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Efficient Higher Order Single Step Methods
for Parabolic Problems: Part 1

By James H. Bramble and Peter H. Sammon*

Abstract. Some efficient, high order methods are discussed for approximating the
solution of an initial boundary value problem for a homogeneous parabolic equation
with time dependent coefficients. The methods are based on Galerkin-type approxi-
mations in the spacial variables and single step methods in the time variable. The
equations defining the time-stepping procedure are solved only approximately, how-
ever. A preconditioned iterative technique is used for this purpose. The resulting
algoxjithm is shown to produce optimal order approximations using only the order of
work required by the single step method applied to the parabolic problem with time
independent coefficients.

I. Introduction. In this paper we study efficient ways to calculate approximations
to the solution of a parabolic equation that are of third or fourth order in time and of
high order in space. The approximations are generated by rational function based
schemes (cf. Nassif and Descloux [7] or Baker, Bramble, and Thomée [2] if the operator
in question is time independent), but these schemes are modified in a manner suggested
by Douglas, Dupont, and Ewing [4] in their work on the Crank-Nicolson method. We
study the schemes in the context of a linear parabolic equation with time dependent
coefficients in this part of the work, and we will generalize these schemes to nonlinear
equations in Part II of this work.

The schemes suggested by Nassif and Descloux in [7] are single step methods
based on a certain class of rational function approximations to the function e™*, x €R,
and a given family of discrete spacial operators. Nassif and Descloux give estimates in
[7] that show that the resulting approximations make errors that are of optimal order.
However, the schemes are not really suitable for practical computation since each step
of the time-stepping procedure involves the solution of a new linear system that is re-
lated to the family of spacial operators.

Douglas, Dupont, and Ewing address this problem in [4] and suggest the remedy
of using a preconditioned iterative technique to approximately solve the linear system.
This approach only requires the solution of linear systems involving a fixed discrete
spacial operator if sufficiently many iterations are done at each time step. Conditions
are discussed in [4] that also allow one to iterate a fixed number of times at each time
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step (a number that is independent of the discretization parameters) and still observe
the optimal order errors. The overall work required by this strategy is of the magni-
tude of the work required by the usual Crank-Nicolson scheme applied to a linear prob-
lem with time'\independent coefficients. Thus, under these conditions, they obtain a
scheme that is efficient as well as effective.

The results of this paper are similar to those of [4], with regard to our higher
order schemes, and are in fact in some ways stronger. In particular, because the schemes
which we consider are inherently more dissipative than the Crank-Nicolson scheme, we
are able to obtain the best results unconditionally. In addition, our analysis shows that
the special closeness requirements of the initial values to the “elliptic projection” de-
manded in [4] are unnecessary and that a more natural and more easily computed ini-
tial projection may be used.

An alternate approach to the problem of finding efficient time-stepping algorithms
can be found in work by Douglas and Dupont in [3]. They analyze two efficient
schemes for parabolic problems. The first is a method which is of first order in time
(the Laplace-modified procedure) and the second is a three-level method of second
order in time.

We now introduce the parabolic problem and some convenient notation. Let
Q CR4,d>1,be a compact domain with a sufficiently smooth boundary 32 and an
outward pointing unit normal n(x) = (n,(x), . . . , n4(x)). Let 7> 0. The following
parabolic problem will be studied under certain smoothness assumptions:

d
~u, = L(Ou =- wgl Dy(a;f(x, Dju) + ag(x, hu on Q x (0, 7),

: d
a.n ulyo =0 or nAVulyg = . ng;Diulaq =0 on 982 x (0, 1),
i,j=1 .

ul,—o =v on Q.

Here A = [a;(x, t‘)]}",-= 1 is a symmetric, uniformly positive definite family of matrices
of sufficiently smooth coefficients on Q x [0, 7], ay(x, #) is a nonnegative, sufficiently
smooth function on & x [0, 7], and v(x) is a given initial data function on §2. If the
Neumann boundary conditions are under consideration, we will further require that
ay(x, £) not vanish on Q x [0, 7] and that the coefficients {a;;} have the following
special form:

ai(x, 1) = a(x, Day(x), 1<i,j<d,

for sufficiently smooth functions a and {'E’,]}. (This extra requirement ensures time in-
dependent boundary conditions). We will refer to the Dirichlet boundary conditions as
BCp and to the Neumann conditions as BCy.

We let H! denote the usual L2(2)-based Sobolev space with norm ||l;, 7 a non-
negative integer. We also let H}, denote the subspace of H! that consists of functions
that vanish (in the sense of trace) on 32. We will use (-, ) to denote the usual L2(S2)-
inner product on £2.
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The operators {L(£)}o< <, form a family of L2(2)-selfadjoint elliptic operators
on the following domain:

{HZ N H}  if we have BCp,
L =

H?> N {we H?: n4AVwlyq = 0} if we have BCy.
Moreover, the form

D) (, )= Z (@;iDi(), D)) + (@5(), ()
ij=1
is (strongly) coercive over Hy x Hj if we have BC, or H' x H! if we have BCy . Thus
we can apply the standard parabolic equation theory to (1.1) (cf. Friedman [5] or
Lions and Magenes [6]) and obtain the existence and uniqueness of solutions u for
various classes of initial data. We will always assume that v € D; and further smooth-
ness and compatibility conditions will be added later.

We let T(¢): L2(Q2) — D; denote the solution operator for L(z); that is,
LOIT(@)f] = f for all f € L*(Q). We note that {T(f)} o<, is 2 smooth family of
bounded operators from H to H'*2 N D, , for 1 >0 and that {L(f)}¢<;<, is 2 smooth
family of bounded operators from H*2 N Dy to H, for I > 0. In fact, LV(f) =
(d/dt)L(f), j = 0, can be calculated by differentiating the coefficients of L(f) with re-
spect to time, and if we let TO)(t) = (d/df)T(f), we have that

T = - TOLO@OT ().

We shall use the symbols C, C; and C, to denote generic, positive constants
throughout this paper. The symbol C will also be used to denote a generic, increasing,
positive function on R. We will define 2’.';2 (-) =0ifmy <m,.

II. Spacial Discretization Operators. We will assume that we have a finite dimen-
sional subspace S, C L2(£2) (associated with parameters 0 < 2 <1 and r>2)and a
sufficiently smooth family of selfadjoint, positive semidefinite operators {T,(t)} <<
on L2(2) that have range in S, and that are positive definite on S,. We define L,(¢)
on S}, as the inverse of ‘ T, (t)lsh for each 0 <t < 7. Given f € L%(2), we will regard
T, (¢)f as an approximation to T(#)f. In fact, we will require that the following be
true:

@1y WTD@) =~ TOENA < CGI*21If, forj>0and 0 <I<r-2;

here TO(¢) = (d/dty'T,,(): LX) — L*(R). Finally, we will assume that there is a
norm |||l; on S, that satisfies the following:

)

(22 lloll? < Clipll? < C(Ly(H)9, 9) for0<t<rtand g €S,
23) IEDD0y, 0)l < CPligsllflig,ll; for 0< <, 9,9, €S, and j >

here LY) = (d/dtyL,(0): S, — Sp,.
We note that many of the well-known Galerkin-type methods satisfy these as-
sumptions. For a discussion, see Sammon [8].
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We let P(t) = T, ()L(f): Dy, — S;, 0 <t <, define a family of “elliptic pro-
jection” operators. We also let P: L?(S2) — S, denote the L?*()-orthogonal pro-
jection onto S,. (Note that Tj, = PT,P.) If w€ H'*?2 N D for some 0 <I<r-2,
then

24 lw = Pwll < llw — Pw|| < ChM+2|lwll for0<t<r.
I 1+2

We let PO)(r) = (d/de)Py(¢) for j > 0.
Suppose we choose v € H” so that u(?) € H" and [lu(?)ll, < Qll, for 0 <z <.
Then, setting W(#) = P(f)u(f), we have the following:

(2.5 lu(t) — W)l < CH"lIvll, for 0 < ¢<r.

We also wish to see how well the time derivatives of W approximate those of u. To
this end we study the following:

ProposiTION 2.1. If wE H*2 N D, for some 0<1<r—2, then
1P @l < Com)n'*+2wlly,, for0<t<tandm>0.
Proof. We see that (2.1) implies that

m
P el <|| 3 () TPLe D
j=o0\]

< l + COm)n* 2wy,

m . _
,;, (?)T(I)L(m Nw

d m
= (=) 7
"(dt) Lw
We will now apply the above result. If 0 <I<r—2,m >0 and v € H'*2+2m
satisfies certain (boundary) compatibility conditions (see [5], [6] or [8]), it follows that

u0)(f) € H'*? and that [uP (D)l , < CEM)IIVlly 5 42 m > Provided that 0 <j<mand 0<
t <. Thus, if we set Wm)(£) = (d/dt)™ W(¢), Proposition 2.1 and (2.1) show that

+ Cm)H+ 2 wlly, , = Cm)R* 21wl , -

m
lutm(e) = WD)l < ™ (E) — Pu™ @l + Com) 3 1Pt D)l
(2.6) 1=1
< C(m)hl+2"v"l+2 +2m for0<t<r.

Thus, under the aforementioned conditions on v, W("')(t) is uniformly bounded in
LX) for0<t<r.

At times, we will assume that the following condition holds:
By:  ILP@AT, O, 1T, LY (O < CG) for 0<s,¢<7andj>0.

Estimates in Sammon [8] or Nassif and Descloux [7] show that this condition holds for
various Galerkin-type methods if inverse assumptions are valid. The following estimate
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is a consequence of Condition By,:

(2w

m
<™+ D@l + Com) X IL,W™ D@ for0<t<7andm>0;
=1

| m
I GLERIGTRS | +Cm) 3 ILPT, L, WD)l
=1 .

here we have used the fact that L, W = PLu = — Pu(). Thus, an induction argument
shows that

m+1
Q7 I,eW™OI<Cm) 3 lud() for0<t<rtandm>0,
j=1

provided that Condition B, holds.

III. Time Discretizations. We now consider a method of computing approxima-
tions to the solution u of (1.1).

We begin by studying rational function approximations to the exponential e~ on
R*. It is well known that there are rational functions r(x) = P(x)/Q(x) (P and Q are
relatively prime polynomials) that satisfy the following conditions:

() Q@) >0 forx>0, 00)=1,
@3.1) () -14+8<Q'(x)P(x)<1 forsomesd >0 andallx>0,

(i) Ire)-e*<Cx?*! for some »>1 and all x > 0.

We will use P’s and Q’s that are no more than quadratics in our later work, but, for
now, we assume that P(x) = Zi_o ppe’ and Q(x) = Z¥_, qpx’, where p, = g4 = 1. We
have the following examples:
() P(x)/Q(x) =1/(1 + x) with § = 1, v = 1 (Backwards Euler).
(i) P(x)/Q(x) = (1 —x/2)/(1 + x/2) with § = 0, » = 2 (Crank-Nicolson).
(iii) The family parametrized by X\ > 1/4, X # 1/2:
P)IQG) = (1 + 2\ — Dx + (A2 = 21 + 1/2)x)/(1 + )2 with § >0,v = 2.

If A = %(1 + 1/4/3), then v = 3 (Calahan). ‘

(V) P(x)/Q(x) = 1/(1 + x + x2[2) with § = 1, v = 2 (Padé).

() P()/Q() = (1 = x/3)/(1 + 2x/3 + x2/6) with § > 0, v = 3 (Padé).

(i) P(x)/Q(x) = (1 — x/2 + x2/12)/(1 + x/2 + x%/12) with § = 1, v = 4 (Padé).
We are particularly interested in the cases where § > 0.

We will now show how property (3.1) (iii) can lead to a two-point Taylor ex-
pansion used by Nassif and Descloux in [7].

PROPOSITION 3.1. Suppose that g is a smooth function on [0, ty]. Then for
each 0 < t < t, we have that

(32) QD)) = PCDXEX0) + [ K(t, ) D** g(0)ds,
where D denotes the differentiation operator on (0, t,] and where

v q;
(3.3) : K@t 5= Y —— (ty(t - sy

j=0 (V _])!
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Proof. From (3.1) (iii) we see that Q(x)e™* — P(x) = O(x"*!). Now take m
derivatives, where 0 < m < v, of each side of this equation and evaluate them at x =
0. We see that

m m
mip, = 3 (’;.’) O™l ot pu(-ty"ml =3 qi-ty(™) j1em,
j=0 i j=0 ]

This gives (3.2) with g(s) = s™ for 0 <5 <1t,. Thus we have (3.2) if g is a polynomial
of degree no more than v.

We now expand the sufficiently smooth function g in a Taylor series of degree v
and apply our above work. This shows that (3.2) holds with the kernel given and com-
pletes the proof.

If we let {u,(*)}g<;<; C S), be defined by the equations

(3.4) p (1) + Ly(up(H) =0 for 0 < <7 and u,(0) = v,,

where v, € §,, is some function “close” to v (for instance, v, = Pv), then work by
Sammon [8] shows that

3.5) lu(®) - up @Il = OK') for0<t<r,

under certain conditions. Thus, if we could approximate the solution u,, of (3.4) with
a known small error, we could use (3.5) to show that our approximation is actually
close to u. We will use our two-point Taylor polynomial to construct an approximation
to u,,.

Let 0 < k <1 so that Mk = 7 for some integer M > 1. We will study a method
of approximating u, (k). Choose a rational function r(x) = P(x)/Q(x) that satisfies
(3.1) (i) through (3.1) (iii) and where the degrees of P and Q are two or less. (This
implies that v < 4.) If we note that

uO(e) =th up(t) = ~Ly(Dup() for0<t<r,
2
u() = <dit> @) = 30 ~ LOOwy(@) for0< e <,

then setting g(s) = u,(s), 0 < s < k, and using (3.2) gives us the following:
{I + qykLy () + a,K* L3 (K) — LEDR)}uy(K)

(3.6) = {I+ plkLh(O) + szz(L?,(o) - Lgl)(o))}uh(o) + 0(k”+ lu’(1v+ l)).

Thus, if the quantiiy in the first set of braces is invertible, we might expect the follow-
ing to be “close” to u,(k):

I+ qikLy, + q k2 (L2 = LYY 2 (K){I + pykL, + P, kA(LE = L)} O)vy,.

This scheme for approximating u, (k) will be the basis of a scheme for approxi-
mating u,(Nk) for any 1 <N < M. It will be seen that the approximations can con-
tinue to be defined using operators that are constructed from P, Q and the family
{Lf{)(t)} j=0,1- We note that these schemes can be defined if the degrees of P and Q
are higher than two, as was done in [8].
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The solution u,, of (3.4) only plays a motivational role and will not enter in any
way in the rest of this work. For purposes of our estimates, we will need some func-
tion in S}, that is uniformly close to u in the sense of (3.5), and u;, would be a possible
candidate. We will use W for this purpose, however, mainly because it is easy to esti-
mate its time derivatives.

For 0 <n <M, et t, = nk, LD = LP(@,) (j=>0), TP = TP(,) (G = 0),

P, = P(kL,), Q, = Q(kL,), P,, = P, — p, kL), “’,, Q,, @, KPLY). We
now settle the question of én’s invertibility on S,,. -

ProrosrTioN 3.2. If k is sufficiently smail, we have that

(3.7) Cl(Qn‘p3 ‘P) < (Qn‘p’ (P) < C2(Qn‘ﬂ3 ‘p) for 0 < n <Mand " € Sh-
Proof. We first see that if 0 <n <M and ¢ €S, then

1@n#: @) ~ @ne, V) = K2a,ILEVw, 9| < CK24,lll? < Chgy (kL e, ©),

where we have used (3.1) (i) to show that g, > 0. Then, if g, > 0,x <
(SUPo<y<w ¥ 1(»))Q(x) for any 0 < x < o and it follows that (KL, 0, 9) <
«(Q,,0, v). The proof is now easily completed.

We shall assume throughout this work that k is small enough to allow the con-
clusion of Proposition 3.2 to hold. Thus, since Q is invertible due to Q(x)’s positivity
on R™, it follows that the selfadjoint operator Q,, is also invertible, for 0 <n <M.

We now return to our description of an approximation to the solution of (1.1).
Given v, we choose a V° € S, that is close to v (for instance V0 = Py, although we
will describe perhaps better possibilities later) and recursively define ¥**! (0 <n < M),
given V™, by the following formula:

(38) 0, V"1 =Pyr  0<n<M.
n+1 n

We expect V" to be close to u,(z,) which is in turn close to u(z,), where 0 < n < M,
and we will derive corresponding estimates.

As noted before, this approximation scheme has been studied in an L?(£2) setting
by Nassif and Descloux in [7]. We now see how computation of this scheme involves
solving a new linear problem at each time step and why a more efficient variant would
be desirable. We shall later study the variant suggested by Douglas, Dupont, and Ewing
in [4]. However, since the analysis of this variant requires estimates of the original
scheme (the one defined by (3.8)) in new norms, we shall first present another analysis
for the latter. We shall also define a natural choice for V°.

IV. Preliminary Error Estimates. We are primarily interested in how close V™" is
to W" = W(¢,) (0 < n < M) since we already know (recall (2.6)) how close W" is to
u" =u(t,) (0 <n<M). Asnoted before, these estimates are already known in the
L?(2)-norm, but we wish to study them in the (possibly) stronger norms given by
(@,(), ())1/2. This will allow us to study a variant of the scheme where the
(Q,,(), (-))*/?-norm is in some sense a natural norm of the problem. We note that most
of our work will go on in S}, in the next two sections.
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Letting E" = V" — W" for 0 < n <M, we see that

41Q"+1E'H-1= ,,+1E"+(Pn—P,,+1)E"+(Pn—Pn)E"+(Q,,+1 ‘5n+1)En+1
*.1) — @y W -Bwm) forl<n+1<M

This will be an important error equation.
We note that (4.1) is of the form QX = PV + F, where X, V, F €S}, and Q and
P are selfadjoint operators on S, that satisfy the following:

© ©@n.9)>0 for0+pES,

42) (@) (Q-Py,9)>0 for0+yp€ES,,
(iii) ((Q + Py, v) > 8(Qp, v) for 0+ ¢ €ES,, where § > 0.

(Of course (4.2) (i) through (4.2) (iii) follow from (3.1) (i) through (3.1) (iif).) This
situation leads to the following

ProrPosITION 4.1. Let QX = PV + F, where Q and P are selfadjoint operators
that satisfy (4.2). Then we have that

4.3) (QX, X) < (QV, V)-8((@ - PV, V) + 2(F, X).
Proof. let Y = Q 'PV. Then QX = QY + F and
QX,X)=(QY, X) + (F,X) = (QY, V) + (QY, Q0" 'F) + (F, X)
=(QY, )+ @QX, 0 'F)-(F,0"'F) + (F, X) < (QY, Y) + 2(F, X).
Set ¥= 0112, P=Q'/2Vand A = Q%PQ~*%. Thus ¥ = AV. Now (4.2) implies
that (/ — A) and ((1 — 8)I + A) are positive definite operators on S, and since they
commute, we have that
gl — 8({ — A)p, ¢) — Il4pl?> = (I — AN — 8) + A)p, 9) =0

for all p € S,,. We now complete the proof by observing that

@Y, Y) = IN1? = 14V < 1712 - (0 - )V, V) = @V, V) - 8(Q ~ P)V, V).
We will want to apply Proposition 4.1 to (4.1) and obtain an estimate for (@, E"* L
E™*1). In anticipation of this, we prove the following estimates.

LEMMA 4.2. Suppose that Condition B, holds if Q(x) is quadratic. Then, if
O0<n<n+m<Mand ¢, 9, €S,, we have that

(e, n+m —Pn)‘pl’ ©,)l .
(4'4) < Ctm(Qn‘pla ‘pl)l /2(Qn‘p2’ ‘p2)l/2'
'((Qn+m - Qn)‘pl’ ‘P2)|

Proof. We first note that (3.1) (ii) implies that the degree of P(x) is no greater
than the degree of Q(x) and (3.1) (ii) and (3.1) (iii) imply that Q(x) cannot be the con-
stant 1. Also,if we let R(x) =1+ xif g, =0and R(x) =1 + x + x? if g, # 0, we
see that R™1(x)Q(x), R(x)Q@~!(x) < C for x > 0. Thus, letting R;=R(kL) 0 <j<
M), we have that

CiRp, 9) < (Qjw, ©) S C,(Rpp, ¢) forp €S, and 0 <j< M.
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Thus it suffices to prove (4.4) with R,,-inner products on the right-hand side.
We have the following estimates:

KM(Lpym = Ly, 03)l < Ctuk sup |(L§,l)(s)¢1, 23]

t”<s<tn+m

4.5) < Cty ko iplloslly < Ctopk(Lyoy, 01) 2L ,0,, 0)!?
< Ctm(R”£p1 N ¢1)1/2(Rn‘p2’ ‘p2)l /2a

k2 I((Ln+m - Lz)‘pl ’ (Pz)l k2 I((Ln+m - Ln)‘pl 1) Ln+"g‘p2)l
+ k2 |(Ln‘tol’ (Ln+m - Ln)‘Pz)|

(4.6) < Ctmkz( sup IIL§,‘)(S)T,,II> A + L,y T, IDIL, 0, 1L, 0,
t,Ss<t, +m

< Ctp(Rpey1, 01)' P Rp0,, @)!/? if g, #0;
note that Condition By, was used in (4.6).
We can now use (4.5) and (4.6) to complete the proof
LemMA 43. If0<n<Mand ¢, 9, €S,, we have that

I((Pn - Pn)‘pl’ ‘92)'

@.7) - S Cl(Qnp1s 1) 2 (Qppas 02)' 2.
(@ = Quley, 02)

Proof. The result essentially follows from the proof of Proposition 3.2.

We now study the truncation error term in (4.1) by comparing it to the true
solution u of (1.1).

PROPOSITION 4.4. Suppose that v € H*, u = max(2(v + 1), r + 2), is such that
l@lly42 < Cllvlly., 14+ D@ < Cllolly 4.1y for 0 < ¢ < 1 and we have Condition
By, if Q(x) is quadratic. Then, if 0 < n < M and ¢ €S, we have that

(48) I(Qn+ 1W”"‘ 1 Pn W", <P)| < C7C(hr||0",.+2 + ky"vllz(p.q.]))(Qn‘P, ‘P)l/z'

Proof. We note that u, = ~Lu, u,, = (L2 ~ LYy =~ LU + TM)u, for0 <
¢t < 7 and that Proposition 3.1 implies that

(49) 1@ " = gyt ™! + qo kPl ) — @ = prkadf + Py RRUT) < CRH bl .

We also have the following for 0 <j < M: W/ = Ppd = Pu/ + (P, - PY/,

(4.10) LW’ = Ly (t) T, (t)PL(t)u(ty) = —Pe,
L7 — LW = -Lyp + Ty,
(4.11) = —L,(P,ul; + PO (e + L(P; — Py,

LiPr ~ T (e, + LTM(t)) - Ty,
and ~LPtd, + TNt = Pu’,,, where we have used the fact that T(l) = -T,L{VT;.
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We now use these facts to see that
1@ps 1 W™t — P, W, 9)|
< C'kv+ 1"0"2 v+ 1)||‘P|| + C<_’

~Tn+1
"W - P )(s)llds> lloll
tn
+ C{I@— Py + 1 @p = Pyl + @ = PYT i+
+ 1P = YTl + NT Oy 1) = TS DUl
+ I(TD(,) ~ TOWn)
* K2(IL, 4 ol + IIL,e0ll)
< O Molly .z + RNy 1)) Ll? + K2 UL, 0l2} /2,

which gives our result.
We can now put these results together and demonstrate a bound in the Q1/2-norm
for the difference between V™ and W” for 0 <n < M.

THEOREM 4.5. Suppose that v is sufficiently smooth and compatible (the hy-
potheses of Proposition 4.4 would suffice) and that we have Condition By, if Q(x) is
quadratic. Then, if k is sufficiently small, we have the following:

(4.12) 1Q}/2(VN = W < C@" + k*)ll, + CIQ2(V° — Pl for 0S N <M.

Proof. Let 0 < n <M. An application of the results of this section to the
terms on the right of (4.1) shows that

(Qn 1" M) S (1 + CRNQ,E™, ET) + Ch(K” + h7)2|ull2
+ Ck(Q,H_lE'H'l,E"*'l),

which gives the result.

We will now examine possibilities for the starting function ¥°. We require that
V® — P be bounded by C(k” + h) in the Q3/2-norm if we wish a comparable error in
(4.12). We can always let V'® = Py, but we note that the approximation scheme de-
fined by (3.8) never requires that we determine T}, applied to any function. In applica-
tions, this would amount to a special, expensive calculation required only at the begin-
ning. There is another choice for ¥° that involves solving a system with 60 (or even

Qo). Since such systems have to be solved anyway to take the first step, this would

seem to be a better approach.
We have

PROPOSITION 4.6. If v € H™*2 N D, and L(0)v € D;, define V° and v°?
in S, by the following:

| 0o V! = P + g kL(OW + g,k*(L?(0) — LIV O)),
4.13
@13 Qo V°? = P(v + q kLW + q,k*L?(0)) = PQ(KL(O))v.

Then Q32 Vo1 + 103/ V 2| + 1QL/?Pvll < Cllvll, and
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198/2(V0:! - P)|
(4.14) < O Il 5.
194/2(V°:2 — P))|

Proof. We observe that the following hold for ¢ € §),:

LoPp — LO, ¢) = (P~ DLO, ) = 0,
(L3P — L2(O), ¢) = (LoPLOW—PL?(O), ¢) = (Lo(PLO) — PL(OYW), ¢)
= ((P - PPLOW, Low) = (( — PPLOW, Loy),
L§VPp - LW, ¢) = (Lo TEOLOP - LOTVOLOY, ¢)
= Lo®TM() - TEILOW, ¢) = (TMO) - TEILOW, Loy)
+ (@~ DTOO)ILOP, Loy).
Thus, if we let ¢ = V! — Py, then

IQY/2(VO! - PRI < CIY2 (VO - PR)I* = C@y(VO - Pp), 9)
<@ = Pp, @) + g, k2 CH ll, ;. IILyell
< O Il 4,114 2 ¢l

This completes the proof of the first part of (4.14) and the remainder of the estimates
follow even more simply from the above observations.

This result completes our error analysis for the approximation scheme defined by
(3.8) with ¥° defined by either equation of (4.13). We will call this the base scheme
in the sequel.

We note that if ¥0-2 is defined by

(4.15) QkLy)V°? = PQ(KL(O))v,

where Q(x) is a polynomial that satisfies C < 0(x)/Q(x) < C, for 0 < x < oo, an esti-
mate like (4.14) will still hold. This modification might prove useful if é(kLo) isa
preconditioning operator for the kind of linear system solving techniques we will study
in the next section.

V. A Variant of the Base Scheme. As we noted before, the calculation of the
base scheme involves the solution of a new linear problem at each time step. We wish
to study a variant of this scheme where we only approximately solve the linear system

at each time step. We propose to use an iterative technique for this purpose which, as
* we will see, can be provided with a good initial guess for the true solution.

If we are at a point in our calculations where we have several accurate approxima-
tions to the function u at previous time steps, it can be seen that there is an extrapola-
tion of these values that yields just as good an approximation at the next time step.
The smoothness of # makes this possible. This extrapolation could be used as an initial
guess for an iterative procedure. But this observation raises a question. Since even the
exact solution of the system which we are approximately solving is no closer to u (in
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the sense of order) than the extrapolated guess, why iterate at all? If we did no itera-
tions and used this procedure as an algorithm to generate further approximations,
errors would grow and the approximations would deteriorate. Such an algorithm is not
stable. Of course, the base algorithm (solve the system exactly and forget about itera-
tions) can easily be shown to be stable although we will not formally state this result.
Also, it will not be too hard to see that if we make an error in approximately solving
the system that is of the order of the local truncation error and that is in some sense
independent of the initial guess, then the algorithm is stable and gives accurate approxi-
mations. For the iterative schemes that we will consider, this strategy requires a quan-
tity of iterations that is on the order of the logarithm of the total number of time
steps, per time step. However, there is a more efficient strategy available if the poly-
nomials P(x) and Q(x) have the correct properties. If one does in fact give a good ini-
tial guess to the iterative scheme and then iterates only a certain number of times per
time step (a number that is independent of the total number of steps), then, even
though accuracy is not improved, the resulting algorithm is stable and generates accurate
approximations for u. This phenomenon was first observed in [4] in relation to the
Crank-Nicolson scheme. We will give arguments in this section that show that these
results hold for schemes that have the right kind of dissipation; that is, P and Q are
such that § > 0. Similar results can be proven for polynomial pairs that are just stable
(5 = 0) but the condition k¥ < Ch?, for some constant C, is required. This condition
introduces dissipation and was used in [4].

We begin by discussing the properties of a particular type of preconditioned itera-
ative technique for solving linear systems. We will assume that we are working in a
finite dimensional space H with an inner product (*, -), and a norm |l = C, - },/2-

. Suppose A is a positive definite selfadjoint operator on H, and we wish to find an
approximation to the vector x that satisfies Ax = y, where y is known. We will also
assume that the situation is such that we have another positive definite selfadjoint
operator A, at our disposal for which 45"z, z € H, is easy to find and for which we
know the following spectral estimate:

¢.1) Moz, 2)y < (Az,2)y < N (Agz,2)y forz €H,

where 0 < Ay <A, are known constants. Then there are methods which, when given
an initial guess x(°) for the solution x, generate a sequence of approximations x(@),
a = 1, to x that have the following properties:

(i) The calculation of x(¢+1)  gjven {x(i)};‘;o, only requires evaluating 4 and
A, solving systems involving 4, and Hilbert space operations.

(ii) The sequence x(®) — x as & — oo geometrically in the following way. There
is a smooth decreasing function 0 < y(¥) <1 (0 < £ < 1) that satisfies (1) = 0 and

which gives the rate of convergence of the iterative scheme in the 43/2-norm:
A Ao 1/2 0)
(52) 42 -x), <cC * v = M4d2x = x|, for «>0.
o/ 1

A given method may or may not actually use the spectrum estimation constants A, and
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A, in its calculations. We also note that (5.2) implies that the following estimate holds
if C\AY*(No/A;) <1 for some a > 0:

45726 = x)llg

N AN >\°> .
<)~z )] G e -som,

The preconditioned conjugate gradient algorithm fits into this framework with
v = -§/2)/(1 + £1/2); see[1]. We also note that another example of such an
algorithm is given by the following splitting method. Let u > 0 and, given x(®) for
some & > 0, define x(**1) by the following:

AKEHD =y + (A~ pA®.

(5.3)

This method converges for certain values of u, and if we choose u = 2/(A; + Ag), then
we have a method that satisfies (i), (i) above with y = (1 — §)/(1 + §); see [1] or [9].

We intend to use an iterative scheme with the properties described above to ap-
proximately solve the system (3.8) which defines our base scheme. The Hilbert space
H will be S, with the L2()-inner product and the above discussions outline possible
error results. We will keep the conjugate gradient algorithm in mind since it offers a
good convergence rate and it does not require the values of Ay and A, in its calcula-
tions; they only enter into its error analysis.

We must now decide what to use as a preconditioning operator. We note that the
contribution of the L), term in 0,1 is small, so we can ignore this term when con-
structing a preconditioner. We now discuss two possibilities:

A. Q, as a preconditioning operator. This is a good choice if linear systems
involving Q,, are easy to solve. For instance, if Q(x) = 1 + g,x is linear, then Qg =
I + q,kL, has essentially the same structure as the L, operator and solving this type
of problem is well studied. If Q(x) = (1 + Ax)?, as in the Calahan method, then solv-
ing systems with Qy = (I + )\kLo)2 only involves solving two successive systems with
the (I + AkL,) operator. Thus, Q, is also a good preconditioner for this method. If
Q(x) is not a perfect square, the fourth order diagonal Padé scheme being a notable
example, there are other methods for solving systems involving Q, that use complex
arithmetic. Thus, using Q, as a preconditioning operator is possible for these methods.
We will offer an alternative in B however.

We observe that the following result contains (5.1) for Q, as a preconditioning
operator.

PROPOSITION 5.1. Let 0 <m,n< M, and assume Condition By, if Q(x) is qua-
dratic. Then, if ¢ €S,

(5.4) (1 +C(lt, = tpy| + K1y, @) < (@0 9) < (1 + Ct, = 1] + Ny, 9)-

Proof. We see that
©@,,0,9) = Q02 9) + (. = C)0» D) + (@, — O )os 9,
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and Lemmas 4.2 and 4.3 show that
(@, — Qp)o, 0) + «é‘,,, =0 )0, 9l < C(lt, — t,,| + kXQ,0, ¥).

This gives the second inequality and the first is done in a similar fashion using Proposi-
tion 3.2,

Thus, if we are using an iterative technique as described above, with the precon-
ditioning operator Q,, to approximately solve (3.8) at some time step 1 <n + 1 <M,
we can expect an error reduction of at least y*((1 + Ct,,, ;)™2) (in the sense of (5.3))
after a iterations. Since ¥(1) =0, ¥((1 + Ct,,, ,)"?) < Ct, +1 and hence the error
reduction is of order O(k®) for the first few steps. In anticipation of later results, we
note that if 0 <e <1 is given, there is an a@ = a(e) so that y*((1 + Ct,, 1)<
min(e, £1/2,). Thus, only a fixed number of iterations & = a(e) would be required to
achieve this error reduction at each step.

Now we consider another possibility for a preconditioning operator that is useful
if Q(x) is quadratic but not a perfect square. Let A > 0 and set S, =1+ \kL,, for
o0<n<M

B. Sy = (I + NkLg) or S} as a preconditioning operator. We first note that it is
easy to solve systems using these operators; that is, we only need to solve (perhaps
successive) systems with the (/ + \KkL,) operator. We can also prove the following re-
sult by the methods used in the proofs of Proposition 3.2 and Lemmas 4.2 and 4.3:

PROPOSITION 5.2. Let 0 <m, n <M and I be the degree of Q(x). Suppose that
Condition By, is satisfied if Q(x) is quadratic. Then, if ¢ € S}, we have that

(5.5) Ci(5,0: 9) < @, ) < Co(Sho, ).

Thus, if we are using an iterative technique with S} as a preconditioning operator
(where [ is the degree of Q(x)) to approximately solve (3.8) at some time step 1 <
n + 1 <M, we can expect an error reduction of at least 7*(C,/C,) (in the sense of
(5.3)) after « iterations. Also, for each 0 < e < 1, there is an Qpyq = @, 4(€) so that
Y*P+1(C,/C,) < mine, £1/2,) and so that ¢, 41 < C(llog t,, ;| + |log €[). Thus, the
number of iterations @, ; = a,, ,(€) required to achieve the given error reduction of
min(e, £1/2,) at the (n + 1)st step is a function of n and becomes large if ¢, ., = O(k).
However, since

1 M
A‘{E:l (llog ¢, + [log €l) < C(1/e),

the average number of iterations per time step required, to attain the given error reduc-
tion at each time step, can be assumed to be bounded independently of k.

We now gather these ideas. We will assume that we have chosen a preconditioning
operator, which we will call 7Q, and we have Condition B,, if O(x) is quadratic. Thus,
we can assume that

56 C,C00,9) < Q0 D) <C,(°0p,¢) for0<n<Mandy€s,.

We also assume that we have an iterative linear system solving process P which uses
this preconditioning operator. We now wish to use P to calculate approximations to
the solutions of systems like 0, x = F, where 0 < n < M, assuming we have been
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given the right-hand side F, an initial guess X, for x, and a tolerance §, > 0. We will
assume that there is an a,, = ,,(8,) > 1, so that if x@n) is the a,th iterate of the pro-
cess P applied to this system, then '

(5.7) 1IPQ2(x = x "I < B,IIPQ > (x — xo)II-

Finally, we will make an assumption about the total number of iterations needed to
achieve certain tolerances. If f,, = min(e, £1/2) for 1 <n <M, where 0 < e < 1, then
we will require that (1/M)ZM_ | &, < C(1/e); that is, we only need finitely many itera-
tions per time step, on the average, to achieve these tolerances.

With the process P at hand, we now formally state a variant of the algorithm

(a,)

stated in (3.8). First of all, given v, we choose a Up € Sp, that is close to v, and,

given a set {8,}XL, of positive tolerances, we define U"* ! in terms of {U}L,,

0 <n<M-1,in the following way. We use enough iterations of the process P
(which uses the preconditioning operator ?Q) to generate an approximation Ut to
the (true) solution U"*1! of the following system:

(5.8) 0,4, 0" =P U,

where the error made is to be less than the tolerance $,,, ,, in the sense of (5.7). We
use o i

(5.9) Z,,+1(U)=Jz_'3 Yui1,/U

for certain coefficients {vy,, , J}]’-'=o, as an initial guess. (We will fix values for these
coefficients later. Of course, letting Z,,, ,(U) = U™ is a possibility and, in general, we
will never use more than the past few values.)

If we redefine E” = U™ — W" for 0 < n < M, we note that we have the follow-
ing important identity, an analogue of (4.1):

Qn+lE”+l =Pn+lEn + (Pn —Pn+l)E'l + (;" _Pn)En
(5.10) + (Qn+l —an+l)E”+l _(an+lw”+l .-;):.wn)
+ 0y (UM =Ty for0<n<M-1.

We now analyze the error made by this kind of approximation algorithm. We
will begin by studying a result that is easy to obtain but is not the best possible for
our situation. We will briefly assume that we solve (5.8) to an error of 8, , = k” for
0<n<v—2(ifu>2)am:ltoanerrorofﬁ”_,_l =k for n 2 v — 1. We note that
these latter tolerances imply that, for our types of processes P, we must do on the order
of log(M) = log(7/k) iterations per time step in general. One must expect these toler-
ances to lead to good error estimates (if we use the appropriate initial guesses), and we
will show that this is indeed the case. However, we will later show that we can get the
same type of estimates for a modified algorithm that only requires finitely many itera-
tions per time step, on the average.

We will assume that v is sufficiently smooth and compatible for this discussion.
In particular, this implies that we can take U° to be an approximation generated by P
to either 01 or 02 (recall that these were defined in Proposition 4.6 or (4.15))
with an initial guess of zero and an error tolerance of §, = A" + k.
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Our algorithm is of course not well defined and in fact will not obtain the accu-
racy claimed unless we make some special choices for the starting guesses required by
the process P. To be able to do this for the various schemes, we introduce some speci-
fic examples of the operators discussed in (5.9) as follows:

ZO () =0 for0<n<M,

n+1

1 =

z(D) (U)=U" for0<n<M,

2 - - —

Z&® (y=20"-U"" for1<n<M,

z(3) (U)=3U"-3U""' + U™? for2<n<M,

Z() U)=4U" -6U™! +4U"2 - U3 for3<n<M,

Z0) (U) = 5U" - 10U + 10U™2 - 5U™3 + U"™* for 4 <n <M;
here, for the moment, U represents an arbitrary sequence U = {U’} o CL2(Q),
where 0 < n < M. We note that U" — Z{) ,(U), where 0 < n SMad2<i<
min(n + 1, 5), is expressible as a sum of terms of the form U/ - U7~ !, forn—i +2 <
j<n.

We can now state this not quite best possible algorithm in its entirety:

Algorithm (1). Use P with the preconditioning operator Q to

(1) generate an approximation U? to either ¥0:! or ¥0-2 using zero as an initial
guess and a tolerance 8, = h" + k¥;

(2) generate an approximation U"*! to the (true) solution of (5.8) using
Z(l)l(U) U™ as an initial guess and a tolerance 8, , ; = k¥ in the range 1 <
n+1<v-1;

(3) generate an approximation U™*! to the (true) solution of (5.8) using
Z{") (U)asan initial guess and a tolerance B, , , =k, in the range v <n+1 <M.

Again we note that, since we are using a tolerance of 8, , =k forv<n+1<M,
we need on the order of log(M) = log(r/k) iterations per time step, in general.

We use the techniques of Section IV to study this process via Eq. (5.10). We
first observe the following, where 1 <n + 1 < M:

|(a,,+1(U”+l - ﬁn'l-l), En+l)| < C"Q'll{'?lEn+l" "le /2(Un+l - ﬁn+l)"

< CIQLE™ 1B, 4, IIQL 2, U+ = 28, (U))

(5.11)
< B4 QL E™ M (1QL2, B+ = Z9 B
+ Q42w+t = 2O (wyl),
n+1 . .
QA2 ™ - ZD (ENI<C 3 llg}E - EFY|
(5 12) j=n—i+2

n+1

<c X lo2E,

j=n—i+1
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where i = 1 or v depending on n. If we have Condition B, and a suitable v, then

Iy W™ = ZGL ()l
<clwrtt - z& W)l + CKIL, ., (W™t = Z8 (W)l

(5.13) <cé| sup IWDEI+ sup  IL,EOWOEI
0<s<t, 4 0<s<tn+l
0<j<i 0<j<i-1

< Ckl"”"z(,‘-[. 1)

where again i = 1 or v depending on n.
Thus, we can show the following:

THEOREM 5.3. Suppose that Condition B, holds, v € H* (u = max(r +2, 2v +2))
is sufficiently compatible on 3%, and k is sufficiently small. Then the sequence of
approximations {U”} —o generated by Algorithm (1) satisfies the following:

(5.14) IQN/2(UN = WMl < O + k), for 0 <N < M.

Proof. Let 0 <n <M. We have via the propositions and lemmas of Section IV
and (5.10) through (5.13), that

@n 1™, EH1) < (1 + CRYQ,E™, E™) + CKIPIL(H + )

n+1
(5.15) + Ck > (Q,,Ei, ED).
j=max(n—-v+1,0)

Also, Proposmon 4.6 shows that [IQ4/2E°|l < C(k¥ + R)lvll,,. This inequality and
(5.15) give our result.

Thus, we have optimal order errors for Algorithm (1).

As a preliminary to analyzing an algorithm that requires only finitely many itera-
tions per time step on the average, we prove some results for the following situation.

Suppose that a set of approximations {U’} i1 to the functions{WYL ..,
are given, where 1 <i<v+landi-1<n< M Use the process P (with the pre-
conditioning operator 7Q) to generate an approximation U*! to the (true) solution
U™ ! of (5.8) using Z&), | (U) as an initial guess and a tolerance 0 <, ,, < 1.

By the analysis done so far, we already know the following.

ProPOSITION 5.4. Suppose we have Condition B, and v € H =
max(r + 2, 2v + 4)) is sufficiently compatible on 3S2. Then, for any 0 <e <1, we have

that
(@4 E™H 1 E"HY < (1 + CRXQ,E", E™) = 8(Qy — P,)E™, E™)

+ Ch((k* + 1) + B2 _,,lk2i"2)llv||%

5.16 C
( ) +'€‘k(Qn+1E"+l,E"+l) _

52+l n+1
=Y lgHAE - EFYIR.

€
2k j=n—i+2
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The above result motivates an investigation of the differences of the errors. Re-
calling the form of the equation satisfied by the errors (that is, (5.10)), we study the fol-
lowing

PROPOSITION 5.5. Suppose that QX = PV + F, where Q and P are selfadjoint
operators on S,. Then we have that

@+PpEX-7),X-N+(@Q-DX, X

17
$17) = (@- PV, V) + 2F, X~ V).

Suppose further that Q and P satisfy (4.2) (iii). Then
QX-M,X-M+(@-PX,X)<@-PV,N+2(F,X-V).

We now apply Proposition 5.5 to (5.10). If we can enforce a certain important
condition, namely that § > 0 for our polynomials P(x) and Q(x) (recall (3.1)), we can
obtain an estimate that will allow us to analyze the last term in (5.16).

PROPOSITION 5.6. Suppose we have Condition By ,v :d (u=max( + 2, 2v+4))
is sufficiently compatible on 32 and & > 0. Then there are constants §* > 0 and
Cs > 0 so that if B, < B*, we have that

GlIQR A (E™ ! = EMI + (@pss ’Pn+1)En+l’E"+l)

< (1 + Ck)((Qn —Pn).E”,E”) + Ck2(Qn+lE"+l,E"+l)
(5.18) .
+ CK*(Q,E", E™) + CR* {(H + k') + B K22 HVIE

n
+ O, X IQMAE - EFYR.

j=n—i+2

Proof. Proposition 5.5, applied to (5.10) in conjunction with the propositions and
lemmas of Section IV, suitable modifications of (5.10) through (5.13) and different
uses of the arithmetic-geometric mean inequality, yields (5.18) with (1 + Ck) replaced
by 1 and with the following extra term on the right-hand side:

(5~19) |(((Qn+l _Pn+l)—(Qn —Pn))En’En)l-

Note that Q(x) — P(x) = x + O(x?) by the accuracy condition (3.1) (iii), and
O(x) — P(x) > 0 for x > 0. If we redefine R(x) = x + lg, — p,Ix?, then C,R(x) <
0Q(x) — P(x) < C,R(x) for 0 < x < 0. Thus, under Condition By,, the techniques of
Section IV show that

I(@ns1 ~ Pas1) — (Qn — P)E™, EM)
(5:20) < C7€2(LnE", E™) + Ck3|q2 _ p2|||L,,E”||2
< CKR(KL,)E™, E™) < CK(Q, - P,)E", E™).

We could now combine (5.16) and (5.18) with suitable choices for the parameter
i. We would then essentially find that |QL/2E™ || is bounded by terms that are
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O(K" + k), terms that measure the initial error in the Q}/2-norm, and terms that mea-
sure the initial error in the k~1/2(Q, — P,)!/?>-norm. The projection we have chosen
for the initial data (as given in Proposition 4.6) is defined so that it is computable by
the P process and so that it leads to an initial error that is good in the Q(',/ 2.norm.
Unfortunately, it does not necessarily lead to one that is good in the k~!/ 2(Q, —Po)l/ 2.
norm. We could now proceed in two ways. One approach is to let U° be P or look
for another special approximation which is good in all the required norms. But, since
the process P would probably not be useful in generating such an approximation (the
spectrum of PQ does not bear the correct relationship to the spectrum of L, (0)), a
special process would be needed to generate only U°. Since we would prefer to avoid
this situation, we are led to using (5.18) in some other way. After all, it was only the
direct use of (5.18) that gave this apparent problem.

We have the following result which combines (5.16) and a variant of (5.18); the
latter uses multiplication by the time variable to avoid potential problems at time zero.

PROPOSITION 5.7. Suppose that Condition B, holds, v € H* (u =
max(r + 2, 2v + 4)) is sufficiently compatible on 3S2 and § > 0. Then we have
the following for 0 < e < 1, provided that 8, , < min(e!/2, t1/2)):
Int+1
k

(Qn+lEn+l’En+ l) +C “Q,l,{':zl(En'Fl _En)“‘z

tn+l

In
+ C[T ((Qn+l —Pn+l)En+l’En+l) __k((Qn _Pn)En’En)]
(5.21) < (1 + CkXQ"E™, E™) - (8/2)(Q,, — P, )E™, E™)

C
+ Ck(h2r + k2v + B:+lk2i—2)"v"_‘_2‘ +—El- k(Qn+ lEn+l,E”+l)

n
te tnI:l Z ||le/2(Ej - Ei—l)||2.
j=n—i+2
Proof. 1t is a rather straightforward computation using (5.16) and (5.18) to obtain
(5.21) with &/2 replaced by § and a term
Ce,((Q, — P,)E", E™)
on the right-hand side where e, > 0 is arbitrary. This gives the result.

We can now define and state results for our final algorithm:

Algorithm (2). Use P with the preconditioning operator ?Q to

(1) generate an approximation U° to either ¥0>! or V%2 using zero as an initial
guess and a tolerance §, = A" + k¥;

(2) generate an approximation U*! to the (true) solution of (5.8) using
Z&+D(U) as an initial guess and a tolerance B, , < min(k” """, §) in the
range 1 <n + 1 <y, where § > 0 is small; ‘

(3) generate an approximation U”*! to the (true) solution of (5.8) using
Z&+ (V) an an initial guess and a tolerance f,, ; < min(8, #/?,) in the

n+1 2
range v+ 1 <n+ 1 <M, where § > 0 is small.



674 JAMES H. BRAMBLE AND PETER H. SAMMON

We note that the important difference between this algorithm and Algorithm (1)
is that, by our assumptions on the process P, we only have to iterate a fixed number of
times at each time step, on the average. Thus, we are demanding fewer iterations, but
as we will soon see, we get the same convergence rates.

THEOREM 5.8. Suppose that Condition By, holds, v € H* (4= max(r + 2,2v + 4))
is sufﬁczently compatible on 92, § > 0, and k sufficiently small. Then there is a (com-
putable) ﬁ > 0 so that the approximations {UYL | generated by Algorithm (2) satisfy
the following for 0 < N < M:

0N (WY = UM < Q" + KDl
WY — UMl < C! 2 + WDl if N> 0,
lu(ty) = UMl < CE + K.

Note that we get a superconvergence result for W~ — U in the ||| norm for
times bounded away from zero. .
Proof. The proof is almost immediate from (5.21). We first see that

s 22)‘(Qn+lEn+l’ En+l) + I|Q},{31(E"+l _En)uz + C((Qn+l —Pn+l)E”+l,E"+ l)
' < C(H*" + k2|2
u

for 1 <n + 1 <y, where (5.16) and (5.18) have been used.
Ifv+1<N<M,weseti=v+1in (521), multiply the inequality by
_ct,,+1/e(1 — C,kle)"!, and sum over the range v <n < N - 1. Then, by choosing
€ > 0 sufficiently small and using (5.22), we obtain the first result. The third result
now easily follows.
The remaining result is obtained by noting that if y €S,,0 <n <M, and
R(x) = x + |g, — pyIx%, then

I} < Cing, 9) < £ REL)o, ) < 5 ( @y = Pa)o. 9.

Thus, Algorithm (2) generates accurate approximations to the solution u of (1.1)
if the polynomial pair is such that § > 0, implying that dissipation effects are present.
As was noted before, similar results can be proven for stable polynomial pairs (for
which § = 0) if dissipation is introduced by requiring that k < Ch?.

VI. Computational Considerations. We conclude this paper with a few remarks
concerning the computational aspects of Algorithm (2) for quadratic P(x) and Q(x).
Suppose that the functions {w,}{=l form a basis for S,. Moreover, suppose that these
functions have been chosen so that linear systems on R’ involving the matrices

Am = [(Lm‘pi’ ‘p]')].i,,'=l, Asy}) = [(Lsnl)‘pi’ ‘pf)]{,j=l, 0 <m <M,
G= [(‘pia ‘p])]{, i=1>

have acceptable computational properties. We now wish to examine Algorithm (2) in
this context.
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We begin this discussion by making some definitions and identifications. Let 0 <
m<M If o=Z g €S, then

J
(6.1) GE = [(‘pa ‘pj)]]"’=la Lm‘p = Z:l [G'-lAmE]l"pl.
j=

Thus if U= X {,«pi satisfies amf] = ¢, then

62) ( + q,kG'4,, + q,k*(G'4,,G'4,, - G'ANt = ¢,

or, equivalently,

(63) Byt =(G+qikdy + K°4,G7 Ay, — 4,240 = GE = [0, I
We note that (6.3) involves a symmetric, positive definite matrix B,,. We now let 7Q

be one of the polynomials in kL, discussed in Section V. Let PQ(x) =1 +¢qx +
d,x? define its coefficients, and let

PB =G + G kA, + k240G 4,,

which is also a symmetric, positive definite matrix on R’. Finally, rewriting (5.6) gives
us the following:

(6.4) C,PBn, ) <(B,n,n) < Cy,(°Bn,n), nER’,

where (-, -} is the usual inner product on R’.

Thus, we see that S,, with the L2(2)-inner product and R’ with the (G-, -)-inner
product are unitarily equivalent under the identification of ¢; with the ith canonical
basis function in R’. This implies that any process P on S, that solves systems in-
volving Q,,, using PQ as a preconditioner, is formally equivalent to a process P/ on R/
that solves systems involving G~ ‘Bm , using G~ PB as a preconditioner. Since a pro-
cess will usually be given on R’, in practice, this identification defines the correspond-
ing process P on S,,.

How do we compute the coefficients {7’} <;<s 0<n<pr fOr the basis expansions
of the functions {U"}o<,<pr = {Z §7'9;} defined by Algorithm (2)? The linear sys-
tem used to compute U°® has ¢ = Pf as a right-hand side where f € L2(Q2). If ¢ =
Z gp;, then

(6.5) G = (B, o)1= (s ¥V

Thus,_ G};f can be calculated by taking inner products with f, and & can be found by
solving a system involving G. The linear system used to compute U"*! for some n >

0 has ;n U™ = T £]y; as a right-hand side. If we know §” (the coefficients for U™),
then

(6.6) GE" = (G + p,kA, + p,k*(4,G 74, — AP,

so that G§" can be calculated by solving one system involving G, and §” can be calcu-
lated by solving two. Thus, we can compute the right-hand sides of the various sys-
tems. If we know {¢/ };‘=0, the initial guess for the iteration procedure is easy to cal-
culate. Then, to find {"*! via the process P/, we may have to evaluate G™'B,, ; and
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G~ !PB, solve systems involving G~! PB, and do various Hilbert space operations in R’
with the (G-, -}-inner product. Evaluating G™'B,,,; or G~! PB is straightforward. (How-
ever, note that calculating

(G(G™'B, .\ )my,ny) =(B,,1my,ny) forn,,m, ERV

only means solving one system involving G.) If we have to solve the system G~! PBp =
¢ in R’, we observe that this is equivalent to solving ’Bn = G§. (This becomes con-
venient in many situations as G¢ may be easier to obtain than §. This was the case in
(6.5) and (6.6).) We must now solve systems that involve PB. If PQ(x) = (1 + \x)?
for some A > O for instance, then

PB = (G + MkAy)G~ (G + Med,).

Thus, solving PBn = G% in this case means solving two systems that involve the same
matrix (G + A\kA4,) and evaluating G once. If PQ(x) is not a perfect square, other
techniques could be used to efficiently solve systems involving ?B.

Regarding the attainment of certain tolerances by the process P/, we follow a
discussion in [4] and note that if {”*1:® gives the coefficients of the ath iterate
Untle = 3 ¢nt+ Ly, of the preconditioned conjugate gradient algorithm (where
Un+1:0 s the initial guess), and §"*! gives the coefficients of the true solution
htl =3 §?+1¢i, the quantity (pB-an+l(§-n+l,a - ?n+l)’ Bn+l(§.n+1,a - §-n+1)) _
is calculated. Thus, since

"lell(Un'l-l,a - l—]”+l)!|2/||leI2(U"+lfo - l7n+|)"2
= (’B(""'“'a - §n+l)’ §u+l.a - §n+l)/(pBGn+l.0 — §n+|)’ §n+l.0 - fu+l)
< apB—IB"+lGn+l.a - §u+|)’ B,',“ fn+l.a - fn+l))/(p8-13”+l(‘.n+l,o - §n+')’Bn+l §n+|,0 - ?n+l))’

where the latter quantity is known up to the constant, we have an estimate for the
error reduction given by the preconditioned conjugate gradient process as the iterations
are being carried out.

The particular choice of the iterative process will determine which of the above
considerations is relevant in the implementation of Algorithm (2).
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