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Root-Finding by Fitting Rational Functions

By F. M. Larkin

Abstract. A tabular, recursive method is presented for the computation of a sequence
of abscissae designed to converge to a simple zero of an analytic function. The key
to the method is an efficient means for evaluating the zeros of a sequence of rational
functions, having linear numerators, fitted to information previously computed.
Regional and asymptotic convergence properties of the method are described.
Conditions sui‘ficient to ensure convergence are derived, and it is shown that asymp-
totically quadratic convergence can be achieved, at the cost of only a moderate

amount of ‘“overhead” computation.

1. Introduction. A number of useful techniques (in particular the Secant Rule)
for numerical determination of a zero z, of a function f{) begin by sampling f(*) at
distinct abscissae {zj; j=1,2,...,r}, say, and fitting a “simpler” function 7(')
through the points { Lz » fz)));7=1,2,...,r}. This construction is arranged so
that a zero z, , of f() is relatively easy to compute. A new set of abscissae, includ-
ing z,, ,, is then selected from {z].; j=1,2,...,r+ 1} and the process is iterated
to generate a sequence of abscissae which, in favorable circumstances, will converge
to z,.

Tornheim [13] considered the choice of ?(') as a rational function, i.e.

~ P,(2)
1 = ;
6)) f2) 0.

where P, () and @,,() are polynomials of degree n and m respectively, such that
n+m+1=r Thus, 7(~) has just the right number of degrees of freedom to be de-
termined by the r data points. In the same paper Tornheim also considered rational
inverse interpolation, and obtained asymptotic convergence orders for both the direct
and inverse case. Jarratt and Nudds [2] particularized to the case n = 1, since then
the determination of z,, , becomes trivial once ?(~) has been constructed. They con-
firm Tornheim’s results on the asymptotic order of convergence in this case. However,
Jarratt [4] later remarked that, for practical purposes, it is usually not worthwhile to
choose anything other than m = 1 (or, presumably, 0) when n = 1, because of the
relative labor of constructing ’f(') by solving a set of r simultaneous, linear equations
for the coefficients of P, () and Q,_,(").

The main purpose of this paper is to present a tabular, recursive technique for
the détermination of z,, |, when n = 1, without the necessity for computing the
coefficients in Q,_, (). In order to augment the list {zi; j=1,2,...,rtbyz, .,
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804 F. M. LARKIN

only O(r) arithmetic operations are required, compared with O(r>) if the coefficients
in P,(*) and Q,_, (") are found by straightforwardly solving r simultaneous, linear
equations. Thus the computational work involved is comparable with that of the
classical method of polynomial inverse interpolation, performed by the Neville-Aitken
technique ([10], [1]).

The approach described here is also flexible to the extent that, if desired, earlier
numbers of the sequence {zi; j=1,2,3,...} can be discarded at any stage, with no
consequent computational penalty. Furthermore, by permitting certain abscissae to
become confluent, it is a simple matter to include information on derivatives of f{*)
within the general computational scheme. As a matter of interest, the technique can
also be used for accelerating the convergence rate of abscissa sequences generated by
a simple iterated mapping, by the Secant Rule, or even Newton’s method, should
that be considered worthwhile in order at any stage to make efficient use of all the
previously computed information (Larkin [8]).

The conceptual basis of the method is discussed in Section 2, below, and the
actual mechanics in Section 3. In Section 4 some sufficient convergence conditions
are given and it is also shown that the asymptotic convergence order can be as high
as 2. Since only a single function evaluation is required per step (in the nonconfluent
case) this means that the efficiency index (Ostrowski [11]) and informational effi-
ciency (Traub [14]) can also approach the value 2. The asymptotic convergence rate is
also governed by the proximity to the zero being sought of the nearest competitive
zero or nonpolar singularity.

In view of the above properties, it seems that a root-finding method based on
fitting the form

z—z
) . Tr+1
1@ e

to r distinct sample points of f{*), and iterating with or without incrementing r at
each stage, may still deserve consideration as a possible practical technique.

2. The Table of Rational Interpolants. Fundamental to the approach is the
table of rational interpolants illustrated in Figure 1, and the recognition that its mem-
bers satisfy certain, simple recurrence relations. However, we emphasize that it will

not be necessary actually to construct the interpolants per se.
In Figure 1 we define

Li=Az);, =123, ...,
and take

Ril(Z) _ (z—- z].)f]._,_l + (sz —z)fj

, Vz;7=1,2,...,r—1.

G+ T
For k£ > 2 we then take
zZ= Wi
R (2) = Vz and relevant j, k,

ij(z) ;
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R1
Zy 2 Ry2

Ro1 R

R 13 R

23 3 22 14

Ry Ra3 .
Zy 4 R32 :

Ry1
zs 5 .
Zr-1 r-1 °

Re1,1
z
x r

FIGURE 1

A table of rational interpolants

805

where 0, () is a polynomial of degree < k — 1 whose k coefficients, together with

Wy, are chosen so that

Ry =fs s=ii+1,j+2,...,j+k

presuming that to be possible. In the interests of clarity of presentation, we neglect
the possibility that such a rational interpolant may not exist (nonexistence would not
change the algorithm—merely its interpretation). Figure 2 illustrates the relationship

in the table between Ri. k=17 Ri +1,k—1 and R].k, and their defining data points.

Ry, k-1

. ’

: >< 1
£ 1 Rj"‘llk-/
j."k/

fj'+k

£kl

FIGURE 2
R].k and its neighbors
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Wynn [15], [16], Stoer [12] and Larkin [5] have all discussed different tech-
niques for the recursive construction of rational interpolants. In this case the simplest
approach seems to be as follows. Define a function 7(-) by the relation

C-2) @ Wi ,-1)F @ag —2) C~Wip )
@2 Qi1 k1@ + @i =2) " Gy 5-1(2)

and observe that, presuming no cancellation of a linear function of the argument oc-

T(z) = , Vz,

curs, T() is a rational function whose numerator has degree 1 and whose denominator
has degree <k — 1. Furthermore,

" Wik—1

T( _Rj,k—l(zj) =fj,

J,k—l( 1)

Zitvk “ Wit1,k-1 _

Tzj4x) = i+1,k-1C4 ) = Frapeo

Qj+l,k—-l(zj+k)
and, because
Ry (@) =f,=Rjpyj1@); s=j+1Lj+2,...,j+k-1,
we see that
Te)=fy; s=j+1,j+2,...,j+k-1
Hence, by the uniqueness of rational interpolants,

T(z) = Ry (2), Vz,

i.e.
ZW; 54 —Z:; — W; .+ 2z = (24 W; _
3) Rik(z)= ( L k-1 ] j+1,k—1 ]+k) j+k"j,k—1 Wi+k,k 1) Vz.
@ =2)Q41,1-1() + Cjyi — 20, k—1(Z)
3. The Computational Scheme. Comparing (3) with (2), we see that
Z, W, - Z.W.
- jtk " j k-1 itk k-1
@ Wi = LA "
Wik—1 "% " Wit1,k—1 T Zjtk
or
5) W = wj+1,k—1/(Wj+ 1,k-1 1+k) w; k_l/(W,-,k_l - Z,-)
jk T
VWit 1,01 = Zja) = Y01 — 2)
or

Wit1 k-1~ Wjk-1

©). Wi =Wy t ; Vizl k=2,

W k-1 = 2 Wjg 1 k1 — Zj45) — 1

Any of the algebraically equivalent relations (4), (5) and (6) constitute a recur-
rence rule, by means of which the quantities {wj’k; j=1,2,3,...} can be construc-
ted if the values of the {wj’ x—137=1,2,3,... } are known. Of course, the values
of the {le ;J=1,2,3,...} are nothing other than Secant Rule estimates of z,
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given by

Ziv1 T % . _
Wj1 = Zjgq [fj-“ _fl:,fj“, i=1,2,...,r—1.
Perhaps (6) is computationally the most convenient recurrence relation, since
quite large relative errors in the increment part may be tolerated, without resulting
in unduly large absolute errors in Wji- A convenient layout for the quantities {ij}
is shown in Figure 3, the arrows indicating the direction of information flow during
the course of the calculation. Figure 4 illustrates the order of calculation of the en-
tries in this root-estimate table, starting with two initial estimates z, and z,, and aug-
menting the list {z].; j=1,2,3,...} at each stage by means of the rule

@) Zypy =Wy g T=2,3,4,.. ..
Z2, — o £
1 1~ y
. 11
22 . f2 / \ w12
\‘”21/ U
e e
31 .
z, — f-u/ T~ Wiy . .
\'w“l/ .
zs'—"“"fs/ . \ .
. fo J
F IR e——
r-1 r-1
el
r-1i,
z ———f —
r r
FIGURE 3

Information flow in the table of root estimates

FIGURE 4
Order of calculation of root estimates
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Of course, many rules other than (7) could be used for augmenting the list, if
desired. For example, we could take

Zop1 =W r=3,45,...,

in which case only the latest 4 list members are retained at each stage. It would even
be possible to choose z,, ;, quite unrelated to previously computed entries in the
table, for example, if w; ,_, turned out to be an obviously poor estimate of z,,.

Figure 5 illustrates the progress of the iteration, using augmentation rule (7),
for the sample function

fD)=z—-¢€¢% Va

Correct digits are underlined. Starting from the same initial values, the simple Secant
Rule requires six function evaluations in order to attain comparable accuracy, and
starting from either O or 1, the simple Newton-Raphson iteration requires four func-
tion and four derivative evaluations. Thus, while the improvement in efficiency is not
spectacular, it would appear to be worthwhile for functions f(*) of only moderate
complexity. The question of numerical stability of the method is currently being
investigated; however, numerical experience suggests that it should not constitute a
serious difficulty.

J z f.
j j Yi1 Yj2 Y33

1 0.0 -1.0

0.61269984
2 1.0 0.63212056 0.56744719

0.56383839 0.55714329
3 0.61209984 0.07081395 0.56714312

0.56714080
4 0.56744719 0.00047622

FIGURE 5

Rational iteration to a zero of z — e *

4. Convergence Considerations. The results of this section are directed towards
an understanding of conditions sufficient for convergence to z, of the columns and
diagonals of the {w;, } table, and their asymptotic convergence rates. Specifically,

these results are expressible in terms of a function g(-), defined by
z-z
0

~g(z) = 5 Vz,
fz)
which is assumed to be analytic within a Jordan curve C, enclosing the points
{z].; j=0,1,2,... 1}, and bounded on C. This amounts to assuming the existence

of a neighborhood of z, which excludes all other zeros of f(*), i.e. that z is an iso-
lated, simple zero of f{(*). However, C may contain poles of f{*).
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For any function h('), let h[z,z, - - - z,] denote the (r — 1)th divided differ-

ence of (), based on the abscissae {zi;j =1,2,...,r}
LEMMA 1.
gz, 2] R — 2)
Zg = Wi L7+1 It STIT0 s , Vrelevant j k.

8(z0) —8lzozZj 41 " Zjii] H’;J;?(Zo ~zy)
Proof. Consider that the function of z,
= w1082 — (2 —24)0 ,—1(2),
vanishes, where z = z; j=1,2,3,...,r, so the polynomial of degree <(r— 1) in
z,(z — zy)0, ,r—1(2), must be the unique polynomial of this degree which agrees at

these points, with the function e(:) defined by
ez) =(z~w;,_,)), Vz.

Hence (e.g. Milne-Thomson [9])
®) (-w, )8~ (20, 1@ =elzzzy - 2,] I'rI z- z].); Vz,
i=1

and in particular,

) (zg =Wy ,-1)8(z9) = €lzgzy2, -+ 2,] inl (zo — 2))
However,
ez) = (z — z9)8(2) + (zg — Wy ,_)E(2)
s0, using elementary properties of divided differences, we find
elzo2,2, " 2,] =8lzy2, "~ 2] + @y~ wy ;1 Blz0242, - - 2,],

which yields
glzyzy -+ - z,] M_,(z9 — 2))

8(zy) — glz9z,2, * * " 2,] _ (29 — 2;)

Z0 " W11 <

when substituted into (9).
By translating this result in the {wj }-table it is clear that the general proposi-
tion is also true.

THEOREM 1. If there exists vy such that

lz, jl
(10) —=< <1 dj= inf|z—zi|; j=0,1,2,...,
dj zeC

then the sequence {wl,r; r=1,2,3,...} converges to z,.

Proof. By a well-known property of divided differences of an analytic function

1 &(z)dz
glzlzz"'Z]=_——. .
T 2m fc m_,z-z)
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and

1 g(2)dz
glzgz42, 2zl =— ), —0/—.
T 2m fc M_o(z —z)

Hence, if L is the length of C and M = sup, . |g(z)|, we have

LM
an lglz1zy -+ 2] 1 < —
2w 1'[].=l di
and
LM
(12) lg[zgzy2,  + " 2] | < ————.
2y d,

Furthermore, g(z,) # 0, since z,, is a zero of f{*) and g(*) is analytic at Zqy, SO
from (10) and (12) we see that for any fixed e satisfying 1 > € > 0, there exists R
such that

lglzgz,2, + - - 2,1 1T, 12 — 2] <e VSR
lg(zo)! ’

Consequently, from Lemma 1,

< lglz,z4 -+ - 2,11 m_, lzy =2zl
1 (1 - e)lgzy)!
r
< L,
2m(1 — €)lg(zy)!

Izo -w,
Vr >R,

from (10) and (11), from which the required result follows.

COROLLARY 1. Let z§ be the zero of f(°) nearest to z, and suppose f(*) has
only pole-type singularities in the disk {z: 1z — z,| <Blz¥ —z,1}, where 0 < B < 1;
then the sequence {wl,r; r=1,2,3,...} converges to zy if

Iz, —z,|
._]_._O__<B.

Iz%—z |
zZ5 — 2, 2

Proof. These conditions imply the conditions for Theorem 1, if we take C to
be the perimeter of this disk. The result also holds if z¥ is any nonpolar singularity

of f()-

COROLLARY 2. Under the conditions of Theorem 1,

~g[zlz2 sz W (zg — z;)

i £(zo) ’

Zo W

for large r.



ROOT-FINDING BY FITTING RATIONAL FUNCTIONS 811

Proof. Observe that g(z,) # 0 and from (12)

¥
lglzgz,2, -~ - 2,11]] Iz — 2,1
j=1
LM -z L
o % <lgz )| ————— |7 =0 asr—
27rd0 =1 | 2nd, - 18(z)!

so the result follows from Lemma 1.

COROLLARY 3. If the sequence {z].; j=1,2,3,...} converges to z,, then,
for fixed k and large j,

g(")(zo) jtk
Zg ~ Wi ™ Zo
! k'g(zo) s=j

Proof. This result is obvious from Lemma 1 and elementary properties of di-
vided differences.

= zy).

COROLLARY 4. If the sequence {zi; j=1,2,3,...} converges to z,, then,
for every fixed k = 1,

Wi — 2, asj — oo,

The above results are largely independent of the rule for augmenting the se-
quence {zi; j=1,2,...,r}. Theorems 2 and 4, below, effectively confirm conver-
gence under simple augmentation rules, if z, and z, are chosen close enough to z, in
comparison to the distance between z, and z§.

Using the same notation and region of analyticity as in Corollary 1, we choose
a positive quantity v, subject to the condition

lg(z)!
(13) 0< Y1 +29)< g(;;) <1

this is always possible, the second inequality deriving directly from the Maximum
Modulus Principle. From (13) it is easy to verify that

lg(zo)!
14 0<y< ,
(14) Y<~,
(15) 0 <7<ﬁ4’—1=0.3090.
THEOREM 2. If
Zy — Z;

(16) Il <y, j=1,2,

d.

j
and the sequence {zi; i=1,2,3,...}is augmented by means of the rule

Zpp1 = Wi o1 r=2,3,4,...,

then z; ™z, asj—> oo,
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Proof. We first show by induction that (16) is true for all j > 0. Hypothesiz-
ing that (16) is true for 1 <j <r, we define

M ro 120 2

an w= I1
gelis| 4

and observe from (12) that

r ¥ - I

lg(zo)I g2z 124 = * * 2,] ! lzg = z;1 < H
0 0%122 r ]I__Il "= 2nd, lg(zo) ) 4 r

However,
(18) L =2nd,,

since C is a circle centered on z, so, using (13), (14) and (16),

~ r My M')'2 |g(z )I
(19) |g(20)| 1 Ig[202122 .« e Zr]I I=-Il IZo _'Z I = H Ig(zo)l < Ig(zo)l A{O

for all 7 > 2. Notice also, from (13) and (19), that

s

20 1+27)<92, je.u< <wv, Vr>1.
(20) my( N<7vy H<T7 2y Y
Thus, from Lemma 1, we have
| | | < lglzyz, - - - 2, ]I 1z - z;|
Zn — 2 =1Z6 —Wq ,_
O T e TR T g(zg)) - Iglzezyzy v 2, ML Iz — 21

doM T_, |(zo — 2))/d;]
lg@zg)! =M I, | zo = 2))ld;)

making use of (11), (12), (18) and the fact that (20) implies that the denominator is
positive. Hence

dou u
lzg — 2,4, <—-——-1 . =, tlzq —z,Hl)———l -
ie.
20 " Zr41 M Y(1 + 2y)
X < =",
d,,, 1-2u 1-29/(1 +2v)

making use of (15) and (20). Since the hypothesis is assumed true for r = 2, in the
conditions of the proposition, the induction is complete. The conditions for the
validity of Theorem 1 are thus satisfied, so the proposition is proved.

COROLLARY 5. If the sequence {z;;j =1,2,3, ...} converges to z,, under
the augmentation rule of Theorem 2, and zo F z; j=1,2,3,..., then, presuming
the limit exists,

o lzgm 2,0 1
lim ——m =
P> o0 |Zo —‘Zrl Izo _ZOI
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-Proof. From Corollary 2 and the augmentation rule we have

glzyzy " z,]
2=z~ [ @ —2)
r+ 8(zy) =1 !
and
glzyzy -z, 11
zg—z,~————— [] (z, —2;), forlarger.
r g(zo) j=1 !
Thus

Zo " Zr+1 glzyz, - - z,]

5
(zo - 2,0 glzyzy - z,]

and it may be shown (Larkin [6]) that

glzyzy v z,] 1

glzyzy -+ v 2,1 lz§ — z,|

as r —> oo,

whenever the limit exists.

Remark 1. The asymptotic order of convergence of the process is 2, and so are
its efficiency index and informational efficiency. This asymptotic behavior is identi-
cal with that of the method of polynomial inverse interpolation (e.g. [7]).

Numerical Example. To illustrate that this asymptotic pattern can become fairly
quickly established we choose

o) =z(1 +2z2); Vz

and iterate towards the root z, = 0. Obviously z¥ = —1so Iz¥ —z,| = 1. Starting
with z; =05, z, =04, relevant quantities are shown in Figure 6.

. 2
J z) Iz-zj.,_" |/|z°—zj|
1 0.5
2 0.4 0.5691
3 0.10526316 0.8261
4 9.153318.10"3 0.9820
5 8.227702.107° 0.9998
6 6.768394.107°
FIGURE 6

Asymptotic behavior of the method

If there is more than one “nearest neighbor root” to z, the pattern is more
complicated, but the behavior expressed by Corollary 2 may still be discernible.
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THEOREM 3. If the augmentation rule of Theorem 2 is replaced by the rule
Wl,r—l; r=2,3,-..,k+1,
Zr41 <
Wk, r=k+2,k+3,...,
the sequence {zj;j =1,2,3,... 1} stll converges to Zq-
Proof. From the analysis of Theorem 2 we know that
Zy ~ Z;

]
d;

(21) <y, j=1,2,...,k+2.

We now show that the sequence { Iz, — z,-l;j =k+3,k+4,...}is bounded by a
geometrically decreasing sequence, again using an inductive argument.

Hypothesize that (21) is also true for {j =k + 3,k + 4, ..., r} then, from
Lemma 1, we have

20 " Zr41 glz,_y2y k11 2] 11 r—k(zo z) Yr>k 41
zo 2 g(zo) - g[ZOZr—kzr—k+1 e Zr] II'=r—k(ZO - zj)
so, by arguments similar to those used in Theorem 1,
22) %0 ~ r+1| (Mdy/d,) M2 1 (zg = 2)/d)|
2o-2, | lgo)l - M, 1(z — 2)/d]

However, d, = Iz, — z,| + d, so relation (22) can be expressed as
Zg = Zpy| < [1+1zy=-2z,1/d, ]M/Ig(zo)ll'l;':,_ I(zo — 2))/d;l
-2 | 1 - M/lgzg) e, _ Iz, — 2/}
< + M 1g(z,)! < W+ 2y)
Ta- v"“M/lg(zo)l 1- /(1 + 2y)

from (13); i.e.

Z0 " Zrya
-2

LA+ +27)
zy 1-9/(1+2y)
Thus (21) will be true for j = » + 1, and the induction is valid; also (23) confirms
that the sequence { Iz0 - zjl;]' =k+2,k+3,...}is indeed bounded by a geo-
metrically decreasing sequence, so the proposition is proved.

(23) =yl <y<l.

r

COROLLARY 6. If the sequence z;; j=1,2,3,..., converges to z, under the
augmentation rule of Theorem 3, and z, #+ z]-;j =1,2,3,..., then

—1)/k
g(k)(zo) (p—1)/
klg(zy)

Where p is the unique positive root of the equation

k
4) . per =3 pt.
j=o

Izo _zr+ll _

lim
r—> oo IZO - Z,Ip

k]
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Proof. From Corollary 3 and the augmentation rule we have

g8
(25) Zo —Zy4q ""@0—)‘ ,-=I;I_k (zo — Z]-).

After taking absolute values and then logarithms on both sides of (25), thus forming
an approximate linear recurrence relation, standard arguments (e.g. Traub [14]) lead
to the required result.

Remark 2. 1t is, of course, well known that p increases monotonically from
(/5 — 1)/2 to 2 as k increases from 2 to (e.g. Traub [14]).

COROLLARY 7.
: g(k)(zo) 7(0—1)/" B 1
m E—— = .
ko | Klg(z0) Iz§ =z,

Proof. On summing the geometric series in (24), we easily find that

) 1
p—il=1=-="
pr+1
SO
1kt
g(k)(zo) (p—-1)/k _ g(k)(zo) k| 1 |Uk|1-1/p
klg(zy) k! 8(zy)
However, for large enough k the effect of the power 1/p**1 becomes negligible,
1/k
lim 1 =1;
k—>o0 g(zo)
and, by the Cauchy-Hadamard Theorem,
. g(k)(zo) 1/k 1
im |——— =—,
F—>o0 k! IZ: - Zo I

so the proposition is proved.
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