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A Note on Olver’s Algorithm for the Solution
of Second-Order Linear Difference Equations

By J. R. Cash

Abstract. An extension of Olver’s algorithm is described. This allows the solution of
certain linear difference equations which are in a sense ill-conditioned for solution by
Olver’s method. The new algorithm is illustrated by considering a particular problem.

1. Introduction. In a classic paper [2], F. W. J. Olver introduced a technique
for the stable computation of recessive solutions of the linear, inhomogeneous, second-
order difference equation

(1'1) aryr—l_bryr+cryr+l=dr’ y0=k’ yp=m

Basically the approach proposed by Olver is to replace the original initial value problem
(1.1) by an equivalent boundary value problem. This is done by abandoning the

initial condition y; = m and replacing it by a condition of the form y,,, , = p for
some sufficiently large value of N. Normally we set p = 0 but in cases where it is
possible to obtain a better value for y, ., (for example, via an asymptotic expansion)
it may be better to use this more accurate value in setting up the boundary conditions.
A similar idea had been discussed earlier by Gautschi [1] following a suggestion by

M. E. Rose. However, Gautschi only suggests taking y-, ; to be the true value rather
than some arbitrary value such as zero. The important aspect of Olver’s algorithm is
that it allows the optimal value of N to be estimated automatically before any solution
values have been computed. Having set up this linear boundary value problem, the re-
quired solution can usually be found efficiently using either Gaussian elimination with-
out pivoting or LU decomposition. However, for some problems it has been found to
be advisable to use partial pivoting and, furthermore, the general theory for trans-
mission of errors for Gaussian elimination [3, Chapter 4] usually assumes that the
absolute values of the multipliers are bounded by unity. It is well known, however,
that if partial pivoting is used with Olver’s algorithm, the facility for estimating auto-
matically the optimal value of V is lost and, as a result, the effectiveness of the algo-
rithm is reduced. The purpose of the present paper is to introduce a modified algo-
rithm which is still effective for cases where partial pivoting needs to be used, but
which reduces identically to Olver’s algorithm when partial pivoting is not required.

2. The Basic Algorithm. The first step of Olver’s algorithm is to replace the
initial condition y,; = m in (1.1) by the boundary condition y, ,; = 0 and to rewrite
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the resulting system of equations in the matrix form

w—bl ¢ Y1 d, —a,k
a b ) V2 d,
2.1) a3 ~by ¢ Vs dy
aN-1 —bN—l CN-1}
| ay by | pn] | 4y

Denoting the solution of this system by IV we may rewrite (2.1) in the symbolic
form 4 5,y ] = gN. This system is then transformed into one of the form 4 yV
= dVN, where 4 v is upper triangular, using Gaussian elimination with partial pivoting.
The coefficient matrix A4 n may be written in the form

-b 1 E1 s_l
-b, & 53
21a) Ay =} 5 = 5 '
(2.12) N “by_2 N2 Sv-2
by_, eN-1
i ~by
where
T = 0 if partial pivoting was not required for the rth row,
r ¢,4, otherwise.

The quantities ,, ¢, and d, are the result of applying Gaussian elimination with
partial pivoting to the finite tridiagonal system (2.1) and are thus defined for 1 <r
< N. Their explicit forms would seem to be too complicated to write down, but it is
clear that they are defined uniquely in terms of the original coefficients a,, b,, c,
and d,.

If we now consider the solution of (1.1) with the initial condition y; = m re-
placed by the boundary condition y, ., = 0, the resulting system@f equations defines
a solution N ¥17 as 4, yIV+1] = gN+1 Using Gaussian elimination with partial
pivoting this can be transformed into the system 4, , yIV*11 = dN+*1 where the
matrix A N+ takes the form
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2 —b c s
= -2 -2 N—-2
22) Aysy N v
—by_1 CN-1 SN-1
—by N

| b1 |
Nate that the Nth row of A N+1 May not be the same as the Nth row of 4, since in
forming A ~N+1 We may have interchanged the Nth and (V + 1)th rows of 4, ; (ie.
performed partial pivoting on the Nth row of 4, ;). In this section we shall de-
scribe two algorithms, one being applicable when it is necessary to partially pivot on
the Nth row of 4, ,, and the other being applicable when this is not necessary.

We start with the case where it is not necessary to partially pivot on the Nth
row of 4, ;. From (2.1a) it follows that

(2.32) by} yIVl =E,y].l§ll +5y }Nl d;, jE€(,N).

Similarly from (2.2) we have
(2.3b) by[N“l—cy[fl“] sjy[N'“]—d je@,N +1).
i

Suppose now, that our problem is to compute y; to D decimal places for given values
of the integers L and D. Since we have not allowed the possibility of pivoting on the
Nth row of Ay, it follows that the b], i si and Zi_j appearing in (2.3a) are identical
with those in (2.3b) for allj =1, 2, , NV, and this allows us to develop a satisfactory
procedure for estimating the optimal value of N for the solution of our problem in
advance.

Defining z[V1 = y[N+11 _ yINT ‘and subtracting (2.3a) from (2.3b), we have

forj=1L
7 N] — = N
249 bLz}, = CLZ£+]1 + SLZE,le

The boundary conditions associated with (2.4) are

[N] [N+1] Nl _ _7 5

D O S VLSS
2.5)

[N] = J[IN+1] [N] _

Iniz Inez Iner = O

The problem now remains to find a compact expression for ZELN 1 which can be used
to estimate the optimal value of N. The required form is contained in the following
lemma.

LEMMA 1. The quantity zIN1 satisfies the relation

N1 _ (N1 N .
@6) 2N =y 2N by 2N =02, N -
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where

up = /b, Upiier = CppiriM4ilPrvivr T VL4

Q@7 vy = 5./by Vpyivr = Spair1Un+i/PL ie1

i=0,1,2,...,N-L.

The proof of this lemma follows in a straightforward fashion by induction on i,
so it will not be given here. If we now consider relation (2.6) for i = N — L, we have

(N1 = (V]

L UNZN 1

= —updy,,/by4, from the boundary conditions (2.5).

Thus we need only continue our computation of (2.7) past » = L until a value of 7 is
found satisfying

(2.8) lu,d,, /b, 1 <(1/2) * 1077,

and we then set N = r. If we now consider the case where partial pivoting is not
used at all, we have §, =0. It now follows immediately from (2.7) that v, =0 and so
we have u; ., = EL+i+1”L+i/EL+i+1- It is now straightforward to show that in
this case the resulting algorithm is exactly Olver’s algorithm, which justifies our earlier
claims.

We now mention very briefly the case where we have pivoted on the Nth row
during the computation of A ~+1 due to the multiplier being greater than one in
modulus. The algorithm just described will no longer be applicable, since in this case
EN #b n- The easiest way of getting around this problem is simply not to allow
pivoting on the Nth row of 4, , ;! Since this row is the only one for which the
multiplier may have modulus greater than 1, we would not normally expect any un-
manageable build up of rounding errors and the algorithm just described should be
satisfactory. However, if we find that the multiplier is extremely large at this stage (a
pathological case) and we really do have to pivot, we can modify our algorithm in the
following way. Equation (2.4) will now only be valid for L <N — 1. The boundary
conditions associated with (2.4) can be found from (2.1a), (2.2) and are given by

Nl _ 5 Nl— 2 G 1beb )
29) 2y, = "dni1/byiss ZI[V V= -8ydy, 1 [byby 1) —dy/by + dy/By.
Thus substituting into (2.6) for i = N — L — 1, we have

[NT _

N N
(2.10) z, uN—lzjlv : +"N—1Z[ !

N+1°

Thus we continue our computation of (2.7) past r = L and use relations (2.9) until a
value of 7 is found satisfying

1211 < (1/2) * 1077,

and then we set N = r. Note that this algorithm is more expensive than the first one,
but for the problems where it has to be used, Olver’s algorithm will be unsatisfactory.



OLVER’S ALGORITHM 771

3. Numerical Results. The desirability of having an algorithm which allows
partial pivoting to be used when it is called for is self-evident. There is always the
possibility that, if partial pivoting is not used, one or more of the multipliers in the
Gaussian elimination algorithm will become extremely large in modulus and a signifi-
cant loss in precision will occur. Nevertheless, we will in this section consider a numer-
ical example to illustrate our approach. Two important points which we wish to
emphasize are the following. Firstly, for the majority of linear second-order recurrence
relations of practical interest, no partial pivoting is required at all. Furthermore, when
partial pivoting is required, the range of  for which it is needed is small. However,
since a breakdown of the pivoting scheme is one of the few weak points of Olver’s
basic algorithm, it does seem desirable to make Olver’s algorithm more robust by in-
corporating partial pivoting, even though it is not often absolutely necessary, since the
extension requires so little extra computation. A second point which we wish to make
is that our approach may be extended in a straightforward fashion to higher-order
linear recurrence relations.

TABLE 1
r Olver's Multipliers Modified Multipliers True
algorithm algorithm Solution

2 5.999988 ~-2799981866. 6.000000 .357*10_9 6 .000000
3 12.000000 .357*10-8 12.000000 . 100000 12.000000
4 20.000000 ~1.314285 20.000000 .076087 20 .000000
5 30.000000 -1.554394 30.000000 .048949 30.000000
6 42.000000 -1.542322 42,000000 .031737 42.000000
7 56 .000000 -1.477117 56 .000000 .021486 56 .000000
8 72.000000 -1.414682 72.000000 .015188 72.000000
9 90 .000000 -1.364408 90 .000000 .011131 90 .000000

10 109.999999 -1.324657 109.999999 .008403 110.000000

11 131.999998 ~-1.292715 131.999998 .006501 132.000000

The particular example which we consider is the linear, homogeneous recurrence
relation

3.1 %Yy = byt Y4, =0, ¥, =2,

where the coefficients a, and b, are chosen so that the basis solutions of (3.1) are u,
and v, given by

—,2 _
u=r"+r, r=1,2,...,

v, =1+e v,=@C+ew,_,, r=2,3,....
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Here € is a small parameter. Clearly lim,, . (u,/v,) = 0 and the problem which we
consider is the computation of y, = u, correct to 5 decimal places in the range 2 <

r < 11. Obviously this example is a contrived one but it is chosen because it brings
out clearly the points which we wish to make. The particular value € = 10~ % was
chosen and the results obtained are given in Table 1. The estimated value of N was

18. As can be seen from Table 1, the results for the range 3 <r < 11, where the
multipliers for Olver’s algorithm are all bounded by 2 in absolute value, and so partial
pivoting is not really required, are identical. However, the value r = 2, which is the
place where partial pivoting should have been used, is unsatisfactory for Olver’s algo-
rithm but remains satisfactory for the modified algorithm. Finally, we mention that for
the more realistic case where € = 0, Olver’s algorithm breaks down completely,
whereas the modified algorithm is still satisfactory. Admittedly, Olver’s algorithm
could be changed to deal with particular problems of this form as they arise, but the
algorithm proposed in this paper does this automatically without need for human inter-
vention.
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