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p-Divisibility of Certain Sets
of Bernoulli Numbers

By Samuel S. Wagstaff, Jr.

Abstract. Recently, Ullom has proved an upper bound on the number of Bernoulli
numbers in certain sets which are divisible by a given prime. We report on a search
for such Bernoulli numbers and primes up to 1000000.

Let p > 5 be prime. Let [ be the set of even integers between 2 and p — 3.
For each positive divisor d of p — 1 for which (p — 1)/d is odd, let

d)=1{2k€l-2k-1,p-1)=(p - 1)/d},

where (a, b) is the GCD of a and b. Then I(d) is the set of 2k in I such that 2k — 1
is of the form a(p — 1)/d with (a, d) = 1. Hence, I(p — 1) has cardinality ¢(p — 1) — 1,
where ¢ is Euler’s phi function, and otherwise /(d) has cardinality ¢(d). Also [ is the
disjoint union of the /(d). Ullom has proved the following theorem concerning the
divisibility of Bernoulli numbers B, by p.

THEOREM (ULLoM [3]). With p and d as above, the number of 2k € I(d) for
which p divides B, is less than ¢(d)[2 + ¢(d)log log p/log p.

In this paper, we present numerical data concerning the sharpness of Ullom’s
inequality. It appears to be far weaker than the truth. See [2] for the relevance of
this work to the theory of ideal class groups of cyclotomic fields.

If p divides B,, with 2k in I(d), then p divides the relative class number of the
unique subfield of the pth cyclotomic field of degree d over the rationals. Thus, the
search described below for 2k in I(d) with p dividing B, is actually a search for sub-
fields of the pth cyclotomic field whose relative class number is divisible by p.

We first investigated the triples (p, 2k, d) with 2k € I(d), p dividing B,,, and
p < 125000. This data was readily available from [4]. It is possible to have as many
as five 2k’s in the same division /(d), as is shown by the example p = 78233, d =
p — 1in Table 1 of [4]. We have d = p — 1 for most of the triples with p < 125000.
We found two examples of three 2k’s in the same division /(d) with d < p — 1, namely
p = 108877, 2k = 52498, 79558, and 81346, d = 36292; and p = 109843, 2k =
25396, 27844, and 84202, d = 36614.

Obviously, the conclusion of Ullom’s theorem is sharper when d is small. The
extreme example is p = 3 (mod 4) and d = 2, when it gives the well-known corollary
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that p does not divide By, /2 The greatest ratio (p — 1)/d which we found for at
least two 2k’s in the same /(d) was 9 for p = 70489, 2k = 32932 and 35272,d =
7832.

As reported in [3], we determined all such triples with p < 125000 and d < 30.
They are (67, 58, 22), (631, 226, 14), (683, 32, 22), (757, 514, 28), (1201, 676, 16),
and (12697, 10052, 24). Recently, we searched the following region for such triples:

125000 < p < 140000, d < 20,

1

140000 < p < 160000, d < 14,
160000 < p < 500000, d <12,
500000 < p < 600000, d<3§,
600000 < p < 1000000, d<6.

We did not find a single new triple in all this computation. This evidence supports
Ullom’s conjecture that p does not divide B, , for 2k € 1(4) U 1(6).

We tested whether p divides B,,; by the methods of [4] with the following sim-
plification. Given p and 2k, let c(x, y, z) = xP 2% + yP=2k — zP=2k _ 1 If the co-
efficients of B, /4k in the congruences

(2,5, 6)By, /4= +1) > s

pl6<s<p/5
3p/10<s<p/3
(3,4, 6)B,, J4k= 3 sk (mod p),
pl6<s<p/4
c(2,3,4)B,, /4k = E skt (mod p),
pl4<s<p/3

all vanished modulo p, then we did not bother to try the congruence

c(4, 5, 8)B,, /4k = > sl g > s2k=1  (mod p)
p/8<s<p/5 3p/8<s<2p/5

because its coefficient must vanish, too. For suppose (with ¢t = p — 2k)

(1) 204+ 5"-6"-1=0 (mod p),
) 3+4"-6"-1=0 (mod p),
and

3) 204+3"-4"-1=0 (mod p).

Adding (2) and (3) gives (2! — 2)(3" = 1) = 0 (mod p). We consider the two possible
cases 2! = 2 (mod p) and 3! = 1 (mod p), separately. If the first of these congruences
holds, then (3) and (1) give a’ = a (mod p) fora = 2, 3, 4, 5, 6, and 8, so that

4 4" +5"-8"-1=0 (mod p).
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On the other hand, if 3! = 1 (mod p), then (2) and (1) give a’ = 1 (mod p) fora =
2,3,4,5, 6, and 8, so that (4) again holds. In the second case, the congruence

(5) (@1 +3kl 4 el p) Jak= 3 (p-65)*F71  (mod p?)
0<s<p/é6

of E. Lehmer [1] was used modulo p. This decides whether p divides B,, because
the coefficient of B,, is 277 + 377 + 677 — 1 = 2 (mod p). However, in the first
case this coefficient is

27'+37T+6T-1= +%+%—150 (mod p)

1
2
and (5) modulo p does not work. In this case (5) modulo p? did work for every p

and 2k we tried.
The author thanks S. Ullom for the use of [3] in preprint form. The computa-
tions were done on the IBM 360/75 computer at the University of Illinois.
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