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A Mean Value Theorem for Linear Functionals

By D. Meek

Abstract. When working out the errors in discretization formulas, one usually hopes to

obtain a mean value type of error. This occurs if the associated Peano kernel is a func-

tion which does not change sign. In this paper an expansion is developed which will ex-
press any error in mean value form, even when the associated Peano kernel is a function
which changes sign.

1. Introduction. Let the degree of a linear functional L be defined as the non-
negative integer n such that L(x’) =0 fori =0, 1,...,n,and L(x"*1) # 0. Let
{x;} be a set of / distinct points x; <x, <...<x, and a;; be a set of l(g + 1) co-
efficients,i=1,2,...,5,andj=0, 1, ..., q, then the linear functionals to be con-
sidered are of the form

Lp)= X apPk),
a.n o5k ij i
where g < n, the degree of L, and E is the nonempty set of pairs (i, j) such that
a; # 0. Assuming that y(x) is infinitely differentiable, y(x) and its derivatives can be
expanded about one of the x; points, e, and L(y) can be expressed

1.2 L@) = bn+1y(”+1)(e) + bn+2y("+2)(e) +..., b, #0.

The main result of this paper is the theorem that if the series (1.2) is infinite, then it
can always be written as a finite series ending with a derivative evaluated at an un-
known point £ in (x,, x)).

For example, the linear functional of degree 2

M@) = 4y(=1) — 4y(1) + y'(-1) + 6y'(0) + ¥'(1)

hasx, =-1,x, =0,x; =1,g=1 and

4 1
a; = _2 ?

If y(x) is infinitely differentiable, then M(y) can be written
M) = by®(©0) + b, y?PO) + . . .,
where by = —1/3,b, =0,bs = 1/60, b, =0,b, = 1/840, . .. . It is easy to show
that
M) = —1yO0) + gy, 1< <L,
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and also
Mcy)———y<3>(0)+ y<5>(0)+ g” 6 —1<§ <L

Expansions of this type have been considered ([1] and [3]) for functionals like (1.1)
where the values of the nonzero coefficients a;; are chosen to give a functional of
maximum degree. The results of this paper apply to all functionals like (1.1).

2. Mean Value Thoerem. The infinite series (1.2) will be developed by integra-
tion by parts and it will be shown that this series can always be written as a finite
series ending with a derivative evaluated at an intermediate point £ in (x,, x,).

According to Peano’s theorem ([2] and [6]), the nth degree functional (1.1)
can be written

@.1) L) = [y DK@ dr,
x1
where the kernel K(¢) is defined

a.. .
K@ = —H_ (x.— ),
with
( y 0 if t > x;
x. — )t =
! * (=) ift<x,

forn=0,1,2,.... In this paper the statement that a function has one sign will
mean that the function is nonnegative and is strictly positive over some interval or the
function is nonpositive and strictly negative over some interval. If K(¢) is a function
of one sign for ¢ € [x,, x;], then (2.1) can be written

LOy) =

n+1y,,(n+1)
e 1)'L(x )y ®, x,<¢ <x,.
Using K(¢) from (2.2), let
(2.3) Ko@) = K(),
and, form=1,2,3,...,let

t
—f K, @du, x, <t<e
x1

t
4 K, @)=y - fszm_l(u)du, e<t<x,
0, other values of z

The series (1.2) will now be developed using a variant of Darboux’s expansion [4,
p. 440]. The linear functional L(y) expressed as in (2.1) can be written

Lo) = - [,y D@ a, @) - Y D) atk, 00,
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and integration by parts then gives

— ,(n+1) € _ ,(n+1) € *1_(n+2)

Lo) =y @) [ Ko@yar =y 0@ Ko@ar + [y DOk, (e
or
=yt [ + [Ty DK () de.
@5) Lo) =y 0@ [T K@ dr + [y DK,
The expansion can be continued, showing that
X ] _

(26) Bpim =flem_l(t)dt, m=1,2,..

To see that the series (1.2) can be written as a finite number of terms, it is sufficient
to show that there is an m for which K, (¢) is a function of one sign on [x, x,].
This result will be proven in Theorem 2.2.

If the expansion point e is not equal to x, or x,, then K, (¢) can be separated
into two parts by e. Define

{Km(x,—t), 0<t<x,—e
2.7 R (H) =

0, otherwise,

and

K, @x, +0, 0<t<e—x,
(2.8) Sm(@®) =

0, otherwise.

If the expansion point e is x,, then only R, (¢) need be defined and if the expansion
point e is x,, then only S, (f) need be defined. Definitions (2.4) and (2.7) yield

t
(29) R, ()= qum_l(u) du, m=1,2,3,...,
and definitions (2.4) and (2.8) yield
t
(2.10) S, ()= —fosm_l(u) du, m=1,2,3,....
The relations (2.9) and (2.10) are useful in proving certain properties of R, (¢) and
S, (2).

THEOREM 2.1. For sufficiently large m, R, () is a function of one sign with
the same sign as a, in (1.1), where r is the largest first component of elements in E,
and s is the largest second component of elements in E which have r as a first compo-
nent.

Proof. According to (2.7), (2.4) and (2.2),

a.. .
R,®)= X ﬁ(xi —x,+ )7, 0<t<x —e
G peet 1)
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and using (2.9) m times,

R,0)= 3

a;
(i,i)eE(m +n—j)

(xi—x,+t)’f+"_j, 0<t<x,—e

Letting F be the set of numbers which are first components of the members of E and
letting G; be the set of numbers which are second components of pairs in E that have
i as first component, R, (¢) can be rewritten

2

i€F

Ge; —x, + mtn-di (m+n—1J)

Aei ——T 7
CETER I PN CE ]

C; —x, + t)‘_’g"j ,

where J; is the largest element of G,. If m is sufficiently large, the inner sum of the
above expression is as close as desired to , for 0 <t <x;, —e. Thus, for m suffi-
ciently large, R, (¢) has the same sign as

G, —x, + oyptni

a; 0<t<x,—e
,.EZF:- iy (m+n—J) ~’ 1
This expression can be written
x, —x, + t)'_"_l+n—s . m+n—s) (x;—x, + t)r_'r_t+n—J,-
e (m+n—ys) Yitn +n—J)! @, —x, + )pFs (”

where 7 is the largest member of F and s is J, or the largest member of G, Ifmis
sufficiently large, the above sum is as close as desired to

s — m+n—s —
m(xr x,+t+ . O<t<xl e,

since, for all e < x; <x,,

m+n—s)! @, —x +omrtn-Ji

— =0.
moe (m+n—J) (x,—x,+ t):'_'""‘—’

Thus, R, (¢) takes the sign of

a

- +n—
mFn—s & ® O

or a,, for m sufficiently large. O

THEOREM 2.2. There are infinitely many values of m for which K m®isa
function of one sign.

Proof. 1t is clear from Theorem 2.1 that for all m above some value R, (?) is
either nonpositive or nonnegative. A similar analysis on S,,(¢) shows that for all m
above some value S, () is a function of one sign and that that sign changes each time
m increases by one. Thus, there must be an infinite number of values of m for which
K, (t) is a function of one sign. The argument also applies, if the expansion point e
is x, or x; and only one of R, (¢) or S,,(¢) is defined. O
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THEOREM 2.3. There are infinitely many values of m for which the series (1.2)
can be written

L(y) = bn+1y(n+1)(e) .ot bn+my(n+'n)(e) + bn+m+1y(n+m+1)(£)a
x, <§g<x,.
Proof. Choose any m for which K, (¢) is a function of one sign on [x,, x,].
By (2.5) the functional L can be written

Xy
L) =b,,y™E)+...+b,,,, 7™ () + f . yErmIDAK, (1) dt.

The mean value theorem applied to the integral gives the required result. [

3. Example. The operator
M) = 4y(-1) —4y(1) + ¥'(-1) + 6y'(0) + ¥'(1)

might arise as a quadrature formula

af l_lu(x)dx = u(~1) + 6u(0) + u(1) + E.

The quantity E can be expressed in several ways, one way being as an infinite series
like (1.2). The operator M(y) is of degree 2 and its Peano kernel, K(), is a function
which changes sign. Following a standard procedure ([2], [5], [6], [7]),

3.1 BI<_max WO [ KOl =3 max wO).

If the method in this paper is followed, then £ could be expressed

=_1,@ 1,@ _
E=-3u®0) + Lu®@), 1<g<1,

and

32) 1< _max | -1u®©) + 5u®e) |
When u(x) = x* then (3.1) gives |E| < 6, while (3.2) gives |E| < 2/5 and the value
for E is —2/5. It should be noted that for a function such as u(x) = €2%*, formula
(3.1) gives a smaller bound on |E| than formula (3.2).
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