] when m; = 0.

(i) Transform the basis by (%} iy)> Where k; = sgn(x,,), k, = sgn(x,).

(iii) If x, <x,, transform the basis by K, (1, 1) and go to (iv) unless

Y, <0 and ly, 1> 1 Vy |. If this latter case occurs transform the
basis by K, (0, 1) instead of K,(1, 1) and go to (vi).

(iv) Ify,y, <0 go directly to step (v); otherwise,

M) if [y,/y,] = [x,/x,] =k, transform the basis by K, (%, 1)
until D/,,/y“] #* [x,,/x“]. When we find a basis such that
Wu/y,l # [x,/x,] we execute one of the following steps.

() If [x,/x,] +1=1[,/y,] =k, transform the basis by
K, (k, —1) and go to (v).

(3) Ifk = [x,/x,] = v,/y,] + 1, transform the basis by
K,(-k, 1) and go to (v).

@® If [x,/x,] <y,/y,] =1, then transform the basis by
K, ([x,/x,] +1,=1) when |y, | <I,0,; otherwise, transform
by K (3], ~1). Go to (vi).

6) If [x,,/x“] > [y,,/y“] + 1, transform the basis by
Ky (= [x,/x,]1, 1) when |y | <I,0,; otherwise, transform by
Ky ,/v,] =1, 1). Go to (v).

) I ly,I>ly,l, go to (vi). If ly,I <ly,l, transform the basis by
K, (= [x,/x,], 1) when |y, | <I,0,; otherwise transform by
K2([_yy/yu] H l)‘

(i) If Iy, > 1,0, and ly,| <I,0,, terminate Algorithm L. If Iy, | <
I, 0, execute step (1) below; otherwise execute step (2).

(1) Transform the basis by K, (—k, 1), where k£ = [x,/x,]. Repeat
this process until |y, | > I,0,; at this point terminate Algo-
rithm 1.

(2) Transform the basis by K5(1, k), where k = [-y,/y,]. Repeat
this process until 1y,| <7I,0,; at this point terminate Algo-
rithm 1.

Note that in the process of making all the calculations needed to execute Algo-
rithm I we never need an integer larger than max(n,, m,, ny, m3)l,. However, this
is always less than (le,| + (1 + /5820, < (3D + (1 ++/5)6%)1,. Also, if we did
not wish to carry the values of m, and n, during these calculations we could still
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determine s, and ¢, by using the formulas

ety =kymy tkipng, es; =kyymy +kyong,
where

% * %
. _t2 n} m3 t, _1"M2 5

ki, = 22 T

11

b

b

%1’ * *
ty n} m3 i, msz S3

and n%, n%, m%, m¥ are, respectively, the values of n,, n3, m,, my before Algorithm

I is executed. In order to ensure that s, and ¢, are not too large, we can reduce
them modulo o,.

Algorithm II.

(i) Initialization. Put 7, = o,/le,|, Q = 0,7,. Calculate s,d,, s3ds,
tydy, t3ds, Q%, 003, Xy = 5,d, +53ds, Yy = 5,d, —53d5, X, =
tdy tt3ds, Y = t,d, — t3ds.

() If 1Y, 1 <03, put k =3 and (a;, by) = (1, 0), (a,, b,) = (0, 1),
(a3, b3) = (1,—1). When |Y 1> 0,5, putk =4. If 41X, | <
o3, put (a,, b,) = (1, 0), (a5, by) = (0, 1), (a3, b3) =(1,-1),
(a4, by) = (1, 1); otherwise put (a;, b;) = (1, 0), (a,, b,) = (1,—1),
(a3, b3) = (1, 1) and (a4, by) = (2, 1).

(iii) For each pair (a;, b;) calculate q; = a;s; +b;t), X; =a Xy + b, X,

Yi=a,Yy +b,Y,.
If 1Y;l <oJ;, put

[X;/15] — 2q;
L= l:_lz—‘_"' s 4y, =4q; Yol
o

r

If X; = 203q; > 20,15l,; + 0,5, put

hi=h;+ 1, 4y;,=4qy; +o,
If 1Yl > 0,15, put

lli:[ r 120 ‘ 4y =4t ok

r

Let W = {I3qﬁ + X;li <k, j<2}. Since t; and s, have been reduced modulo
0,,q; <3 max(ty, s,) < 9D and 120,151, ;| < |X;| + 12q,]5| + 20,15, we see by
(9.6) that the largest integer needed in the calculations of Algorithm II to this point
is less than (24D + 1382)/;.

(iv) Find the minimum /3q;, + X, of the set W. Put m, = Q> My =

a.s, +b.t,, my =a.s3 + b,y and calculate the integers (Theorem
3.2)

m, = (m% — Dmymy)/le,|, m, = (Dm3 —mm,)le,l, my=(m3—mmj)le,l,

Z = (m,m,; + D(m,my + mym,))/o,.
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If either L
7,1 > [(1 +/5WV3DD], 1yl > [(1 ++/51/3D52],

51 > [(1 +/5W/3D8], or = > 3D,
then by (6.13) or (9.8), (m, + m,8 + m382)/o, + 0;’) and we
eliminate /39;, + X, from (V and return to the beginning of step
(iv). (This step is optional. It simply ensures that the numbers
m,, m,, my and Z do not get too large.)
If 2% + 37,(m, 0, — m, ) > Q?, eliminate I;q;, + X, from W
and return to step (iv); otherwise, put n, =¢,, n, =t,,ny =t3
whenk =1orn, =s,,n, =s,, hy =s; whenk #* 1.

(v) Find d = g.cd.(m,, m,, m3) and replace the values of /7; by those
of m,/d (i = 1, 2, 3). Calculate n, = n,m, + D(nym, + n,imy),n, =
nym, + n i, + Dnyfiy, ny = nyi, + nyi, + n, iy, d =
gcd.(n,,n,,ny,0,), 0, = 0,/d

n,=nfd, (i=1,2,3),0,,, =2/dd.

Put m; = o,m,

From (6.6), (6.11), (6.12) and the fact that n; < 0, < 3D, we see that the
numbers in (v) never exceed 36D%. Also, in step (iv), by (9.7), Im, | < 12D, Im, |
<1262, Imy| < 128; thus, we have |, |, 17, |, |, | < 288D2.

11. Implementation of the Algorithms. Programs implementing the algorithms
described above were written in Assembler Language for an IBM 370-168 computer.
Use was made of double-precision arithmetic in all steps of the algorithms except in
steps (i), (ii), (iii) and part of step (iv) of Algorithm II, where some extended-preci-
sion arithmetic was necessary. In the process of running these programs it was found
that the speed of the algorithm could be improved by making the following alterations.

(1) When D > 579 check in step (iv) of Algorithm II whether or not

23 ]
IYKI>[TorI_,] + [582]

before calculating m,, m,, M. If ef;) =Q, = (m, + my8 + m38%)/a,, then from
(6.9) Im,| + Imy| < (24/3 + 1)82 + (2/3 + 1)6 < 582. Thus, if

23
|YK|>[io,13 + [562],
3 i
then

1Y, 1> o5+ Imy| + Imyl.

2/3
3

Since |2arn/\/§— Y/I;1 < (Imy| + Img1)/I5, where (§, n) is the puncture of Q,, we

see that Ipl > 1. It follows that Bs(,') # Q,, and we can eliminate /3q;, + X, from (.
(2) Calculate R by adding log(8{V0%*+1gk+2) . . . gk+15)) ingtead of

Z13, log Gfg"”). This decreases the use of the expensive routine to calculate log x.
With these improvements the computer was able to calculate [1,M,,,, N, ,]

from [1,M,, N,] in less than 500 u seconds. This improved the speed of our previous
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algorithm [2] by a factor of 10. Much, but not all, of this increase is due to the
change in computer language from FORTRAN H to Assembler Language.

These programs were run for all 8984 Q(8) such that D < 105 and the class
number of Q(8) is not divisible by three. These fields are those for which (Honda
[4]) D has the following values:

@ D=3,

(i) D=p, p=-1(mod 3),

(iii) D = 3p or 9p where p =2, 5 (mod 9),

(iv) D = pq, where p =2,q =5 (mod 9),

) D= p%q,wherep=q=2,5 (mod 9) (p < g).

Here p, q are primes. After the regulators were calculated, the class numbers (D)
were evaluated by using the method of [8]. In the tables below we give some of the
results of these calculations.

In Table 5 we give each class number / found, together with the frequency f(h)
with which % occurred, the percentage 100f()/8984, and least D value such that Q(8)
has class number #.

TABLE 5
h £ (h) 100f (h) /8984 D
1 4537 50.50 2
2 2132 23.73 11
4 882 9.82 113
5 258 2.87 263
7 160 1.78 235
8 297 3.31 141
10 102 1.14 303
11 38 0.42 2348
13 29 0.32 1049
14 49 0.55 514
16 96 1.07 681
17 14 0.16 8511
19 16 0.18 667
20 54 0.60 761
22 22 0.24 281
23 7 0.08 21241
25 8 0.09 10181
26 11 0.12 3403
28 34 0.38 509
29 6 0.07 12079
31 2 0.02 16553
32 19 0.21 2399
34 10 0.11 1719
35 3 0.03 37207
37 6 0.07 5545
38 5 0.06 12813
40 17 0.19 2733
41 3 0.03 6659
43 5 0.06 32847
b4 9 0.10 4817
46 2 0.02 59975
49 5 0.06 8171
50 6 0.07 14372
52 6 0.07 4793
53 1 0.01 38373
56 11 0.12 857
58 2 0.02 6814
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h f (h) 100£(h) /8984 D
59 1 0.01 95905
61 1 0.01 36161
62 2 0.02 42407
64 7 0.08 9749
65 1 0.01 88169
67 2 0.02 14073
68 4 0.04 9521
70 3 0.03 3467
71 3 0.03 3539
74 1 0.01 3581
76 2 0.02 23469
79 1 0.01 61741
80 6 0.07 4799
83 1 0.01 17362
85 2 0.02 10783
86 1 0.01 43403
89 1 0.01 64882
92 1 0.01 15131
95 3 0.03 15797

100 4 0.04 31547
101 1 0.01 48767
104 3 0.03 11549
110 2 0.02 17333
112 2 0.02 11665
115 1 0.01 99973
118 1 0.01 47093
121 1 0.01 57543
124 2 0.02 35349
127 1 0.01 2741
128 1 0.01 5987
136 4 0.04 3209
140 1 0.01 36263
148 3 0.03 60149
149 2 0.02 52737
154 2 0.02 9041
155 1 0.01 36107
158 1 0.01 66813
161 1 0.01 95001
170 1 0.01 45321
175 1 0.01 5711
181 1 0.01 12251
191 1 0.01 47639
193 1 0.01 46783
196 1 0.01 10522
200 2 0.02 12197
214 2 0.02 16823
230 1 0.01 4451
232 1 0.01 84093
254 1 0.01 8002
262 1 0.01 28979
280 1 0.01 35969
284 1 0.01 25913
296 1 0.01 26601
305 1 0.01 39821
316 2 0.02 39106
334 1 0.01 87257
340 1 0.01 18257
352 1 0.01 51549
358 1 0.01 27329
370 1 0.01 73779
389 1 0.01 24023
392 1 0.01 67157
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h £ (h) 100£ (h) /8984 D
400 1 0.01 53434
421 1 0.01 47303
433 1 0.01 69539
583 1 0.01 63766
628 1 0.01 61547
698 1 0.01 30867
706 1 0.01 26991
748 1 0.01 17573
827 1 0.01 97066
920 1 0.01 17579
980 1 0.01 38463

1190 1 0.01 74079
1442 1 0.01 32771
1484 1 0.01 79601
1640 1 0.01 54874
2380 1 0.01 54869

In Table 6, we give the values of D, the regulator R(D) of Q(8) and J, the length
of Voronoi’s algorithm period for § such that R(D) > R(d) for all d such that 8429
<d<Dand 3% h(d). For the earlier part of this table see Table 5 of Barrucand,
Williams and Baniuk [1].

TABLE 6
D R(D) J
10037 17941.60487 15972
10067 18150.81288 16318
11621 25661.99636 22908
14897 28630.01878 25280
15261 28634.12148 25190
15527 31541.56340 27991
17669 32388.80366 28517
19391 42811.86808 38337
21839 47361.35191 42122
22469 47942,75017 42716
26417 56816.82041 50385
28517 57091.82492 50671
29063 63398.84106 56707
32213 71481.68242 63674
34607 75693.99813 66931
36821 76097.18294 67252
38039 79677.96103 70707
39129 87213.59555 77128
39521 92172.43813 81615
43863 101072.02023 89956
54293 108016.52068 95477
55901 115433.63108 102213
56993 117983.12761 104106
60887 130509.10552 116010
62889 135188.22005 119536
66431 150019.35639 133096
72227 154817.70011 136734
72617 168197.50896 149072
76259 172072.28147 152790
84629 180297.38717 159867
88661 191840.92392 169795
90033 198214.96650 175891
92009 218706.73901 193034

96797 222426.50649 197114
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Finally, in Table 7, we give the continuation of Table 3 of [8]. Here n(x) is

the number of primes g (¢ =—1 (mod 3)) which are less than or equal to x and g(x)
is the number of those primes such that 4(g) = 1.

TABLE 7
x 100g(x)/n(x) x 100g(x)/n(x) x 100g(x)/n(x)
36000 47.327 58000 48.474 80000 47.984
37000 46.910 59000 48.381 81000 48.030
38000 46.951 60000 48.225 82000 47.978
39000 46.945 61000 48.250 83000 47.975
40000 47.326 62000 48.210 84000 47.959
41000 47.190 63000 48.315 85000 47.837
42000 47.528 64000 48.260 86000 47.824
43000 47.184 65000 48,313 87000 47.798
44000 47.302 66000 48.336 88000 47.810
45000 47.595 67000 48.359 89000 47.747
46000 47.766 68000 48.203 90000 47.818
47000 47.826 69000 48.089 91000 47.920
48000 47.868 70000 47.998 92000 47.883
49000 47.866 71000 48.024 93000 47.826
50000 47.904 72000 47.979 94000 47.781
51000 47.922 73000 48.001 95000 47.680
52000 47.886 74000 48,081 96000 47.671
53000 47.99 75000 48.063 97000 47.617
54000 48.046 76000 47.941 98000 47.479
55000 48.111 77000 47.978 99000 47.418
56000 48.336 78000 47.884 100000 47.420
57000 48.432 79000 47.933 101000 47.379

The program described above was also used in [9] to find the class numbers of

all pure cubic fields of the form Q(\3/;), where = 17 (mod 18), r is a prime and r <
2 x 10°.
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