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Compact, Implicit Difference Schemes
for a Differential Equation’s Side Conditions

By Blair Swartz*

Abstract. Lynch and Rice have recently derived compact, implicit (averaged-
operator) difference schemes for the approximate solution of an mth order linear
ordinary differential equation under m separated side conditions. We construct here
a simpler form for a compact, implicit difference scheme which approximates a more
general side condition. We relax the order of polynomial exactness required for such
approximate side conditions. We prove appropriate convergence rates of the approxi-
mate solution (and its first m — 1 divided differences) to (those of) the solution,
even, of multi-interval differential equations. Appropriate, here, means kth order con-
vergence for schemes whose interior equations are exact for polynomials of order

k + m and whose approximation of a side condition of order [ is exact for poly-
nomials of order k + I. We also prove the feasibility of shooting (and of multiple
shooting) based on initial divided differences. The simplicity of the proofs is based
upon the simplicity of form of the approximating side conditions, together with the
crucial stability result of Lynch and Rice for their interior difference equations under
divided-difference initial data.

0. Introduction. In an elegant and understandable expansion and completion of
some work of Osborne [1967], Lynch and Rice [1980] derive compact, implicit, aver-
aged-operator difference schemes for the approximate solution of a boundary value
problem for a single mth order linear ordinary differential equation

Mu)(®) = f(t), tin (4, B);
Qu=c)i™ 'y M:=D"+ 3 oD
i<m
The m side conditions (A; 6”‘1 which they consider consist of separated endpoint func-

tionals (of order less than m) which are assumed linearly independent over nullspace(#).
The interval [4, B] is partitioned by mesh points

A=ty<t;<---<t,=B,

which are constrained by certain local mesh-ratio requirements together with the global
restriction that the ratio of the maximum mesh interval H, to the average mesh inter-
val (B — A)/n be bounded as n grows large. Their interior difference equations

0.1) M, U), = (4,0Mu));, 0<i<n-m,
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734 BLAIR SWARTZ

are compact (Kreiss [1972, p. 612]) in that they involve values of the approximation
(U); = u(z;) at only m + 1 successive mesh points. They are in implicit (Swartz and
Wendroff [1974a, p. 156], [1974b, p. 992], Swartz [1974]), or averaged-operator, form
in that (4,,(Mu)); consists of a linear combination of local values of Mu (=f) (not
necessarily mesh-point values) whose positive weights sum to one. The coefficients of
the interior difference equations M,, and averages 4, are found (at solution time via
the solution of n local linear systems) by requiring that the truncation error vanish for
all polynomials of degree less than k¥ + m; and enough local evaluation points for Mu
(/ of them) are chosen to accomplish this. The connection of J with k¥ + m depends
upon whether one wants to specify the local evaluation points in advance of the calcu-
lation or to specify them by the solution of n local nonlinear systems depending upon
M and upon the local mesh structure and sizes. From the convergence results and from
their truncation error analysis, this can be put more memorably as follows: O(HZ)
convergence can be proven for k rather arbitrary evaluation points; and, if they are
chosen more carefully, for down to /2 evaluation points. One could well call this
last a superconvergence result for difference schemes.

Lynch and Rice’s convergence proof involves the following measures of size for
a mesh function V-

Wyt 0 = orgnlggim ALV, AVIjt == VIt .. ., t;y] := jth divided difference;

IWll,,—y := max max |A}V|, (this last a norm);
0<j<m 0<i<n—j

and begins with a crucial stability result (for their interior equations coupled with ini-

tial divided-difference data) which we paraphrase as follows:

STABILITY THEOREM (LYNCH AND RICE). Suppose H,, is sufficiently small, and
suppose that certain mesh-ratio restrictions hold. Then for any mesh function V

Wl ey < const{liVl,,—y o + IM,VIl.]

They then tumn to the derivation of a compact, implicit scheme approximating
each functional }; (a scheme which is exact on the same polynomial space P, ,,.);
conclude that the truncation error in the composite scheme is O(Hf,); and prove that
U — ull,,_, converges at that rate, first for the initial value problem, then for their
general boundary value problem.

In this note we express compact, implicit approximations to somewhat more
general side conditions A in a more concise form; a form which not only permits a
structurally simple proof of convergence using the above stability theorem, but also
points out how, for that portion of a side condition which is of order 7%, the necessary
order of polynomial exactness can be reduced from k + m to k + 7.

Next, we observe that the crucial stability result (together with the form of the
approximate side conditions) leads, immediately, not only to the feasibility of shooting
(using ordinary divided differences as initial data) as a solution technique for the
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composite implicit difference equations; but also to high-order convergence rates for
multi-interval boundary value problems (e.g., problems where M is piecewise smooth);
and finally to the feasibility of a multiple shooting technique.

Lastly, we wish to associate an acronym with our approximate side conditions;
one which is more memorable (if not more meaningful) when preceded by the acronym
HODIE promulgated by Lynch and Rice [1975], [1978a], [1978b], [1980] for their
averaged-operator interior schemes. This acronym is based upon the phrase “Demon-
strating Osborne’s Obscure (but) Decent Implicit Expressions”.

1. Compact, Implicit Difference Schemes for Lower Order Point Functionals.
The boundary value problem considered is

m—1 A _ _
Mu = <D"' + ‘Zo aiD’>u =f in(d4,B), A4ul=c, 2”:6,
i=
where the linear functionals
m” 2 mv 2
Ag =t + vy, Hg = ZE, a;,(DYA), v, = ;} b; (D)(B)
= =
have the property that O\q)o ~1 are linearly independent on the nullspace of M.

We concentrate our attention on approximating the qth functional and suppress
dependence upon q. Furthermore, we approximate u and v separately; the sum of the
approximations will approximate A\. And we shall approximate the condition ufu] = ¢
by the condition u,[U] = C[u] where, for any mesh function ¥ and for v in C™[0, 1]

m

R mol o (-my—1)

BalV]:= 3 qAQV +h 3 v A VR TR, 0<m, <m;
i=0 i=0

(1.1a)

Clv] := u[v] + A" "4 i B; (Mv)(zy + hE)).
j=1

Here Af,V =iVty, . . ., 4;]; ()4 is the positive part of j; 4 :=1¢,,_; — t4; the
(Ej)r{ are chosen, well separated, from a fixed interval [0, a]; and we propose, for 4

small enough, to determine the numbers (y,)5'~ " and (ﬁj)‘{ uniquely by the condition
that

pulp] = Clp]l, p inP;, . := {polynomials of degree less than J + m}.

Furthermore, we show that, as # — 0, the 4’s and s are O(1). To see this can be
done, set

pi(t) := (t — to)'/I.
Then, since

(Dipl)(t())’ i> l’

Al(')pl = R .
D'p)(t,) + 0GR, i<,
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we see that

m -—
_ + M ot + m—1 .hl+(i—m”—l)+ Di
"lh[pl] “[pl] Z:]al ( ) Z 71 ( pl)(to)
i i=0

—1
+ mz ,),io(hH- l—-i+(i—m# —-l)+)

i<l
max(1,l-m ) min(i-1,my)
= u[p;] + O(n WY+ X o'+ 1y,
i=0

min(l—-1,m—1) -
Y ot ey,
i=m“+ 1

m=1 max(1,l-m,)
+ Zoh Fo L
i=

On the other hand, with o; ; := a,(ty + §h),

J
RS [y + OB, 1<m;
j=1
Clp] = ulpy] +

_ J
(-myp""E X gm0, 1>m.
j=1

In order that u), = C on P, ,,, we must satisfy the J + m linear equations
(unlp,] - Clp;] = 0);2 "~ 1. The existence argument for the unknowns (v,)g" ' and
(Bl-)‘{ considers two cases. First we suppose that m, = m — 1. The equations then
take two forms:

(a) for I <m,

-1 J
0=0() +h 2 Oy +hy—h 2 [og; + OM)B;;
i=0 j=1
(b) for I = m,
m-—1 ) J
0=0(*""™ +h 3 OG ;= (U —m)h*t1=m 30 (7™ + o) ;.
i=0 j=1

In this case one, therefore, solves a linear system (with O(1) right-hand side) whose
coefficients are an O(%) perturbation of those in the following system:
J

J

Y- 2 oty =0(1), 0<I<m; (-m) Y g™mg=071), I>m
j=1 j=1

The last J equations involve diag[(/ — m)!] - (a Vandermonde matrix). Hence the un-

perturbed (thus the perturbed) systems have uniformly bounded inverses (% small).

Consequently, as # — 0, unique and uniformly bounded (,), ~! and (Bi)‘{ exist for a
given operator M and for the case m, =m— 1.
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The existence argument differs slightly when m uw<m~—1. Thenthe m +/J
equations take three possible forms:
(a) for I <min(m, + 1, m - 1),

-1 J
0=0() +h Zo O™y + by, = O(h?) X oy + O(W)B;;
i= =1

(®) if m, <m -2, then form, + 1 <I<m,

my, -1
0=00"r + T O Ty, + X o My,

I-m

+h My =0 3 g + 0018

(c) for I = m,

I mu ml -m
0=0( "™+ oWt Ty, + X o P,
i=0 i=m,+1

M

J
~@-mm S (g + o,
=1

One, therefore, solves a linear system (with O(1) right-hand side) whose coefficients
are an O(h) perturbation of those in the following system:

v, =0(1), [<min(m, + 1,m-1);

-1 (only if m;, <m —2;
2 oy, + v =0Q),

i=m, +1 then for m,, + 1 <I<m-1);
m—1 J
2 Oy—(@-m Y g™ =001), I>m.
i=m#+1 j=1

The first m equations are lower triangular with 1’s on the diagonal. We conclude,
again, that as # — 0, unique and uniformly bounded (y,)g ~! and ([3]-)‘{ exist for
given operator M and for m,, <m — 1.

For a general boundary condition A\ = u + v we approximate v[u] = ¢ separately
by v,[U] = C,[u] using Vf,U =1ilUlt,, ..., t,;],0 <i<m. Then the approxima-
tion of A[u] = c is given by

Ty
MalUT = [U] + v, [U] = Nu] + by, # Zl B M)ty + hyE)
]=

(1.1b) T
T T = ) (= Culul + Clu.
j=
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The truncation error T [u] is defined for u in C™[4, B] as
Ty\[u] := Ny [u] — Cy[u] — C,[u].

Approximate u by its Taylor polynomial of degree J, + m — 1 on [¢ty, 2,,_,], by a
corresponding Taylor polynomial of degree J, + m — 1 on [t,_,,. 1, t,], by anything
elsewhere. The truncation error is the truncation error in the remainder, and it satisfies
(because the y’s and the §’s are bounded)

Ty[u] = 0@y "y + oy TV

@ec™ i, 4+ e,10 "B - e, B).

To maintain uniform order of truncation error O(H,’ﬁ) (that of the interior equations)
we set

(12) Jyi=k-(m-my), J, =k —(m—m);

ie., py — C, is to vanish on P, ,, , v, —C, on Pk+mv. Thus, as far as truncation
error goes, the order of polynomiaf‘approximation necessary for a boundary condition
is appropriately smaller than that required for the differential operator.
" Remark. The same argument yields compact, implicit difference schemes for
multipoint functionals of the form
Kk ™M

)\ = Z Z ai]’(Di)(zi)’ (Zi il’l [A’ B])llc’ (mi < m)’(;’

i=1 j=0

as long as each mesh (¢,)3 contains (z,)§.

Lynch has conjectured (personal communication) the existence of special evalua-
tion points for Mu near ¢, so that J, can be less than (1.2) but the approximations are
still exact on P,H_m“. (For M = D*, \ = D|, see Lynch and Rice [1980, Ex. (2-2")—
(2-6")]. Each \, there is too accurate for its associated (M,,, 4,,).)

As an example of (1.1) we consider an approximation of A[u] := (Du)(¢,) using
U at two values of ¢ (namely ¢, and ¢, := ¢, £ h, h > 0) and two corresponding
values of

(1.3) Mu :=aD*u+ b Du + cu.
It is
14 A (U] =G, [u);

where, with D U := (U, — Uy)/(t. — t,),

\:[U]:=D,U + hd™' {[(4a, * b h)cy + 2a4c,]U,
+ [4a,by + 2a9b, * h(byb, + 2ayc.)ID. U},
C.[u] := (Du)(ty) + hd~[(4a, + b,h)YMu), + 2aq(Mu),];
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and one assumes # small enough so that

d := 12aga, * 4(agh, — a,bydh — bob,h? # 0.

Fora=1,b=c =0, it reduces to D,U = (Du)(ty) * h[2(D2u)(t,) + (D*u)(t.)]/6.
Being exact for cubics, the O(k>) (but not O(#*)) truncation error in (1.4) yields
O(Hf',) convergence when used with the tridiagonal averaged-operator Lynch and Rice
[1980] scheme associating U;, U,, , with (Mu);, (Mu),,, for a nonuniform mesh
(t)s- It is conceivable that an argument based on a maximum principle would show
that, when the mesh is uniform, it yields O(h%) convergence when coupled with the
tridiagonal, averaged-operator scheme for (1.3) found in Swartz [1974, pp. 304—305].
An examination of the form of C,[u] above shows that words like “identity
expansion” or, even, “averaged-operator” are somewhat misleading when attempting to
describe the structure of approximations like (1.1).

2. Convergence for the Initial, Then the Boundary, Value Problem. We now
prove appropriate convergence rates for our implicit difference schemes. We first use
the stability of the initial value difference scheme (divided-difference data) together
with the high order truncation error of the implicit initial value difference scheme to
prove high order convergence (discretization error) for the IVP. From this, from the
initial divided-difference stability, and from the high order truncation error for the ap-
proximating (unseparated but linearly independent) boundary conditions, we then
prove the same convergence rate holds for the general boundary value problem. A
similar sequence of results is followed by Keller [1976, Chapter 2], except that he
considers first order systems, general (noncompact) interior; difference equations, but
exact boundary conditions. The result also constitutes an extension (to reasonably
general nonuniform spatial mesh discretizations) of the easiest, but not the least signifi-
cant, of Kreiss’ results, [1972], namely his convergence proof for what he calls com-
pact difference schemes.

For any mesh function V we again set

i j .
Wiy 0 = omax, 1AV, &V =V, o, 1),
WVll,,—y := max max |AJV].

0<j<m 0<i<n-—j

First, we determine the convergence rate for the solution of the initial value
problem

Mu =f, Aq[u] = (Du)(ty) = cgp 0<qg<m,
as approximated by
MU= A,f; N ulUl=Colul, 0<q<m;
here )\q . and C, are given in Section 1. Recall, now, that the stability theorem states

conditions under which ||V]|,,,_, < const(llVllm_l’o + M, VIl.), uniformly and for
all mesh functions V. So consider, as usual, the mesh function E := u — U, which
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satisfies the truncation error difference equations (Lynch and Rice [1980], Section 1
herein)

M.E =T =0(Hy);, N plE]l= qu[u] =0HY), 0<q<m;k>0.

Since, for 0 < q <m,

m—1

. i1
AgnlE]1=A3E +h z;‘) Yj.gAN E HOTTD+
]:

with (7].,(7)0 -1 (',"—1 uniformly bounded, we may solve for the initial divided dif-

ferences of E to find
AJE = OHY), 0<gq<m.

Using the stability result, now, the convergence rate is ||Ell,,,_, = O(H',f) for the initial
value problem with the implicit difference schemes (Section 1) as initial data.
We turn to the general boundary value problem

Mu =f’ (>\q[u] =Cq ;ﬂ;(},
as approximated by
MU =A,f, O ulU1=C, glu] + C, g [ulg o,

using the approximate boundary conditions as given in Section 1. We first note that
the mesh function E := u — U satisfies the truncation error difference equations

ME=T=0(H), (\qnlE]=Ty [u] = OGS
Let Upy be the above approximate solution to the initial value problem for u. Then
E=EnN+E-Ey), ENln, = O(H’,ﬁ).
Furthermore,
My(E ~ Ern) = 0, (g ulE ~ Ern] = Ty [4] = Ag ulErn DG -
But, from the uniform boundedness of the coefficients of the divided differences in
Ag,» and from the convergence rate for the approximate initial value problem,
A ulEin]=0@HY), 0<q<m,
as well. We would like to conclude from this that
AY(E - Ey) = OHE), 0<q<m,

for then |IE ~ Eyy\|l,,,—, (and hence ||E]l,,_,) would be O(Hﬁ) from the stability result.
Thus, it remains to show that (A V)7~! is uniformly bounded by (U144 -1
on the subspace (which is m-dimensional by the stability result for H,, small)

Vo= nullspace M,,.

To see this we recall the assumption on the boundary conditions that Ago ~1 are
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presumed linearly independent on

Vo := nullspace M;

i.e., since the m initial value functionals are similarly independent,

Q1 Qolvl, .. Ny DT = AW(E), - ., D), v E Vs
where the m x m matrix A is invertible. We need a corresponding result to hold uni-

formly on V, . We begin with

LeMMA 2.1. Let L: Vg, — U, be defined by (DU(LV)t,) = A§V)g !,
VE€ Vo LVE V. Then, uniformly for H, small,

ID( LV, < constl| Vll,,_y o, O <i<k +m.
Proof. For H,, small the map is well defined. With (v,)g'~" satisfying My, =

0’ (Divq)(t()) = qu,
m=1

2 AV Di(v,)
q=0

1D (LNl =

oo

As a corollary, using the stability theorem, the truncation error estimates for the
HODIE interior equations, and the usual error estimates for Vjr as approximations of
Dn(t,), we have

COROLLARY 22. If V € V ;, then for 0 < q <m,
lvdv - DI(LV)(t,)l < const - H,lIVl,,—1 0-

CorOLLARY 23. IfVEV ,, then for 0 < q <m,

Mu,q . My.q
2 G MV + T by UV = ALV < const HyllV ly_y o
j=0 j=0

Since (v; 4)0 1 m=1 are uniformly bounded, we finally have

COROLLARY 2.4. For VEV, ,,
Qo nlV1] - oo M1 VDT = AV, . ., AFTIV)TI< const Hp |V Iy -

That is to say, the linear map on (&) V)71, ¥ in Vo u» defined by the first
term satisfies the following desired analog of (2.1):

QonlV] - Ny flVDT = (A + OHAYY, ..., AFTIW)T, Vin V.
Since A is invertible and independent of n,

(A4vyg~! s uniformly bounded (as H,, — 0) by (A, ,[VDg"~!

on V4 ,, which (in addition to showing that the full set of difference equations has a
unique solution) is what we needed to complete the proof of the following convergence
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statement:

THEOREM 2.5. The unique solution U (and its first m — 1 divided differences)
of the compact, implicit difference scheme

MU =A,f (g alU]=Cplulg™,

converges to (those of) the solution u of the mth order boundary value problem

Mu=f (A\[u]=cyy!

(()\ )0 ~* presumed independent on nullspace(M)) at a rate O(Hk) ie, \U—ull,,_
O(Hk) under the hypotheses that

(a) the maximum mesh size H, is small enough,

(b) the local and global mesh-ratio assumptions for the Stability Theorem hold,

(c) the interior difference equations (0.1) are exact for polynomials of degree
less than k + m,

(d) that portion of each side condition (1.1) which is of order m
polynomials of degree less than k + m u» and

(e) u is in C¥*t™[A4, B].
A sufficient condition for (d) is given by (1.2).

u I8 exact for

COROLLARY 2.6 (Shooting using initial value divided differences). Let (U))y’
satisfy the m + 1 difference equations

M,U; =0, (MU, = 8,y DN MU, = A,f (MU, = 0L

Then
MU =4, plU]=Cpylu] +C, [“]);—o,

Where the linear system for the unknown coefficients in the expression U = v, -

2]'-" o ¢jU;, namely,

m—1

z; NnlUjles = N U] = Gy lul = G, Ju], 0<i<m,
]:

has a uniformly bounded inverse for H, small.

Proof. V:=1U,, -~ U= Z0q,U; € U, , satisfies

m—1 m—
<A' V= Z ¢; AQY; > 1’ Qi plV1 =N ulU,] - Cu,--[u]_ Gy [uDo -
0

j=0

But (A%)7*! is uniformly bounded by ()5  on Vg, for H,, small.

Remark. The results of this section are easily extended to cover the multi-
point side conditions mentioned at the end of the last section as long as those condi-
tions are collectively linearly independent on nullspace(M).
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Remark. One presumes that the (at this point somewhat useless) stability result
1V 1l—1 < const[lI\, [Vl + IM,VIl.], all mesh functions V,

would follow from convergence (to smooth solutions) and seeming consistency via an
appropriate application of uniform boundedness. We may have missed a simple trick,
but we are unable to provide an elementary proof.

3. Multi-Interval Problems; Multiple Shooting. The derivation of compact, im-
plicit difference schemes for multi-interval problems; the proof of their convergence
rates; and a delineation of multiple shooting for single-interval problems are, at this
point, mostly matters of appropriate definitions.

Thus, take the differential equations as

@rru)t) = f(), t€@A,,B,) =1, A, =B, order M* = m,,
under side conditions AN[u] = ¢, where A=, ..., N, m_)T consists of m, +

m_ linear functionals on C"~[I_] x Cm+[1 +]. Each functional \ is presumed to be
of point functional form

m, <m
k_. + z, +
N=D2w,_ * oM, eachz ;€L eachy, = ZB a, ;(DNz.);
=1 4 i=1 T * =

m_+m
and we suppose ()\]-)1 to be linearly independent on
Vo := nullspace(M™) x nullspace(M*);

that is to say, that there is a nonsingular matrix A so that

Al = AWAL), ..., D" o), wA4y), ..., D" AL )T, vE V.

As to difference schemes, we suppose that the points (z, ,)’f* lie in every mesh
A, = to << t* = B, ; and invoke, as “interior” equations, the compact, im-
plicit schemes M (U )y=A4; f, which utilize enough evaluation points for f so that
they each have O(H") truncatlon error. Here H := max, _(H, ) and we now define
norms on mesh functions as

V=10 : —maxllV*llm 1,00 W Vllpoy :=max | V¥
+’
M, VIl = Ta_l_xllllﬁ,iV*IIm;

m,—1>

note that the last two expressions involve no differences across the common boundary
of I_and I,.
Given all these concepts, then, we conclude the following results:

LEMMA 3.1 (Initial value divided difference stability). If H is small enough, then
W llp—1 < const(IVll,,,—q 0 + 1M, V1)

for all mesh functions V.
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LEMMA 3.2.- We may approximate each side condition N[u] = ¢ with \,[U] =
C\[u] by summing approximations to its component functionals uzi’ ;o in Section 1,
utilizing forward or backward differences as appropriate together with enough auxiliary
evaluations of M*u near each 2z, ; to attain O(H¥) truncation error.

Lemma 3.3. For V € Vg j, = nullspace(M, ) x nullspace(M} ),
1V 1l;p—1,0 < constlin,[V]ll,-
Proof. As in Lemma 2.1, with |V satisfying the pair of initial value problems
ML) =0, QI(LYXE5) = ajro)y s,

we have
ID*(LV)Il., < constl|V||

the remainder of the proof follows by tracing through Corollaries 2.2—2.4. And, as in
Section 2, we conclude also

m—1,05 i < const;

CoROLLARY 3.4. (a) Convergence: |\U — ull,,,_, = O(H¥); (b) shooting, using
the pair of initial value divided-difference problems approximating M*u = fon I s
works.

COROLLARY 3.5. The version of multiple shooting for the problem
Mu = f in (A—’ B+)’ ()‘q[u] = q)o —l’

which is defined by shooting (using the pair of initial divided-difference problems) for
the multi-interval problem

M:tu =Mu in It = (AiaBi)a B— =A+ =C in (A—aB+);

Nul=¢,, 0<gq<m-1(LILD.on nullspace(M));

Agu]l = DT ™0)B) - (DT "u)(A,) =0, m<qg<2m-1;

works and yields
ngU+—wmﬂJW‘—muq)=0@ﬁ)

(note we say nothing here about the error in divided differences which involve mesh
points from both I, and I_).

Proof. Because of Corollary 3.4 it suffices to show that ()\qr)g"”‘l are linearly
independent on Vo. But if (A, [v] =0)3"~",vin V4, then (DLv(B_) = DLv(4, ).
By the continuity of the coefficients of Mat C=B_=4_,

v(®) :=v.(1),  tin[4,,B.],

lies in nullspace(M). Since (A,[v] = A [v] = 0)5"~!, v = 0;ie.,v =0.

4. Convergence for Systems via the Stability of Other Systems. Since there is
nothing in Section 2 which assumes that u is a scalar function, that section provides
proof of O(H’;) convergence of difference approximations to the solution of a general
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linear boundary value problem under the following hypotheses:
(a) the problem has the form

Mu=f, ANul=c,

where M is of order (m); in (u);, \ is of order less than (m); in (u);, dim u = dim m,
dim ¢ = Z(m);;
(b) the initial value problem

Mu=f, @A), QuAT, ... O " wyW)T =c

is well posed;
(c) there is a nonsingular matrix A such that

Au] = Alu( )T, . .., @™ 1wy A)TI"

for u in nullspace(M);
(d) with [|Vll,,,_; o and [IVll,,—, involving the divided differences of (V); through
order (m); — 1, the initial value stability theorem

WV lp—q < const{IVll,,—q o + M, V1l.]

can be proven;

(e) each approximate side condition (\,[U]); = (C,[u]); can be expressed in a
form analogous to (1.1) with bounded v’s and f§’s;

(f) the truncation error

max[|IM,,v — A,Mvll,, I\, [v] = C,[v]ll]

can be shown to be O(Hﬁllvll), [lvll the max norm of v, . . ., D¥* %, some 0. The
hard parts, of course, are (d), (¢), and (f); about which we conjecture nothing.

There may well be systems for which stability (perhaps uniformly in some param-
eter) is more easily proven for side conditions other than initial value conditions. In
any event, one could also pursue convergence viz assumptions like

(b") there is a problem Mu = f, u[u] = ¢ which is well posed;

(c") for some nonsingular A, ANu] = Au[u], u in nullspace(M);

(d") there exist approximate side conditions u,, satisfying lI(w,, — w[vllle = o(H,,),

v smooth, such that it can be proven for all mesh functions V that

WV —1 < constlllw, [Vl + 1M, V]

The norm ||V|l,,_,, too, could be weakened just as long as one could go through the
essential argument of Section 2, namely, that using the stability and truncation errors
for (M,,, u,) and working via nullspace(M), one can show [l,[V]l, < constl,[V]ll..,
V in nullspace(M,,).

Additional references, mostly concerning the interior implicit difference schemes
(M, A,,), are appended below; see especially Doedel’s work, traceable from Doedel
[1980], going back to 1976. Nonlinear problems are discussed in Stepleman [1976],
two of Doedel’s papers, and Keller and Pereyra [1979]. This last paper devised com-
pact implicit schemes for certain classes of operators M, mentions compact implicit



746 BLAIR SWARTZ

boundary approximations, but (most importantly) considers deferred corrections.
Osborne [1975] creates a nice connection between implicit schemes and collocation
with C("—1) piecewise polynomials, a connection which Doedel more thoroughly ex-
presses and explores later.
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