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Existence Theorems for Transforms Over Finite Rings
With Applications to 2-D Convolution

By David P. Maher

Abstract. An existence theorem for Fourier-like transforms over arbitrary finite com-
mutative rings is proven in a simple fashion. Corollaries for the case of residue class
rings over the integers and extensions of those rings follow directly. The theory is
applied to construct very fast algorithms for the computation of two-dimensional
convolutions over the integers mod M.

1. Introduction. The number of applications of Fourier-like transforms in finite
rings is rapidly increasing, mainly in the areas of fast digital convolution [1] and alge-
braic decoding algorithms [6], [11]. Pollard [15] described uses of transforms in
finite fields as well as in Z,,, the ring of integers mod M. Coefficients of the Mattson-
Solomon polynomial used in coding theory are finite field transforms [10]. Nicholson
[12] considered theoretical and implementation questions for transforms in integral
domains. Agarwal and Burrus [1] and several other authors [13], [16] have discussed
signal processing applications of transforms over Z,, where M is a Mersenne or Fermat
number. Applications in ring extensions of the form Z,,[i] have been studied in [1],
[17] in the case where M is square free and i* + 1 = 0. These last two restrictions
were necessary only because the question of existence of Fourier-like transforms of a
given length had not been solved for the case of an arbitrary algebraic extension of Z,,.
We shall indicate below how transforms in higher degree extensions of Z,, are quite
useful for fast computation of two-dimensional convolutions and we provide a succinct
proof of an existence theorem for transforms over an arbitrary finite commutative ring
with unit R. This theorem immediately implies a useful corollary for algebraic exten-
sions of Z,,.

2. The General Problem. Let A be a finite abelian group and let R be a finite
commutative ring with unit. We are interested in processing functions defined on A
with images in R. In particular, we want to efficiently compute the convolution of
two such functions:

® f+g@)= 3 f@— b))

bEA
Suppose that V is the exponent of A, that « is an Nth root of unity in R, and that N
is invertible in R. Then for f: 4 — R we define

Q) Tf@ = X f(®)o,

beA
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®) Sf@=N"1Y f@)o .

bEA
We want to know when T can be thus defined and when S is an inverse for 7. For
then the convolution f g may be computed by transforming the pointwise product
Tf - Tg by S. Since T has the same algebraic form as the DFT over the complex num-
bers, fast algorithms may be used to compute T and S. For many applications, the
advantages of using a ring R other than C, for processing discrete valued functions, are
discussed in the references. They generally include the elimination of computation
quantization noise as well as a reduction in the number of multiplications needed to
complete a convolution computation.

Past approaches to the problem of proving the existence of transforms in a ring
of given type have entailed the use of a rather detailed analysis of the multiplicative
group of the ring. This is not difficult in the case of Z,, [1], but is more difficult in
the case of extensions of Z,, [19], and even more so in the case of an arbitrary ring.
Here we avoid this by considering the maximal ideals of the given ring.

THEOREM 1. Let A be a finite abelian group with exponent N, let R be a fi-
nite commutative ring with unit, and let {M,, M,, . .., M.} be a list of all the maxi-
mal ideals of R. Let m; be the number of elements in the quotient R/M;. Then there
exists a transform of the form (2) such that T(f «+ g) = Tf - Tg, and such that S is an
inverse for T, if and only if there exists an o in R which is of order divisible by
N, mod M; foralli. This is true if and only if N divides m; — 1 for all i.

Proof. First suppose A4 is the cyclic group Z,.
Sufficiency. By the Chinese Remainder Theorem we have

0) R/(O M,.) ~ Ii]R/M,..

Since each factor R/M, is a finite field, the multiplicative group of each is cyclic of
order m; — 1, and since each of these orders is divisible by /V, there is an element o

of order NV in each R/M;. So by the isomorphism (4), there is at least one & in R

such that @ mod M; is o; for all i and this « is of order N. This is all we need for T

to be defined and for T(f = g) to be equal to Tf - Tg, as can be verified by direct
computation. To show that S is an inverse for T, we first note that if N were not in-
vertible, it would be a zero divisor in R, and so if ¢ is the additive order of N in R, i.e.
tN = 0, then 7 is a zero divisor and is in some maximal ideal M;. The additive order of
t divides NV which divides m; — 1, but # must also divide 7, which is impossible, so N
must be invertible. Now we write

ST(N @) = N Nil<Nil f(f)a"") aHn

k=0\ j=0

N-1 N—-1, .
=pN"1 E 1i6) Z ok i=-n)
=0 k=0
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so that S is an inverse for T, if
Nz“l ok = 0 for0<g<MN,

k=0 'N forq = 0.

The second case is clearly true, and we see that

N-1 Noto
> ofd = > olftDa
k=0 k=0

so (1 —a9)Z¥=1 a¥? = 0, and as long as 1 — o is not a zero divisor for each g # 0,
we have what we want. Suppose otherwise, then by the isomorphism (4), af — 1
would be 0 in R/M;, contradicting the assumption that a; is of order V.

Necessity. If N m; — 1 for some i, then for any a € R, we must have that o;
(= a mod M,-) is either O or is of some order rather than N, say L. But then
)y \ps of* = N for q = L, and this completes the proof of the theorem for 4 = Zy,.
For the general case, by the fundamental theorem of abelian groups, 4 may be viewed
as a direct sum of cyclic groups, each of whose orders divides the exponent V. So the
theorem is proven for each of the factors of 4, hence for A itself.

When A is not cyclic, a transform is usually referred to as multidimensional, and
when it is cyclic of order IV, the transform is said to be of length N. An admissible
value of « for the transform (2) will be called a principal Nth root of unity in R.

COROLLARY 1. An invertible transform T of length N over Z, of the form (2)
exists if and only if N divides p — 1 for each prime p dividing M.

Proof. This follows immediately, since a maximal ideal in Z,, is generated by a
prime dividing M. A proof of this corollary was first indicated by Pollard [15], and
later Agarwal and Burrus [1], [2] gave another proof, which has been subject to some
criticism [7], [18] due to informality and to a nonstandard use of the term “order.”

Corollary 1 may be used to find sequence lengths for which an invertible trans-
form exists given the ring of values Z,,. If we have convenient values NV and a in mind,
we may want to know which values of M accommodate them. Asexplained in [1], we
often want NV to be highly divisible so that fast algorithms may be used, and we want
multiplication by powers of a to be as fast as possible. We also want M to be large
enough to allow computation of integral convolution without overflow, but small
enough so that the computer word size required is small. So we indicate a method for
finding all possible values for M given N and a by the following.

COROLLARY 2. (M, N, a) are parameters for a Fourier-like transform for func-
tions f: Zy —> Zy, if and only if M divides o — 1 but is prime to o* — 1 for all k
less than N dividing N.

Possible uses for transforms in extension rings include the simultaneous processing
of more than one signal and a method for computation of multidimensional convolu-
tion. We explain the latter application. Two-dimensional cyclic convolution in a ring
R is a special case of the general situation considered in Section 2, where 4 is a product
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of two cyclic groups. Often, however, a two-dimensional convolution in R may be com-
puted via a one-dimensional convolution in an extension of R by way of a technique de-
veloped by Nussbaumer and Quandalle [14] for applying polynomial transforms over
the rationals. Here we reinterpret and extend some of their work.

Let f and g be functions defined on a group Z qr X Z4 with ‘images in a ring R.
Then we may construct two functions

) 58 Z,—>RRX/XI-1) byf@= X f(@ DX
iezq

One sees that the two-dimensional convolution of f and g may be obtained by one-di-
mensional convolution of fand g in R[X]/(X9 — 1). But this latter convolution may
in many cases be calculated by decomposing the polynomial ring into a product of
algebraic extensions of R, then using transforms to compute the convolution in each
factor, and finally using the Chinese Remainder Theorem to assemble the final result.
The many advantages of this method are discussed in [14] in the case where R is the
field of rational numbers. However, the method and its advantages apply to any com-
mutative ring, as long as we have knowledge of the transforms which may be defined
in extensions of those rings. Such knowledge may be obtained with the aid of Theorem
1 above and Corollary 3 below, as well as the discussions in [9]. In Section 3 we
explain another approach to 2-D convolution, which in some cases is much more
efficient than any other yet known.

The existence of invertible transforms in algebraic extensions of Z, is determined
by the following.

COROLI:ARY 3. Suppose Z,,[¢] is an algebraic extension of Z,, and that Q(X)
is the minimal polynomial of § over Z,, and that TI; Q;(X )j = Q(X) mod p; is a
factorization of Q(X) into irreducible polynomials mod p; for each prime p,; dividing
M If ng is the degree of Qi,-(X ), then an invertible transform of length N of the form
(2) exists in Zy;[§] if and only if there exists an o which is of order divisible by N in
each local factor of Zy;[§] mod p; for all i. The latter is true if and ohly if N divides
p;i —1 foralli,j.

Proof. Zy,[§] = Zp;[X1/(Q(X)) and Z,; is a direct sum of rings of the form
Z,r, where p" is the highest power of p dividing M. Hence Z,,[{] is a direct sum of
tings of the form Z,7 [X] /(Q(X)), where here Q(X) is read mod p”". A maximal ideal
in Z,r(X) is generated by p together with a monic irreducible polynomial. We note
that if a monic polynomial is irreducible mod p, it is irreducible mod p". Hence if
Q(X) splits into II; Q;(X) mod p, Z,r[X] /(Q(X)) splits into a direct sum of local rings

© 2,7 11Q, )

where each factor has a quotient field of p"/ elements. Extending this argument to
each p;, the corollary now follows from Theorem 1.
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3. Applications to 2-D Convolution. Here we explain applications of the forgoing
to the fast computation of 2-D digital convolutions. Such convolutions are used in the -
filtering of 2-D signals in such areas as image processing, seismic data analysis, and control
theory.

We want to filter a 2-D discrete quantized signal x(7, /) by convolving it with the
pulse response of the filter 4(i, j), producing an output signal y(i, j). Suppose that the
values of x(i, j), h(7, j), and y(i, j) are limited to any of M quantization levels, and that
the x and 4 arrays have dimension ¥ x I Then the convolution,

-1 k—1

©) Yan="3 % xlm i - m,j - )

m=0 n=0
may be computed entirely in the ring Z,,. Usually (5) is computed using complex
discrete Fourier transform (DFT) methods. These methods are much faster than
straightforward calculation, but they introduce truncation error which can be very
troublesome. Our goal here is to produce algorithms which are often considerably
faster than complex DFT methods, and which reduce or completely eliminate trunca-
tion error.

As is explained in [5], in order to perform the 2-D convolution (5) using DFT’s
it is necessary to extend the ¥ x [/ arrays x and & to K x L arrays for K = 2K — 1,

L =2l — 1 by appending zeros. This is because transform methods compute cyclic

convolutions. For example, the 1-D convolution of arrays (a(0), . . . , @(L — 1)) and
®(), . .., b(L — 1)) can be accomplished by computing the coefficients of the poly-
nomial

L-1 L-1
c(W) =< > a(i)-w"> * < > b(i)w">.
=0 i=0

Cyclic convolution of length L computes the coefficients of the remainder of
c(W)/(WE — 1). If we calculate the remainder of ¢(W)/p(W) for some polynomial p
of degree L other than WX — 1, we shall call the result quasicyclic convolution of
length L. We note that if @ =0b;=0foralj=>(L + 1)/2, then c(W) equals the re-
mainder of ¢(W)/p(W) for any p of degree L, hence the results of the three types of
convolution are the same. We use this observation in the 2-D case as follows: We
suppose that x(7, j) and A(f, j) are two K x L arrays which have been extended from
k x I arrays by appending zeros as suggested above. Map x(i, /) and A(i, j) into length
K 1-D arrays of polynomials by

L—1
(©) x(G, ) = X W) = X xG /W

j=0
Each polynomial X;(W) and H;(W) is considered to be an element of degree less than
L in the ring R = Z,,[W]/p(W), where p(W) is some polynomial of degree L. Now
2-D acyclic convolution of x(i, j) and A, ) can be accomplished by length K cyclic
convolution of X;(W) and H;(W) in the ring R (the 2-D convolution which results may
be quasicyclic in the horizontal direction). To accomplish this we must find Fourier-

like transforms of length K in R. Our emphasis will be on transforms having fast algo-
rithms, and which can be performed without multiplications.
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Our 2-D convolution scheme is sketched in Figure 1. We let T denote a length K
transform over R, as defined by (2), where 4 is the group Z,.. In this implementation,
the transform of the 2-D pulse response of the filter is premultiplied by K~! and
stored in a ROM.

2-D array in ZM Tragsform
x(i,3)—> to —X; (W) ——> in
1-D array in R R
N
T(Xi(w))
-1 Pointwise
XK "T(H, (W) —mm > .mult.
. in R

-1
K TT(X; (W)) T (H, (W)

1-D array in R Inverse
y(i,3)e—| to ) € Y, (W) transform
2-D array 1in ZM in R
FIGURE 1

The K x L quasicyclic convolution algorithm

We need to develop fast methods for multiplication in R as well as for the calcu-
lation of T and 71 We must also show such transforms exist in nice cases. We
make some assumptions here which we shall justify later. Suppose that we can take a
equal to W in (2) so that W is a principal Kth root of unity in R. If we further sup-
pose that K is a power of 2 and p(W) = WX + 1, then a calculation of T requires no
multiplications and K log, K additions in R if we use the FFT algorithm. Suppose now
that a is a principal rth root of unity in Z,,, and that K = rn and L = rn/2 for some
power of 2, n. Then we have

0] R = Zy, [W]/(W"? + 1) 2 'ﬁ—l Z, [W)J(W" — @i+ 1),
i=0

where & is the chinese remainder isomorphism. That & exists follows from the fact
that a is a principal rth root of 1 and from the proof of Theorem 1. Note that ®

has the form of an “incomplete” Fourierdike transform over R. It is incomplete in the
sense that it is factoring Z,,[W] mod W""/? + 1 instead of mod W™ — 1, and be-
cause the W” — a?**! are not factored any further. Nevertheless we can use a partial
FFT algorithm to compute & and &~ !—we just leave out the appropriate steps. If P
and Q are two elements of R, then their product may be computed by

® P+ Q=0 (&P) - B(Q)).
The multiplication on the right-hand side of (8) entails 7/2 length n convolutions
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mod W™ — a**1. Let M, be the number of Z,, multiplications involved in one com-
putation of & (or &™), and let M, be the number of Z » multiplications involved in
one length n convolution mod W” — g?**?, then the total number of multiplications
required per point for the entire algorithm of Figure 1 is

©) M = 4M,/nr + My/n,

assuming that ®(K~ T (H,(W)) is precalculated.

The total number of Z,, additions for a complete calculation of 7 or T~ is the
same as that for nr/2 length nr FFTs, which is (n?r2/2) - log, nr, as 1 addition in R
amounts to nr/2 additions in Z,,. Each application of ® or &~ ! uses a partial FFT
of length nr/2 requiring (n7/2)log, (nr/4) Z,,-additions. So if each length n convolu-
tion mod W” — a?!*1! requires A, additions, then the total number of Z,, additions
per point is
(10) ' A=4lognr + Ay/n—4.

We now show examples where A,, M,, and M, are small and which justify the
assumptions we made above. Here we let M be the fth Fermat number 2 1= F,.
It has been observed several times [1], [2], [13] that Z F, supports transforms which
are extremely nice from a computational point of view. We shall exploit that fact
below. We also observe that arithmetic modulo a Fermat number can be done very
quickly on many binary computers. See [2].

LEMMA. Let r be the largest power of 2 dividing GCD{p; — 1 st p,IF,, p; prime}.
Let a be a principal root of order rin Z ¢ and set @ mod p; equal to aji, where ey
is the largest power of 2 dividing p; — 1, then W is of order ne;r in Zpi[W] /(W —a,)
for all i whenever n is a power of 2.

Proof. By hypothesis, a; has no square root mod p;, and since —1 is a square
mod p; (p; must have the form k2tt2 41, if p; divides F, and is prime), a; cannot be
— 4 times a fourth power mod p; . Therefore by [8, p. 221], W" — d is irreducible if
n is a power of 2. Thus W is of order ne;r mod W" — & for all i.

PROPOSITION. Let a and r be as in the Lemma with n a power of 2, then there
exists an invertible Fourier-like transform of the form (2), where A = Z,,,R =

ZFt[W] [WnTI2 + 1 and o = W, which requires no multiplications in Zp,

Proof. By the Chinese Remainder Theorem,

11 R= T zp Wl/w" -d).
jodd

Since in each factor of (11), j is odd, and we assume that the order of 4 is a power of
2, each a/ satisfies the hypothesis concerning a in the lemma. So W is of order
ne;r mod(p;, W" — a{ ) for each i, j. Hence W is of order divisible by nr mod each
irreducible factor of W" — a:e", hence the proposition follows from Corollary 3. The
order of W is nr, since under the hypotheses one of the e; must be 1.

Note. The length of the transform can be changed from rn to rn/2? by replacing
a with a2® or by taking o = W2°.
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Consider the Fermat numbers F, for ¢ = 5 or 6, which are of reasonable size for
filtering purposes. In both cases we know that r = 2¢+2. So for example, with ¢ = 6
we can use Proposition 1 to construct a 512 x 256 pseudocyclic convolution algorithm
using n =2, r = 256 and @ = /2. Using (9), we get that the total number of multi-
plications per point required is 3.5 for: M, is nr/2, as each application of & is a partial
FFT, where all multiplications are by even powers of a = /2 except in the last step,
where multiplications by a*>**! must be performed. Multiplications by 2 are bit shifts
mod F, and performed so quickly on a binary computer that they need not be counted
as general multiplications. Also note that for all £ > 1,/2 =22 t"2(22t"l -1),
hence multiplication by +/2 requires only 2 shifts and one addition. We need one
multiplication for each of nr/2 points for each application of ® and ®~* (that being
by +/2), so that 4M, /nr = 2. For M, we note that in [4, p. 395] there is an algorithm for
acyclic length 2 convolution, which requires a total of 5 additions and 3 multiplications
so that M=3.5and A =345. If wetaket=6,a=2,n=2,and r = 128, we get a
256 x 128 convolution requiring only 1.5 multiplications and 30.5 additions per point
since M; = 0. In this case all multiplications in the computation of T, T~?, & and
@~ are shifts in an array or in a word. In general, minimum values of A, and M,
will increase as n increases. For smaller values of n, M, and A, may be relatively small.
This hope is based on an examination of the work in [4], [14], [20], where short con-
volution algorithms are given for n < 9.

Remarks. (1) A K x L convolution performed directly requires KL multiplica-
tions and KL additions per point. An algorithm which uses a 2-D complex DFT re-
quires log K + log L + 1 complex multiplications and 2(log K + log L) complex
additions per point. In the 512 x 256 case this amounts to M = 18 and A =34 in C
as opposed to M = 3.5 and A = 34.5 in Z,, with our method (assuming precomputation
on one fixed array). Since two of the multiplications for each point are by 4/2, which
involves two shifts and one addition, it is more accurate to say M = 1.5 and A = 36.5
in our case. Another approach is to use 2-D Fermat number transforms instead of the
complex DFT, but there are size limitations. The largest size allowable for the sixth
Fermat number is 256 x 256. The number of algebraic operations required for this
method is comparable to the requirements for the algorithms we have presented; how-
ever, the 2-D FNT method involves considerably more computational overhead in the
form of load and store operations. This is because with our method the kernel for
the “outer” 1-D transform is a power of W, so that multiplications by powers of the
kernel involve shifts of positions of words in an array, which can be accomplished
using a moving pointer. However, the kernel of both 1-D transforms in the 2-D FNT is
a power of v/2,so that multiplication by powers of the kernel involves a shifting
operation modulo the Fermat number. This involves loading the multiplicand into a
shift register and storing the result.

(2) The algorithms we present here are quite amenable to parallel processing due
to the extensive use of the FFT algorithm.

(3) Convolution of square arrays can be done by substituting W? for W in the
transform T.
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(4) There are only a few choices for the modulus M which seem to be very suitable
for calculation on a general purpose computer. Other choices may require specially
designed arithmetic units. This is discussed in [1], [2].

(5) Long 1-D convolutions can be carried out using special mappings of 1-D
arrays into 2-D arrays and performing 2-D convolution. This can be done with the
2-D algorithms given above, using mapping techniques which appear in [3]; however,
more efficient methods should probably be found.

(6) A complete list of admissible parameters for algorithms of the type discussed
here has yet to be developed. Hopefully this will be forthcoming.
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