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A Cardinal Function Method of Solution
of the Equation Au = u — u*

By L. R. Lundin

Abstract. The steady-state form of the Klein-Gordon equation is given by

*) Au=u— u3, =ulX), X€ R3.

For solutions which are spherically symmetric, (*) takes the form i + 2a/r = u — u3,
u = u(r), where r is the distance from the origin in R3. The function y = ru satisfies
** v =y=»r
It is known that (**) has solutions { Yn }:=0, where y,, has exactly n zeros in (0, ),
and where y(0) = y(«) = 0.

In this paper, an approximation is obtained for the solution yq by minimizing
a certain functional over a class of functions of the form

m r— khm
Z ag sinc | ——— 1.
k=-m h,,

/8

It is shown that the norm of the error is O(m3 exp(—am%)) as m —> o, where « is

positive.

1. Introduction. The Klein-Gordon equation

(1.1) O¢ =@ - M*, 6=¢X 0, X=(x;, X, x3),

is an equation arising in spinor particle theory. Three steady-state forms of (1.1) are

(1.2) Mu=u-u®, u=uX),
@1.3) Uu+22fr=u—-u>, u=u(),
and

(1.4) y=y=-y’I*, »=»0.

Equation (1.1) reduces to (1.2) once the following substitutions are made: ¢ =

vexpli(k- Y —wh)],BY = X, p> =u? + k? - w2c™2, u = F1\"v. For the radially

symmetric case, (1.2) reduces to (1.3), and (1.4) is obtained by setting y = ru in (1.3).
Here, we shall be interested in the solution of the problem

1.5) y=y-yI*, ¥0)=y()=0,
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which corresponds to
(1.6) u+22ifr=u—-u®, u0)=u)=0.

The problem (1.5) has been considered by many authors [1], [2], [4], [5], [10],
[11], [12], [14], [18]. Nehari [10] proved the existence of solutions to (1.5), and
Ryder [13] showed that solutions y, exist, for 0 < n < oo, such that y, has exactly
n zeros in (0, *0). It is these solutions, y in particular, which this paper concerns.

Problem (1.5) contains obvious numerical difficulties: a nonlinear boundary val-
ue problem over an unbounded interval. Initial attempts to use initial value problem
techniques are discouraging. Each solution of (1.4) is asymptotic to one of y = —7,
y=0o0ry =r asr—> o, and apparently (see [2]) no solution of (1.5) is stable. In
fact, the evidence indicates that for the collection of initial value problems

1.7 y-y=yIr*, »0)=0, y0)=q,

there is a countable collection {al-} with no cluster point in R such that if a & {a]-},
then ly/rl — 1 as r —> oo,

Standard proofs of Galerkin methods fail for (1.5), since the derivative of the
Lagrangian of (1.4) is neither positive nor negative at a solution to (1.5). However,
Chauvette and Stenger [2] do succeed in a difficult proof of their application of the
Bubnov-Galerkin method.

Here we consider a variational approach based on the approximation theory de-
veloped in [8]. The results of [17] suggests that the rate of convergence,
O(exp(-cm/?)) where m is the number of unknowns, is best possible. Several proofs,
which have been deleted in the exposition, are available on request.

2. Important Results. In what follows, we shall make use of the functionals
J(a, b) and G(a, b) defined by

@ 1 by = [ G + 3,
and
(22) G(a, by = f ab 472 ar.

For simplicity, we write J and G for J(0, =) and G(0, =), respectively. We also con-
sider the set S(a, b) consisting of all functions y € Hy(a, b) such that ¥(cy) >0 for
some ¢, € (g, b) and

(2.3) J(a, b)y = G(a, b)y.

THEOREM 2.1 [13]. Let n >0, and let S, be the collection of all functions y
for which the following is satisfied: there exist {r; }i_, C (0, %) ({ry Yoy = ¢ if
n=0)such that 0=ro <r, <+ <r, <r,,, =-oo and (-1)*y € S(r,, Tet1)s
for 0 <k < n ThenJ is minimized over S, by the solution y, of problem (1.5).
Further, for eachn >0, y, € C1|0, ), and Yo IS the unique minimum of J over So-
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Coffman [1] provides further results on uniqueness and existence, including the
following two lemmas.

LEMMA 22. For each 8 > 0, (1.4) has a unique solution y = y(r, ) which satis-
fies y € C*(0, ) and lim,_, o7~ 1y = B. Further, there is at most one Bo € (0, =) for
which y(r, Bo) > 0 on (0, ) and lim,._, .y(r, By) = O.

LEMMA 23. Let n >0, and let b be the first zero of y,, in (0, >]. Then § =0
is the unique solution of

2.4 8" -8 +3r2y,8 =0, 80)=35()=0.

The theorem which follows is a consequence of Lemma 2.3. Its proof, which

employs the Sturm-Liouville theory and Courant’s maximum-minimum principle, is
deleted.

THEOREM 24. Let b and y, be as in Lemma 2.3. Then there exists a constant
K € (0, 2) such that for all ¢ € Hy(0, b),

b b
(2.5) 6 [, v2errar<@-nf] @+

3. Whittaker’s Cardinal Function. Let f be defined on the real line R, and let

h be a positive constant. Then the function C(f, k) is defined on the complex plane
C by

G.1) CEMD= 3 fknSE b)),

k=—o0

where the function S(k, k) is given by
- -1 -
(32) S, h)z2) = [11 z hkh] sin [11 z hkh] .

The function C(f, k) was introduced by E. T. Whittaker [21], and has been studied
further by several authors (see [8], [9], [16], [22]). In this paper, we approximate
the solution y, of (1.5) by a function of the form

m
(3.3) C,(f,h)y= > fkh)S(kh).
k=—m
The foundation for such approximations is given in [8].
The results given in [2] may be used to show that for a = 1, y,, satisfies the
conditions on f in the theorem which follows.

THEOREM 3.1 [8]. Let d, a > 0 and assume f satisfies

@) fis analytic on Dy ={x +iy: Iyl <d};

Gi) [2, Ifx + iy)ldy — 0 as x — +oo;

(i) lim,_, -~ [z Iflx £ iy)12 dx < oo

(iv) there is a positive constant C such that |f(x)| < Ce %\, for all x ER.
Let vy be positive and for each positive integer m let h,, = ym Y2, and let
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€m = C(f, hy,) — f. Then there exist positive constants K | , and K,, independent of
m, such that

(34) Ve hp )y m3 % e, (f, B, 5 <K, , exp(—pm!/?),
and
(3.5) e Rl mle,(f 1)l < K m!/2exp(-pm!/?),

where 3 = min(nd/y, ay).

It is important to recognize the implications of (3.4) and (3.5). For example,
(3.4) says that

Ne, (5 Byl 5 = 0,212 /mm) as h,, — 0 (n —> o),
and so for every positive integer p,
le, k)l , = o) ash, — 0.

We complete this section with the presentation of two results which are needed
in the computations and in the proof of validity of the approximation scheme. The
equalities (3.6)—(3.8) are given in [8], and (3.10) is obtained quite easily from the
theory in [8].

THEOREM 3.2. Let h be positive, let m be a positive integer and let

(.6) £= _fm 4,5, h).
Then
G jR £x)dx = h _i_m a2,
and
(8) Jo F@)? ax = ! i ;”im ,-z‘m—m Oy jAx
where
/3 ifk=j,
39 i T {2(— DEYG - kY2 ifk #j.
If ay = 0, then
(3.10) f R o % dx =2n! k_f_j“ K284 (kn/2).

THEOREM 3.3. Let f, m, h,, and B be as in Theorem 3.1, and assume f(0) = 0.
Then there exists a positive constant L, independent of m, such that
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(3.11) < L exp(-pm'/?).

Lz PPax 2 dx - [ €l by W dx
Proof. We have
UR Freap 2 dx = [ Clf, iy ? dxl

- fz(x) +C (f; h )2(x)
< m m L £20) — 2
_xESRP\p{O} x2 ] fR r (x) Cm(ﬁ hm) I dx
@) + C,(f, h,,)*(x)
< }_xei“\p{o} 2 ]“f + Cplf Byl = G, .

Now, C,,(f, h,,)0) = f{0) = 0, and so the supremum above is finite for each m since
each of f and C,,(f, h,,) is analytic at z = 0. Further, (3.4) and (3.5) imply that the
supremum and I+ C,,(f, h,,)|l, are bounded as functions of m. So, (3.11) follows
from (3.4).

4. Approximating y,. The following definitions are suggested since y is an
odd function satisfying Theorems 3.1 and 3.3.

Definition 4.1. For each positive integer m, let &, = ym~ 112 where v is a
fixed positive number. Then (U,, is the collection of all functions w of the form

m r—kh,,
@4.1) wr)= 3 asinc h ,
k=-m m
which satisfy
(4.2) a_,=-a for0<k<m,
@“4.3) Jw = Gw, where J, G are as defined in Section 2,
4.4 4, >0 for1<k<m and g¢# 0 for some j.

Definition 4.2. For each positive integer m, let

(45) Zm = C'm(yO’ hm)’
(4.6) T = Vzp/G2pn) 2,
and let w,, be an element of (,, for which

Jw,, = min Jw.
4.7 " e,

The function w,, is our mth ’apprdximation to y,.

‘ We note that z,, € W,,, and so W,, # &. Thus, obtaining w,, is equivalent to
minimizing a continuous function on a nonempty compact subset of R™. Further,
with S, defined as in Theorem 2.1, we have W,, C S, and so JZp > Iy,

LEMMA 4.1. There is a positive constant K such that forall m > 1,
(4.8) 0 <Jw,, =Jy, <Jz,, —Jy, < Km®/*exp(-pm'/?),

where § = min(nd/vy, v) and d is as in Theorem 3.1.
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Proof. We have w,, € S, and w,,((m + 1)) = 0. Thus, w,, ¥ y, and s0 0 <
W, = Jyg. Since Z,, € W, Jw,, —Jvo <JZ,, —Jy, follows from (4.7).
To verify the last inequality in (4.8), we first note that

49) Jz,-Jy, =117, IIf’2 - Ilyollf’zi <z, Iy, + IIyolll’z)Il?m —yolly 2
Also,
(4.10) Iz, = Yol 0 < Iz, =z, 0+ 2, =yl 5.

We recall from (3.4) that
4.11) Iz,, =yoll; , < K m*/*exp(-pm'/?),
for some positive constant K. Further,

1z, -z,

= Nz, Iy 510z,)' % = (Gz,,) |Gz, )12

Iy, = I[sz/sz]I/2 =1z, 0,

<zl 5 Gz ) P {1z, 5 = Wyglly o1+ 1Go)' /2 = (G2,,) 21}
<zl 5Gz,) P Uz =yl 5 + 1Gro)' 2 = G2,,) 21}

We know the sequence {Gz,, },,—, is bounded, since Theorem 3.3 implies Gz, —
Gy, as m —> oo, Furthermore, Theorem 3.3 implies

4.12) 1(Gz,,)'* = Gyo) 21 < K, exp(-pm'/?),
where K, is some positive constant. Thus, there exists a constant K5 such that

(4.13) 1z, =z, , < Kym3/% exp(-pm!/?).

m

Using (4.11) and (4.13) in (4.10), we arrive at (4.8), since ”,va I} 2 = lyelly , in (4.9).
Our next result is now obvious. Its nontrivial proof, which draws on results in
functional analysis, is deleted.

THEOREM 42. The sequence {w,, },._, converges in H(l)(O, ) to y,. Hence,
"Wm _y0||1,2’ "Wm _yollao —> 0 as m — oo,

Next, we wish to determine the rate of convergence of w,, to y,. We note that
on S,, F =J, where
(4.19) F =J%/G.
Also, since {y € H(l,(o, ). y = fy,, B a scalar} is a closed subspace of H},(O, o),
Theorem 4.2 implies that for m large enough there exists a nonzero scalar §,, and a
function €, € Hy(0, ) such that

(4.15) Wi = Bn0o + €,),
and
(4.16) Pos €m) =0,

where (-, *) is the inner product in H}.
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Since y, and ¢, satisfy the properties of y, and e of Theorem 2.4, we have
(4.17) 6 [ y3ertdr<@-n)le,l?,,
where k is as in (2.5). The proof of the lemma which follows is deleted.
LEmMMA 43. Let {¢,,} be as in (4.15)—(4.16). Then
(4.18) f: Voot 2 dr, f: e rtdr=0(e,l3,) asm— e
THEOREM 44. There exists a positive constant C independent of m such that
4.19) Iw,, =yoll; < Cm3/8 exp(—.5pm'/?) forallm > 1,
where ( is as in Lemma 4.1.
Proof. For ¢, as in (4.15),
GO, +¢,) =f: 0o + €)' 2 ar
=f:y3r“2 dr + 4f: ygemr_2 dr+6 f: yf,e,znr_2 dr
+ 4 f: Voer 2 dr +f: e rar.
Hence, applying (4.17), and (4.18), we see that for large m,
Gg + €,,) <JIyg + &yg, 6,0 + 2= K)le, Nl , +0(le,, I3 ).
So evaluation of F gives us
Fg + €,) = Vo + e )12G0o + €,)
> [(Uyo)? + 2le, IIf’sz0 + lle,, II‘;"2] Vye + 2 - K)le, IIf,2
+0(lle,, 13 )17
=Jy, + kle, Ilf’2 + O(lle,, Ili’,z),
for m large enough. Thus, we have for all large m,
Iw,, —Jyy = FQy +€,) —Jyg > klle, Ilf’2 + O(lle,, "?,2)‘
From this, it follows
(420) le, 12 , = 00w, —Jyy) asm — .
Now, we set 8, = f,,€,, and note that 8,, — 1 as m — eo. Then
(4.21) 18,13 , = 0Uw,, —Jy,) asm—> oo
"~ Next, we have
Iw,, = Iy = (B2 = Diygh? , + 15,13 ,,
and so 18, — 11 = OUw,, — Jy,), as m —> . Hence,

4.22) B, — 1)* = 0Uw,, —Jy,) asm—> .
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Finally, since

Iw,, =¥ Ilf’2 =6, — 1)? IIyollf’2 + Il8mllf’2,
we obtain
(4.23) Iw,, —¥o llf’2 = 0(@w,, —Jy,) asm—> oo,
Applying Lemma 4.1, we obtain (4.19).

5. Numerical Results. Define /,, and G,, on R, by

m m m
5.1 Im@y, 8y, o ay) =2k, 3 ap YN sy e
k=1 k=1 j=1
and
(5.2) G,(ay, ays - - > a,) =201 > kK 2wh(kh,,/[2),
k=1
where
2m /3 - k2 if k =j,
(5.3) Sk, = ki 2 _
ACD TR -N -k + )72 i k#]
and
m
(G4) w(r) = 3 a;[S(k, h)(r) — S(-k, h)r)].
k=1

Then Theorem 3.2 implies that

m

5.5 w,, = 2. ailSk n)— Sk n)],
k=1
where (a, a¥, . . . , a}) is that element of

A, ={@,ay,...,4a,) a =0,1<k<m;a #0 for some k;J,, =G, }

for which J,,, is minimized.

This minimization problem was solved using Newton’s method with a Lagrange
multiplier. The error bound of Theorem 4.4 depends on § = min(nd/y, ay). In Sec-
tion 3 it was noted that a = 1, and the proof of Theorem 3.1 (which was deleted)
indicates that d > /6/[1 + ¥0(0)]. In [2], y4(0) is estimated to be 4.2. Taking
a=1,y,(0) =4 and y = 1.37, we obtain d = .59 and § = 1.37. These estimates
yield the following values of m3! 8exp(— 5pmt/ 2):

m m3/8 exp(—.69m'/?)
50 .0330
60 .0222

70 0153
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The approximation w,, was obtained for each of the three cases listed above.
The results for the case m = 70 are given in Table 1. The accuracy was estimated by
comparing successive approximations for m = 50 and m = 60. For m = 60, C was
then estimated to be .00217 in the bound Cm>3/8exp(—.69m/?); this value of C was
used to obtain the “estimated accuracy’ .000033 for m = 70.

TABLE 1
Results for m = 70, h,o = 1.37(70)"*/2

J = 6.01518220

Estimated accuracy: 3.3><10-5
w70(0) = 4.33676333
k Y k N
1 .06576128 36 .00746708
2 1.07191767 37 .00634406
3 1.21711402 38 .00538107
4 1.19252416 39 .00457287
5 1.09031867 40 .00387762
6 .96315625 41 .00329627
7 .83589519 42 .00279404
8 .71855787 43 .00237613
9 .61450145 44 .00201305
10 .52392830 45 .00171289
11 .44596881 46 .00145012
12 .37919875 47 .00123478
13 .32225491 48 .00104434
14 .27373763 49 .00089008
15 .23249396 50 .00075178
16 .19741569 51 .00064148
17 .16763458 52 .00054078
18 .14231951 53 .00046211
19 .12084058 54 .00038849
20 .10258413 55 .00032354
21 .08710050 56 .00027843
22 .07393793 57 .00023878
23 .06277867 58 .00019868
24 .05328942 59 .00017068
25 .04524783 60 .00014061
26 .03840675 61 .00012087
27 .03261239 62 .00009792
28 .02768017 63 .00008397
29 .02350548 64 .00006599
30 .01994918 65 .00005600
31 .01694179 66 .00004137
32 .01437724 67 .00003394
33 .01221109 68 .00002135
34 .01036140 69 .00001545
35 .00880150 70 .00000363

6. Concluding Remarks. We cannot close without reiterating that the order of
convergence obtained in Section 4 is the best that can be obtained with known approx-
imation techniques. If one were to use splines or other standard approximating func-
tions, the rate of convergence would be O(m™P), for some integer p. Our rate of con-
vergence is faster than O(m™P), for every positive p. For example, if 8-place accuracy
were required, over 11,000 unknowns might be needed on the interval [0, 10] if p
were 3; at most 500 unknowns would be needed in our approach.
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The method presented here for y, could be perturbed slightly to obtain y,.
However, for » > 1 it would be more natural to use an approach based on the results
given in [8]. That is, on each interval (rj, 1j41) of Theorem 2.1, use the composition
of a cardinal function and a conformal mapping to approximate y,,.

Finally, Eq. (1.4) is one of many equations of the form y —y + yF(y%, r) = 0.
In [13], Ryder gives results for the more general problem. Our method may be em-

ployed once analyticity, uniqueness and exponential decay of solutions has been veri-
fied.
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