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Collocation Approximation to Eigenvalues
of an Ordinary Differential Equation:
The Principle of the Thing

By Carl de Boor and Blair Swartz*

Abstract. It is shown that simple eigenvalues of an mth order ordinary differential
equation are approximated within O(IAlzk) by collocation at Gauss points with
piecewise polynomial functions of degree < m + k on a mesh A. The same rate is
achieved by certain averages in case the eigenvalue is not simple. The argument relies
on an extension and simplification of Osborn’s recent results concerning the approxi-
mation of eigenvalues of compact linear maps.

0. Introduction. The eigenvalue problem we consider is of the form
Q) Mx)(®) =MNx)(@®) forte[0,1],8;x=0,i=1,...,m,
where (A, x) € C x C(™)[0, 1] is being sought and
Mx) @) = @)@ + 2 40D @),

i<m

O = X b)) @%@,

i<m

)]

with (8;)]" a sequence of linear functionals on c(m=11o, 1]. For simplicity, we
assume the §; to be supported on 0 and/or 1 only; see [4] for a discussion of more
general side conditions.

We approximate this problem by collocation, as follows. We choose a (strict)
partition A = (¢,)} of [0, 1],

0=1,<---<t,=1,
and, based on it, a sequence ('r,-)’f’ of collocation points, k to each interval [¢,,¢,,,],
G) Tirsr = O+t +pAL)2,  i=1,...,k,

with (p,.)’f a fixed sequence of points in the “standard” interval [-1%, 17]. Then we
seek \y €Candxp €EPYY . p =Py a N c™=10, 1] satisfying

(IA) (MxA)(Ti) = AA(]va)(Ti)’ i= 1’ LR | kl’ BixA = 03 i= 19 cees M
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680 CARL DE BOOR AND BLAIR SWARTZ

Here, P,’ a consists of all functions on [0, 1] which, on each interval [¢;t, tﬁ 11, coin-
cide with some polynomial of order 7, or, of degree < r.

In this paper, we bound the difference between the eigenelement (A, x) and its
collocation approximation (A,, x,), as a function of the mesh size |A| :=
max; At;, the ascent of A, and the choice of the collocation pattern ( p,.)f.‘. In particu-
lar, we show, as a consequence of Theorem 3.1, that

@ Ax =N+ 0(1417F),

in case X has ascent 1 and (pi)’f are the Gauss-Legendre points. We also show that it
is not possible to obtain this result as an application of Osborn’s [11] general theory.
Further, we show that (4) holds also when \ has ascent greater than 1, provided A,
is replaced by an average of certain nearby approximate eigenvalues.

Here is an outline of the paper. In Section 1, we identify collocation as a par-
ticular projection method applied to the eigenvalue problem

ATy =y

for a certain compact linear map 7" on an appropriate Banach space. In Section 2, we
apply Osborn’s nice results to this projection method, indicate that one cannot obtain
(4) in that way, but defer a proof of this claim to Section 4. We then modify Osborn’s
analysis appropriately in order to relate, in Theorem 2.2, the error A — A, to numbers
of the form

¢¥T — Tp)pa»

with ¢, an approximate (generalized) eigenvector and ¢* a (generalized) eigenvector
of the adjoint problem. In Section 3, these numbers are shown to be O(| A[>¥) for
collocation at Gauss points, which leads to (4). Section 3 also contains a short dis-
cussion of related results in the literature.

We have deferred discussion of numerical examples to a companion paper [3].
We found only one real example of an ordinary differential equation with an eigen-
value of ascent greater than one in the literature. Yet, existing theory (and the theory
developed in the present paper) give convergence results which strongly depend on the
ascent. The three examples we give do show that the proven convergence rates cannot
be improved. We also offer an explanation of sorts for the curious way in which ap-
proximate eigenvalues have, in some examples, been observed to converge to an eigen-
value of ascent greater than one.

In the process of writing the present paper, we have reexamined the, at times,
convoluted arguments in de Boor and Swartz [2] for the superconvergence of Gauss
point collocation approximations at knots. This has led us to a whole family of pro-
jectors onto P} ., of which interpolation at the Gauss collocation points is only
one example, which all lead to (| AI*¥) approximations at knots and therefore give
O(l AI>*) approximations to simple eigenvalues. We discuss these ideas in [4], where
we also give an alternative proof of Lemma 3.1.
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1. Translation to an Abstract Setup. We would like to discuss collocation in the
setting of Osborn [11], Vainikko [12] et al., i.e., as a problem of approximating the
eigenelements of a compact map T on some Banach space Y, and therefore assume
that O is not an eigenvalue of (0.1) and that the coefficients of M are continuous
(later, we will assume them to be quite smooth). Then, M~ ! exists as an integral oper-
ator on Y = Lp[O,l], 1<p<oo

1
(1) M@ = [ 66 HrE)ds,
with G Green’s function for the problem
Mx)y@® =y(@) forte[0,1], Bx=0,i=1,...,m.

Further, (A, x) is an eigenelement of (0.1) if and only if (1/A, Mx) is an eigenelement
of the compact linear map

) T:=NM!

on Y. Note that T is given as an integral operator with a piecewise continuous kernel T,
m-—1 .

3) T s) = 3 by ()(3/38)G(, s),
=0

therefore compact as a map from Y into C. In fact, T maps Y-bounded sets to uni-
formly Lipschitz continuous sets.

Such a change transforms (0.1, ) into the problem of finding (A, ,y,)EC x V5
such that

Ya@) =Ty ) @), i=1,...,kl,
with
@) Vo =1{Mz: zEP} .\, z=0,i=1,...,m}.

We convert this into an ordinary eigenvalue problem involving some operator 7, on Y
by introducing the linear projector P, , which carries C, [0, 1] (:=C[ty, ;] x - --

x C[t,_,,;]) onto V, by associating with each y € C, [0, 1] the unique element

P,y € V, for which

@A@Y =y@), i=1,...,klL

Then the two conditions: f&€ V, and f(7;) = g(7;), i = 1, . . . , kI, are equivalent to
the one condition: f= P,g. The approximate eigenvalue problem (0.1,) is therefore
equivalent to the problem of finding (A,,y,) € C x Y such that

®) Ya =AaTaya
with

(6) T, = P,T.
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Of course, it is not clear a priori that P, is even defined. But note that,
by definition, P, y is the unique element in V,, i.e., of the form Mx, with x, €
P;"_,Lm’A and B;x, = 0,i=1, ..., m, which agrees with y at the 7;’s. According to
Theorem 3.1 of de Boor and Swartz [2], there exists a positive const,, depending on
M (and p) so that, for all partitions A with

|Al = max At; < const,,
1
and all y € C, [0, 1], the collocation equation
Mxp)(T) =y(r), i=1,...,kl, Bx,=0,i=1,...,m,

has exactly one solution, x,, in P’y . (To be precise, de Boor and Swartz [2]
assume additionally that (8,)T is linearly independent over P, , but this assumption
was shown to be superfluous by Wittenbrink [16]. Also, both papers only consider
real valued functions, but the extension to complex valued functions is trivial. Witten-
brink’s formulation would also appear to be appropriate for problems in which the §;
also depend on A.) This insures that P, is defined for all A with |A| sufficiently small,
and allows us to conclude from [2] that P, converges to the identity pointwise on
cfo, 1].

In fact, if (B,)T is linearly independent over P,, = ker D™, then P, =
O™M~Y)~1p(D™M 1), with P the linear projector taking D™x to D™x, and shown
in [2] to be bounded on C[0, 1] independently of A; hence P, is then bounded on
C[0, 1] independently of A. In the more general case, an argument like Wittenbrink’s
(see [16, proof of Theorem 2]) shows that

) (1 = Pp)yll. < constli(1 = QDM 1y,

for some const independent of A and with @, interpolation from P, , at the colloca-
tion points (T,.)'f’.

In conclusion, not only is P, defined for all small |A|, but, since T maps Y com-
pactly into C, we have T, = P, T defined and uniformly convergent to T as |A] — 0.

2. A General Result. In this section, we recall Osborn’s results and then rephrase
his arguments to obtain a simple yet useful formulation of the error in eigenvalue
approximations by projection (and other) methods. This formulation makes it evident
(as Osborn’s or Vainikko’s does not) why eigenvalue approximations by collocation are
of such high order.

We recall from Osborn [11] (or from a standard reference such as Kato [8]) that,
associated with each nonzero eigenvalue u of a compact linear map 7" on the Banach
space Y is the invariant subspace

) S = ker(u — T)®,

i.e., the kernel or nullspace of the linear map (u — T)%, where a, the ascent or rank of
u, is the smallest integer for which ker(u — T)* = ker(u — T)*+!. S is finite dimen-
sional, say

a = dim S =: algebraic multiplicity of u,
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while the geometric multiplicity of u is the number g := dim ker(u — T'). The elements
of ker(u — T)\{0} are the eigenvectors of T, while those of S\ker(u — T') are called
root vectors or generalized eigenvectors. S is the range of the linear projector E given,
e.g., by the formula

=_1 =1

@) E=5L fr -1z,

with I" any circle in the complement of the spectrum of T and enclosing in its in-
terior u but no other eigenvalue of 7. The linear projector E can also be written in
the form

€)) Ey =2 (#}y)v;

i=1
with (p;){ any basis for S and (¢¥)] the corresponding dual basis in
S* = ker(u—T*)",

ie., p* €S*, all i, and ofp; =6y, all i, j. Here, T* is the (Banach)-adjoint or dual
of T, i.e., the linear map on the topological dual Y * of Y which carries y* € Y* to
Y*T € Y*. In particular, S* is the invariant subspace of T* corresponding to u and
has also dimension a.

In terms of this notation, Osborn [11] establishes (among others) the following
facts.

THEOREM 2.1 (OsBORN). Let (T ) be a sequence or net of compact linear maps
on the Banach space Y converging uniformly to the linear map T as |A| — 0 and let
1 be a (nonzero) eigenvalue of T. Then, for all small |Al,

) Ep = '2-,17fr e -Ty tdz

is defined, its range S, has dimension a and satisfies

©) 8ap(S, ) < const (T — Tyl
with

— dist(x, V) dist(x, U)
(6) gap(U, V) = max ; S S T % :

Further, if u, is one of the eigenvalues of T, enclosed by T', then

a
D) lu—pyl® < const(II(T — Tl IT* =TDls«ll + X lo*T - T A)‘pib'
ij=1
However, the. average
Hp = (g +-- -+ ua)/a,

comprised of the a eigenvalues of T, (counting algebraic multiplicities) enclosed by T,
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admits the closer estimate
a
®) lu- ual < consts (7 — Tp)lgll I(T* — TZ)IS"‘“ + E (T — Tp)gsl}-
i=1

This is a powerful theorem, and Osborn makes good use of it in a variety of
applications described at the end of his paper, mostly to Galerkin approximations.
But the theorem does not suffice to explain the high accuracy of eigenvalue approxi-
mations obtained by collocation. The chief difficulty lies in the fact that in colloca-
tion (as translated, in the preceding section, into this abstract setup) T'X does not
approximate T* sufficiently well; see Section 4.

We obtain more direct control by comparing matrix representations for T'|g and
T,| Sy 8 is done, in effect, in Osborn [11] to get the estimates (7) and (8), and is
done, quite explicitly, in Atkinson [1] and in Kreiss [9]; but we do it a little bit
differently.

Let J be the matrix representation of T'| g with respect to the basis (,){ for S.
Since gap(S, Sp) — 0, E ISA is 1-1 for all small |Al, and then there is a corresponding
basis (p; )] for S, with

) Egar=¢, i=1,...,a
Since, by (3), ¢/* = FE, we see that
6,0 = 0EG 0 = 006 = 8y

hence y = Z; (¢ ;i a for all y € S, thus the matrix representation J, for
T,| S with respect to (p; 5 )7 has (i j)-entry

(JA),.]. = ‘pi*TA‘pj,A’ Lj=1,...,a
But the entries of J are given by a similar expression. We have
)= ¢/Ty; = 0FTEQ o = OfET; 5 = o*Toa, j=1,...,a,
using the fact that T commutes with its spectral projector £. Consequently,
(10) “J - JA” < Const".“ n}a}xlcpi*(T - TA)¢,’ Al'
We gather these facts into a theorem.

THEOREM 2.2. With the assumptions and notations of Theorem 2.1, let J be the
matrix representation of T'|g with respect to some basis (p)% of S. Then, T ,| Sa is
similar to a matrix J, close to J in the sense that

(11) (J_JA)ijz‘Pi*(T‘TA)‘Pj,A’ j=1,...,a,
with (¢; 5)] the basis for S, for which Eg; o = ¢;, all j, and (p}*) the basis for S*
dual to ()7 (and to (¢; A)7)-

It follows that the eigenvalues of T', close to u are those of the matrix J, (in-
cluding algebraic multiplicity and structure) and, since J has u as an eigenvalue in just
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the same way as T does (including algebraic multiplicity and structure), the approxima-
tion properties of the process can be read off from standard perturbation arguments
which compare the eigenvalues of a matrix J with those of a perturbation J,, e.g.,
from Wilkinson [13], in the manner practiced by Atkinson [1] and Kreiss [9].

In particular,

(12) lu— ppl < const|lJ — JAlll/"‘

for any of the a eigenvalues u, of J,, while

(13) | — (trace J,)/al = |trace(J — Jp)|/a < const|lJ — J4ll,

and also

14) [1/u — (trace J5')/al < const || — J .

In fact, with u,, . . ., u, the eigenvalues of J, counting algebraic multiplicities, and
Oys - - - » 0, the elementary symmetric functions ina variables, we see, by comparing
coefficients of the characteristic polynomials of J and J,, that

as) 0ty - -+ ) = 0, - -, ) + OQIT = T5 ), all .

Finally, with g the geometric multiplicity of u, there exists an eigenvalue u, of J,
(and T,) so that

(16) m=py + O(IlT — JT,IE9).

This is a better rate than (12) except when all Jordan blocks of J have the same size.
The estimate (16) appears in Wilkinson [13, p. 81], while (13), (14) and (15)
are obvious. The proof of (12) (via Gershgorin’s circle theorem) is left to the reader
in Wilkinson [13, pp. 80—81]. Atkinson [1] gives, so he says, a shorter proof. We
record our own version, for the record.
Since (u — J)* = 0,

lu— “Ala < |i(p - JA)a" = |l(s — JA)Q —(u- J)a" COHSt"J“ “JA“"J JA“,

using the fact that the map A —> A% is locally Lipschitz continuous. (Indeed,A* —B*
= Ea_l A*7=1(4 — B)B/, hence [I4* — B*||< | ,_ollAlla_’ 11BI] 114 — BII.)
ThlS proves (12), given that J, — J.

Note that we recover (7)—(8) of Osborn’s theorem directly from (12)—(13)
because of (10) and since

- JA)ij = ‘Pi*(T - TA)(EISA)-I‘P,'

a7

=T - T)IEs) e~ 9l +o}T - Ta)y;,
while
as) IEls )™ lo—pl <1 - E||dist(Elg )~ 1y, ran E)

< |1 = Ellconst|i(T — Tp)lg Il llll,
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the last by (5) and because |[(E'|g A )y 1 ¢l < const||y|l for all sufficiently small |A].
Here we have used the facts that (£ ISA)‘lc,o —o={A-E)F ISA)—I‘P’ and that E is
a linear projector onto S, hence [I(1 —EWw|| < |1 — El|dist(v, S) while, for v E S,,
dist(v, S) < gap(S, S )lvll.

It remains, for any particular approximation sequence or net (T, ), to estimate
[IlJ = J4ll, ie., to estimate expressions of the form

19) e*(T — T,) (E|sA)—1‘P,
with ¢ €S, p* € S*. The estimate
(20) I = J A1l < constI(T — T,) Il

is, of course, immediate from (17) and (18) and provides, in conjunction with (12)—
(16), first assurance that the eigenvalues of T are, indeed, approximated well by those
of T,. It also makes the important point that the error in the eigenvalue approxima-
tion achieved by a particular discretization method is at least of the same order as the
error in the corresponding discrete solution of the corresponding nonsingular equation.
But this estimate ignores the fact that the linear functional ¢* is being applied to a
residual error, i.e., to an element of the form (T' — T, )y, a fact that, at times, leads
to sharper estimates. For example, assume that T, is obtained from T by projection,
ie., T, = P, T for some projector P, defined on some subspace Y, of Y in the range
of T. Then P} is defined on the superspace Y X of Y* and, as in (17) and (18),

lo*(T — T,) (EISA)—I‘PI
(1) =1[e*(1 = POITIElg, )" 0= ¢l + [¢* 1 —Py)] (1 ~P)Tyl
< constl(1 = Pp)Igll I(1 — Po)*|g«ll ol lo*ll

(using the facts that (1 — PA)2 = (1 — P,) and that TS C §). This provides an indi-
cation of the potential “double accuracy” in the eigenvalue approximation by such
methods, as first proved by Vainikko [12], and also established in this generality by
Osborn [11].

This potential “double accuracy” or, at least, higher order of convergence (as
compared with (20)) comes from the extra factor ||(1 — PA)*I s+l whose rate of con-
vergence to zero (as | Al — 0) is usually inferred from the inequality

(22) 1~ Py)*gall <HL =Pl ilg;* dist(p*, ran P} )/ llp*|l.
v

For example, in .the analysis of Galerkin’s method, or the least-squares method,¢* €S *
is given by integration,

o*f = f P*($)f(s) ds

for some smooth function ¢*, while ran P} , i.e., the interpolation conditions for P, ,
consists of integration against any g in the span of certain piecewise smooth functions Kj.
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Explicitly, then

dist(p*, ran P ) = inf sup
Y FEY

[o©r©a- [ ¥ vK610 ds I /IIfII,

with span(K;) akin to P, , in approximation power. This allows the conclusion that
(1 = Py)*gsll = 0(1AF)

for these methods, which, together with the more obvious fact that |I(1 — P,)lll =
0(1Al¥), gives the sought-for “double accuracy” for such methods.
For collocation, though, dist(p*, ran P)) fails to go to zero with any kind of
rapidity, since now
/ i,

i.e., ran P’A" consists of linear combinations of certain point evaluations. Therefore,
(21) in conjunction with the simple bound (22) only implies O(IAIk) convergence for
Gauss point collocation. Even (21) itself, i.e. Osborn’s bound (8) only implies

od Alk+ﬁ') convergence for Gauss point collocation, with 7 the difference between
the order m of M and the order of NV; see Section 4.

Because of this, we proved Theorem 2.2 which relates the error in the eigenvalue
approximation not to some operator norms, but only to the value of certain smooth
linear functionals on the residual error in a collocation approximation. For such
expressions can be shown to be 0(] AI*¥), asis done in the next section.

dist(p*, ran PX) = inf sup
Y fey

[e* @1 ds - T /@)

3. Application to Collocation at Gauss Points. For collocation, as described in
the introductory sections O and 1, the quantities p*(T" — Tp)¢;, 4 in the crucial bound
(2.10) take the form

M [ 0@ T - To)g, a0,

and we now intend to show these to be 0(|A|? "), if the collocation points are chosen
as Gauss points, i.e. if (pi)’f consists of the k zeros of the Legendre polynomial of
degree k. The analysis of collocation at Gauss points in de Boor and Swartz [2] was
based on the observation that

@ [0*® @ - Ty dz = 00 a2

in case p* and ¢ are both smooth. But, since (1) involves ¢; a Tather than a fixed
¢;» we have to make more explicit just how (2) depends on g, and, because of our
desire to keep our estimates mesh independent, i.e., dependent only on the number
|Al, the argument is a bit delicate.

We continue to use the notation and terms of the preceding section. Also, we
use the abbreviations

”‘P”(,) = sup lo@)l
1,<t<t,,
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and

s
||‘P"s, » = Z ||Dl‘P”(r)-
i=0

Further, we assume that (p,)lk has been chosen so that
1 k

3), [T oo la-p)dr=0 foraiper,.
- i=1

Finally, we assume that the coefficients of M and N are smooth enough. Specifically,
we assume that

@) a;, b, € C"tR[0, 1], all i
Then, using the abbreviation
X = {fecDjo,1]: D"1f abs. cont., D'f € X},

with X any of the spaces L, [0, 11,1 <p <, or C[0, 1], the map M~ carries X"
into X"*™) and N maps Xr+m) jnto X+ for r <n + k. In particular, any
invariant subspace of T belonging to a nonzero eigenvalue consists of functions in
X("+%) and the same holds for T*, the adjoint of T. This insures that

) sccnti)  gx c )
and implies, with (1.7), that
©) (L —Py)lglle = 0(Al%).

In particular, || — JA |l = O(IAl¥), by (2.20) (using specifically ¥ = L[0, 1] in the
development leading up to it), and (2.12) now gives the results of R. Winther [14] for
collocation.

We also conclude from (6) and (2.18) (with Y = L_ [0, 1]) that

Q) II(EISA)'lcp = ¢l = 0(1AF)|lgll for ¢ €S.

LEMMA 3.1. There is a constant const depending only on k and p so that

t
ftr+l¢*(T = Tp)a

r

< const| AL, P p¥, T = Tp)oally 1k, r)-

Proof. The function (T — T ,)y, vanishes at the k collocation points
Tyk41r -+ » Tesr A0 [2,, 2,4 1] and, by assumption (3), the polynomial I1.(z — o, , o)
is orthogonal to P, on [¢,, 7, ;]. The argument in de Boor and Swartz [2], in the
proof of Theorem 4.1 (with ¢* playing the role of G(, -)), therefore establishes the
inequality, assuming, of course, that ¢* € L{") [t,,t,,1] and (T — Ty, €
Lo, e, 1. O

Next, consider ||(T — TA)(pAII,H_k,(,) with ¢, = Y a= (E|SA)—1¢I,. We would

like to bound this number in terms of ¢; , and its derivatives on (¢,, 7, ), and this
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seems difficult since T, f at a point depends, offhand, on f on all of [0, 1]. But

TA ‘p] AT z (JA)l] ‘P, A

since J, = (npi*TAnp]-, a) represents 7', | S, with respect to (¢; ,). Therefore, with

®) *i,a =M1 ‘p:AEPchA’ i=1,...,a

we have
(T = Tpr)p,a =T a Z (Jadyjoia = Nxj 5 = Zi: (Ja)yMx; o

and J, — J. This shows the derivatives of (T — TA)w;, a to be expressible in terms
of the derivatives of the coefficient functions of M and N (it is only here that we use
the full power of our assumption (4)) and those of X, a €PL o asand, asJ, —J
(by (2.20)), it follows that

©) T = Tp)e;, alln k¢ < comstyy m?'x”xi,A”m +k, (1)
To complete the analysis, it remains to bound lx; All; 4k, () @ppropriately.

LeMMA 32. For 9 € S and x = M~ 'y, let XA = M_I‘PA with ¢, =
(ElsA)_lap. Then, fors=0,...,m + k,

(10) ID%x 4y < 1D%xll ) + const, (1Al/|At,])¥.
Proof. By (7), llps — ¢ll. = O(1AI¥), hence
€3)) IDS(x, — X)llo = O(IAI¥) fors=0,...,m,

which proves a stronger inequality than (10) for s =0, ..., m. For s > m one now
proceeds as in the proof of Lemma 4.1 in de Boor and Swartz [2] (with the role of
x and Rx played here by x and x,, respectively) to show, using (11), that

DS (x — xA)II(,) < const (lAl/|At, D* fors=m+ 1,...,m+k,

in case x € LE:”*") [¢,,t,,1]. But,by (4),x = M‘Hp has even m + k + n continu-
ous derivatives. O

THEOREM 3.1. Let T be the compact linear map on Y (= L, [0, 1] for some
1 < p < =) given by (1.2), with M and N given by (0.2) and sansfymg (4), let u be a
nonzero eigenvalue of T with corresponding invariant subspace S, and let J be a matrix
representation for T|g. Let T, be the collocation approximation (1.6) to T, and
assume that the collocation points (p;) satisfy (3).

Then, for all small |A|, T A has an invariant subspace S A SO that some matrix
representation J , for T, | IR satisfies

IlJ — J5 Il < const] A" **

for some A-independent const.



690 CARL DE BOOR AND BLAIR SWARTZ

Proof. By Theorem 2.2, we only need to show that the integrals in (2) are
O(IAI"*¥) under our assumptions. But, by Lemmas 3.1 and 3.2 and (5),

<X
r

< 3 constl AL " gl ) IT = Ta)oa s
r

1 t
’fo o (T = Tp)oj A ft KT - TpA)¥ja
r

<y constIAt,I"+k+llltp,-*ll,,,(r) m;lx(lllelm+k’(r) + constxj(lAl/At,)")
¥

< const|A**t". O

For completeness, we summarize previous results concerning the approximation
of eigenvalue problems (0.1) by collocation. Winther [14] was the first to publish
results for the collocation of (0.1) using Pk'"++,,f, A+ He proved that (the quantity he

called “algebraic multiplicity”’ we have called “ascent”)

IN=Al = 0(A*/®), o= the ascent of A;

1D — upll = 0041F), i<mifa=1.
In one of his numerical experiments, he collocated at the k£ Gauss points even though
his theory no longer applied. But this experiment demonstrated that some sort of
“superconvergence” might be going on for the approximate eigenvalues, although its

character could not be estimated. In his thesis [15], Winther proved that, using
P?_,,m’  instead and with 7 := m — (order of N),

A=Al = O(IAI(k“*mi"(”"?’))/“), = ascent of A;
(12) D@~ up )l = O(IAFFmin(mA)) i <y

m;
1D — upll, = O(JAFTmintnm=Dy 4y _ 5 <i<m-—1;

these last assuming that o = 1. Extensive numerical work reported there also indicated
that some sort of superconvergence was taking place for the approximate eigenvalues,
when Gauss points were used in the collocation. Lathrop [10] presented some more
numerical evidence of superconvergence for two second order operators; but still the
character of the superconvergence could not be estimated. Cerutti and Parter [6]
contemplated collocating the selfadjoint second order eigenvalue problem (D?u) (x) =
Aay(x)u(x) with k Gauss points using Pi +2,4- Convergence rates were not relevant

to that paper; what is worth noting is their proof that the approximate eigenvalues of
the nonselfadjoint matrix probleml were, in fact, real.

In their monograph [7] concerned primarily with collocation, using piecewise
polynomials, Douglas and Dupont steered clear of straightforward collocation for the
eigenvalue problem. However, they did use Bramble and Osborn’s precursor [5] to
Osborn’s basic paper [11] to prove that for the second order problem Mu = Au, and
using Pi +2,4» one can collocate the orthogonal projection of the right-hand side onto
P, A at the Gauss points to obtain (they suppose that the ascent of X is one)
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IN=Nal = 0041PF);  llu — uyll, = 0(1AF*2);
max|D(u — u,) ()| = 0(1A%%), i=0,1.
]

From the start, our numerical experiments indicated quite clearly that straight-
forward collocation of (0.1) at the Gauss points using P, ,,, » should yield (at least,
when the ascent of A is one)

= 2al=004P%);  max|Diu — uy) ()l = 01AIP%),  i<m;
7

i.e., about the best one could hope for from the known results for the boundary value
problem [2]. It was these experiments, of course, that prompted us to develop this
paper which completes Winther’s work.

4. In Collocation, the Adjoint Problem is Not Approximated All That Well. In
this section, we elaborate on our earlier contention that Osborn’s bound (2.8) is not
strong enough to give the desired O(IAI>*) bound for the eigenvalue error in Gauss-
point collocation. The difficulty lies with the term

IT* — T gl

which, so we claim, cannot be shown to be 0(|A¥) merely because S* is a finite
dimensional linear space of smooth function(al)s. Throughout this section, we settle
on Y=1L,[0, 1].

We begin with a simple bound on (T* — T})|g« which has, in fact, nothing to
do with S* but merely relies on the obvious fact that

€] WT* = TR gull <NT* = TEN =T — Tpll
For this, let m be the difference between the order m of M and the order of V.
LEMMA 4.1.  Under the assumptions of Theorem 3.1,
Q) IT — T4l = 0(1AI™).
Proof. For f€L,,we compute with (1.3) that
@ -1)7= [ (1 =PYTC,9rGs

Further, by (1.3) and because of the smoothness assumption (3.4), T(-, 5) €
L{™ [0, 1] uniformly in s, i.e.,

IDT(-, .. < consty,  for0<s<1.
consequently, from (1.7),
(1 = POTC , il < 1A consty,
and (2) follows. On combining (2) and (1), we then obtain

3) IT* — T gl = 00AI),
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which allows the conclusion from (2.8) that

@ lw =Tl = 0(AlF+7y,

and also gives the results (3.12) of Winther [15].

Next, we show that (3) is sharp in the sense that we cannot obtain a rate better
than O(IAI’A"), if all we know about S™* is that it is spanned by finitely many smooth
function(al)s. For this, we exhibit a simple M, N, (8;)7~*, A and a very smooth ¢*
for which

I(T* — TF)o*Il = const|Al™.
We take p* = 1, i.e.,
1
of= [ r@adr, airer,.
Then

(@~ 1De*17= [ %0 [} - PTG 976 ds a

= [ : [f :(1 - Py)T(t, s)] dt £(s) ds,
and, consequently,

f: eft, - dt

® IT* = T2)e*) = ‘
2

with

e(:, 8) = (1 - POT(-, s).

Next, we choose M = D™ N = D™~ anq any appropriate (8;)T* independent
over P, . Then, for some appropriate p; € P, ,

T@ ) =N @ - 977 Hm - 1) —p ()] = (¢ — )P~ — 1)! - q,()

for some appropriate g, € P;,. Also, P, is then just Q,, i.e., interpolation from Py,
at the collocation points (fi)'f’. Therefore, with the assumption that k > m,

e(, ) =1 —0\)To(,9),

A

where
To(:s 8) = (=) Y@ - 1)

Further, e(-, 5) = (1 — Q,)T (" , s) vanishes on every interval (t;, t;, 1), which does
not contain § in its interior. Thus
1 t;
[ et syar= e, 5) ar
0

t

with i chosen so that [t;, #;, ;] contains s. On this interval, we change variables, using

t=o0y(1r) = (t; + t;,, T 74)/2.
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Then we can write

ti+1 - (! A1
f e, 5) dr = f _, = )Ty, 9 - dr,

1
with Q polynomial interpolation to functions ot 7 at the points p, < - - <p,, all in
(=1, 1). Since also, with ¢ = o} 1),
At \"" ' 10
Toom.9=(5)  @=-of e -1

we therefore find that

1 Ati . . 1

©) foe(t, §)dt = - M —1)-Fo), o=0;(), <8<ty
where F is the function on [—1, 1] given by

1 -~

F(o) :=f Q-9 G- cr)f{'_1 dr.

-1

Note that ||Fll, > O since, e.g., Q(* — a)’_f_"1 = 0 for 0 > p;,, hence
1 N
F(0) =f (r-oyP ldr=(1—-0)"/m>0 forp, <o<l.

Now combine (5) and (6) to get that
I(T* — T)e*? & il ) }: (At; /2?71,

For a uniform partition A = (i | AL, therefore,

IFl, .
T* — T)p*| = m
Q) IIC el PSRRI |Al

9

which proves our claim.
Note that the argument just given is Jocal, and hence shows that [(T* — T )¢ *Il
# o(|Al™) for any fixed smooth ¢* # O since such ¢* is locally close to a constant.
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paper of Descloux, Nassif and Rappaz (RAIRO Anal. Numér., v. 12,1978, pp. 1131 19]
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