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Iterative Refinement Implies Numerical Stability
for Gaussian Elimination

By Robert D. Skeel*

Abstract. Because of scaling problems, Gaussian elimination with pivoting is not always
as accurate as one might reasonably expect. It is shown that even a single iteration of
iterative refinement in single precision is enough to make Gaussian elimination stable in
a very strong sense. Also, it is shown that without iterative refinement row pivoting is

inferior to column pivoting in situations where the norm of the residual is important.

1. Introduction. It is well known that Gaussian elimination with pivoting is a
stable algorithm for solving linear systems of equations in the sense that the computed
solution exactly satisfies a linear system whose coefficient matrix differs slightly in
norm from the given matrix. For this reason it is often thought that iterative refine-
ment is not worthwhile unless either the data are known with great accuracy or one
wishes to detect ill-conditioning. However, it has been pointed out (Hamming (1971),
Gear (1975)) that Gaussian elimination is not as accurate as one might reasonably ex-
pect in that the computed solution may not exactly satisfy a linear system with each
coefficient slightly different from that given. It is shown in Skeel (1979) that stability
in this strong sense is possible if an appropriate implicit scaling of the rows and/or
columns is used with the pivoting. Unfortunately the proper scaling requires estimates
of the solution components. It is the purpose of this paper to show that the effects
of improper scaling can be eliminated by performing iterative refinement even if the
residuals are not accumulated in double precision. Therefore, iterative refinement
would be worthwhile for problems that may not be scaled properly for Gaussian elimi-
nation. The computational cost is often small, but this is-not always true due to the
necessity of storing the original matrix.

The title of this paper is adapted from a related paper of Jankowski and
WozZniakowski (1977). The principal result of their paper is that almost any linear
equation solver can be made stable in the usual sense by performing iterative refinement
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even if single precision is used throughout. In contrast, our paper shows that a particu-
lar algorithm which is already stable in the usual sense becomes stable in the strong
sense when iterative refinement is performed. These latter results are obtained primar-
ily through the use of componentwise absolute values instead of norms for the round-
off error analysis.

In Section 2 three stability concepts are defined which are motivated by the de-
sire to compare the solution computed by the algorithm with solutions obtained by in-
troducing small errors in each of the entries of the coefficient matrix.

In Section 3 a good error bound is given and numerical stability is discussed for
Gaussian elimination with column pivoting, which is the usual variant of partial pivot-
ing in which the largest element of the next column is used for a pivot.

In Section 4 bounds on the residual and the error are obtained for column pivot-
ing with iterative refinement. Both s.p.r.a. (single precision residual accumulation) and
d.p.r.a. (double precision residual accumulation) are considered.

In Section 5 the numerical stability of iterative refinement is examined, and it is
shown that a single iteration in single precision is enough for stability. Still better be-
havior is possible with further iterations or with double precision residuals.

In Section 6 an error bound is given for Gaussian elimination with row pivoting,
which means that columns are interchanged so that each pivot is the largest in its row.
The interesting result here is that without iterative refinement the norm of the residual
can be much larger than for column pivoting; otherwise, little can be said about the rel-
ative merits of the two types of partial pivoting.

2. Numerical Stability. Three stability concepts are discussed for algorithms
that solve a system Ax = b of n equations in n unknowns.

A floating-point number system consists of a subset of the reals for which floating-
point operations 4:, :, %, and 7 are defined. It is assumed that the relative roundoff er-
ror of floating-point arithmetic is bounded by a minuscule positive number u satisfying
the restriction nu < .01 of Forsythe and Moler (1967). Every reference to a floating-
point result xoy carries with it the assumption that x, 0, and y are such that the result
is well defined.

For a roundoff error analysis it is helpful to have some reasonable standard for
comparison. As our standard, we would like to consider the slightly perturbed solution
of a slightly perturbed problem; more specifically, errors of relative size < € are intro-
duced into the problem data, and then errors of relative size < € are introduced into
the exact solution of the perturbed problem. For the particular problem of solving a
linear system Ax = b there are indications (see Skeel (1979)) that it makes little differ-
ence if only the matrix 4 is perturbed, and so we consider solutions x + éx =
(A +84)7'b for 64 smaller than A by a factor of e. It is usual to consider 84 such
that 1641 <ell41l, but it may be preferable (see Skeel (1979)) to be more restrictive
by requiring that 1841 < el4 !, where the inequality and the absolute value are to be
understood in a componentwise sense.

There are various ways of relating the computed solution X to the solutions x +
&x of perturbed problems. One way is the backward error n,which is defined to be the
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least amount by which 4 must be perturbed to get a solution x + éx which is exactly
equal to x. The requirement that x + §x = X can be quite demanding, and so we also
wish to consider less stringent conditions. We can ask instead only that x + éx be in
some sense as bad a solution as X. We consider two measures of the badness of the
solution: the norm of the residual and the norm of the error.

Definition. Let A (A, b) = {8x: (4 + 84)(x + 6x) = b where 1841 <eldl}.
The backward errors are defined by

n = inf{e: x = x + 8x for some &x € A_(4, b)},
7 = inf{e: 14% = bll = I48x| for some 8x € A (4, b)},
7F = inf{e: Ix — xIl = I6x|l for some 6x € A (4, b)}.

Only absolute norms will be considered, namely those for which
ol = Nl

for any vector v. Bauer, Stoer, and Witzgall (1961) show that this property is equiv-
alent to monotonicity, which means that

lvll < llwl  whenever vl < lwl.

In addition, it is convenient to assume that the problem has been scaled so that the
norm can be chosen so that | el =1,1<j<n (Extension of the results to weighted
norms would be straightforward.) Under these assumptions it is easily shown that
vl < llvl < Il for any vector v. The norm is to be extended to row vectors and
matrices in the usual way.

By stability of an algorithm it is meant that there exists a stability constant k(n)
and a stability threshold u(r) such that the backward error n < k(n)u whenever u <
u(n). However, this definition is difficult to apply, and so we relax it by allowing
u(n) to depend on the data (4, b) (cf. Jankowski and Wozniakowski (1977) and the
asymptotic backward stability of Miller (1972)). An algorithm will be called R-stable
if there exists a constant k() such that n® < k(n)u for sufficiently small u and E-
stable if ‘nE < k(n)u. Since both 7R and 1 are < n, it is clear that stability implies
both R- and E-stability.

The following theorem gives in terms of X an expression for n which is useful
both theoretically and computationally.

THEOREM 2.1 (OETTLI AND PRAGER, (1964)). The backward error n of the com-
puted solution X satisfies

|4% — bl

=max T~
n TATIZ]

if 1411x1 > 0, where division of two vectors is defined componentwise.

Proof. This is similar to Eq. (4.2) of Oettli and Prager (1964). A slightly stronger
result without the hypothesis 1411x] > 0 is proved in Skeel (1979). O
It does not seem possible to obtain similar expressions for 7R and 1F ; however,
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the next two theorems give excellent upper and lower bounds which are useful theo-
retically. These bounds contain the quantities

k(A = 1141147111 and  k(4) = 11A711ALI.

It is important to note that k is being used in a nonstandard way, for it does not de-
note a condition number defined in terms of norms.

THEOREM 22. The backward error nR of the computed solution % satisfies

l4x — bl lAx -
Ax - bl <R < A% - bl

HANx !+ k(A DH1A% =1 1Allxl I = kA~ A4% — bl

provided that the denominator is positive; alternatively,

IA% - Bl
S lAllxll, - 14% — bl

,nR

provided that the denominator is positive.

Proof of Lower Bound. Let € be any real such that | Ax — bl = I 48x| for
some 8x which satisfies (4 + 6A4)(x + 6x) = b where 1841 < el4|. Then

lAsxll = I — 84x — 54471 A8x 1 < e{ 1Al 1x! + k(4™ 1) 48x 1},

which provides a lower bound on € and hence on n®. O
Proof of First Upper Bound. For € = 0 define

84 = elAldiag(sgn(x))

and define x = (4 + 84)"'b — x so that 8x is a rational function of € where remov-
able singularities are assumed to be removed. Hence, | 45x| is a continuous function

of € except at poles of §x where |48x|l = + o, For values of € not equal to poles of
6x it can be shown that (4 + 8§A4)(x + 6x) = b (although it may not be true that

A + 84 is nonsingular). Equivalently

8Ax = —( + 844" H)Abx,

whence
I6AxI < I + elAl A7 111 A8x]
and
”1 Idsx] > ellAallx!
. X _—
@1 T 1+ 4™

Hence for € >0, | 46x 1l assumes all nonnegative values less than | |4 11x11/k(4~!). By
assumption the norm of the residual is less than this value and, therefore, choose € so

that 46x Il = 4% — bll. Since € cannot be a pole of 5x, we have (4 + §A4)(x + 8x)
=b; and since 1641 < elAl, it follows that n® < e. Solving (2.1) for € and substitut-
ing |Ax — bl for Il 46x|l establishes the bound. O
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Proof of the Second Upper Bound. For € = 0 define
84 = ¢(1 + 2¢) 1 A(el + (1 + €)E),
where
E = diag(sgn(e] 4)) diag(sgn());
and / is such that e;‘rlA llx] = 11411xI1_. Hence,
A+84y = -el +e)'E)A™" and Sx =(4 +84) b~ x =—¢(1 + €)' Ex,

whence the residual 46x = —¢(1 + €)"'AEx. Thus,

leTAbx| < e(1 + eyt I1A4llxl I,

with equality for i = /, and so
22) NAsxIl > 148xll, =e(1 + e I1AllxIN,,.

Therefore, 1 46x | assumes all nonnegative values less than Il |4 11x[ll_; and so we may
choose € so that 148xIl = lAx — bll. Since (4 + 8A)x + 8x) = b and 1641 < elAl,

it follows that n®® < e. Solving (2.2) for e and substituting | 4x — bll for 1 48x1 es-
tablishes the bound. O

THEOREM 2.3. The backward error nF of the computed solution x satisfies
Ix —xI lx —xIl
E < —
A= A x !, — k@)X — x|l

= <7
A= A xl I + k(I - x|
provided that the denominator is positive.
Proof of Lower Bound. Let € be any real such that lx — xll = I18x/l for some
8x which satisfies (4 + 8A4)(x + 8x) = b where 1841 <elAl. Then
I6xl = Il —A7164x — A~ 1648x I < e{ WA 1AlIx]I + k(A)N8x1 Y,

which provides a lower bound on € and hence on nE. O
Proof of Upper Bound. For € = 0 define

84 = e diag(sgn(ef A~ "))|A| diag(sgn(x)),
where / is such that
eFlA™ 1Alx] = 1A~ 1Al x!

and define 8x = (4 + 64)"'b — x so that &x is a rational function of € where remov-
able singularities are assumed to be removed. If € is not a pole of 8x, it can be shown
that (4 + 64)(x + 6x) = b. Equivalently

A7184x = —(I + A"16A4)5x,
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whence

ell4~111A4llx!,
1+ e(4)

lefA™18Ax| < IT + €lA7' 11411 Isxl and Noxl >

The remainder of the proof is similar to the proof of the first upper bound of Theo-

rem2.2. O
Remark. The norm llell, in the upper bound cannot be replaced by ll°ll; how-

ever, the two norms differ by at most a factor of n, which is not too important for
our purposes.
From these theorems it is clear that R-stability is equivalent to

I4x = bl < k(n)ull4llx! I + O@?)
and E'-stability is equivalent to

I —xIl < k(mullA71AlxI] + O@?).

If absolute values were replaced by norms, then R- and E-stability would be equivalent
to the good behavior and the stability, respectively, of Jankowski and WoZniakowski
(1977).

In Skeel (1979) it is shown that I 1471114 11xIll_/lx|l_ is the condition num-
ber for the maximum norm of the error with respect to small relative changes in the
elements of 4. Similarly, it can be shown that Il |41Ix|ll/lAx|l is the condition num-
ber for the norm of the residual (which is just the error measured with the norm
IA(o)1l) if the relative residual is defined to be I 4% — b1l /Il (cf. Bauer (1963)).
Moreover, k(4) and k(4~!) are upper bounds on the condition numbers for the error
and the residual, respectively.

3. Gaussian Elimination With Column Pivoting. Error bounds are given and nu-
merical stability is discussed for Gaussian elimination with column pivoting.

The remainder of this paper is limited to the consideration of fully a priori error
bounds in terms of the problem data 4 and b. Thus, for example, the factor for the
growth of elements in the elimination is undesirable because it depends in a very com-
plicated way on the data and inappropriate because it depends on the details of the
floating-point arithmetic. The bounds we seek are generally not computationally use-
ful because they are realistic only for the worst case errors which may be many orders
of magnitude greater than the typical errors. Nevertheless, such bounds seem to pro-
vide useful theoretical information, particularly for the purpose of comparing the stabil-
ity of different algorithms.

Expressions for roundoff error bounds tend to be quite complicated, and the
amount of detail can be overwhelming. Moreover, such bounds are often extremely pes-
simistic, and so it would seem appropriate to suppress some of the less relevant detail. We
choose to conceal somewhat the specific functional dependence of various quantities
on n. To accomplish this, we introduce symbols Cy, ¢,, C,, c3, ¢4, €5, Cg, . . . , tO
represent positive quantities which are bounded above by functions of n only. The
lower and upper case symbols represent scalars and matrices, respectively. These sym-
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bols are all defined in paragraphs with the heading “Note,” which the reader is encour-
aged to skip over. The reasons for providing these definitions are to establish the cor-
rectness of the results and to enable the interested reader to construct more detailed
error bounds. There are two justifications for suppressing the functional dependence
on n. The practical reason is that the function-of#: part of the error bound is the fac-
tor which is most unrealistic for typical cases. For example, the error bound for
Gaussian elimination with partial pivoting contains the factor 2", and this bound is
attained by examples like that of Wilkinson (1963). Nevertheless, it is observed (For-
sythe, Malcolm, and Moler (1977, p. 46)) that in practice the error is bounded inde-
pendently of n with rare exceptions; and for this reason most authors avoid stating
explicit a priori bounds for partial pivoting. The theoretical reason is that the stability
concepts of roundoff analysis require the existence of bounds which do not depend on
A and b but may depend on n. (Each value of n corresponds to a different function
A, b) = A™'b.) Thus, knowledge of the dependence on A and b is crucial to estab-
lishing stability results, but dependence on 7 is irrelevant.

The basic result, shown in Skeel (1979), upon which our error analysis depends,
is that Gaussian elimination with column pivoting determines an approximation X to
x = A”'b which satisfies

A% — bl <uC,|AllxI

for some nonnegative matrix C, depending only on n. In fact, C; is a lower triangu-
lar matrix with its rows permuted, and I1C, I, < [19-2""2 — n — 8]€*" under cer-
tain assumptions on the minor details of the computation. This bound also holds for
complete pivoting with a much smaller value for C;. The same would be true for a
column pivoting algorithm which monitors the element growth and switches to com-
plete pivoting if the growth factor exceeds some predetermined threshold value.

The error bound is not quite an a priori bound because it contains the computed
quantity x. This can be eliminated by writing

l4% - bl <uC,1Allx + 471(4% - b)|

<uC, 14l Ix] + uC, 14114711145 — b|
and solving for 14x — bl to get

(3.1) 1A% - bl <uC,1Allx],

assuming that ¢, uk(4™') < %.
Note. The quantities
¢, =l ll, ¢, =@~-uC 14114711y 'c,
are bounded above by functions of » only.

Backward error bounds for Gaussian elimination follow from Theorems 2.1,

2.2, and 2.3. For example, the following stability bounds for Gaussian elimination
can be obtained:

elll4l1x!

n < ¢,u max
! Al 1xI

ou?),
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wheree = (1,1,..., )T

b

LA NI4T ) I

R 2 E
n <c,u+0W), 7 <cu —
1 AT Al

ou?).
Hence partial pivoting is R-stable, which is consistent with the observation of Forsythe,
Malcolm, and Moler (1977) that “It is probably the single most important fact which
people concerned with matrix computations have learned in the past 15 or 20 years:
Gaussian elimination with partial pivoting is guaranteed to produce small residuals.”
However, examples exist (Hamming (1971), p. 120)) showing that partial pivoting is
not E-stable (and, therefore, not stable), although Skeel (1979) shows that the quanti-
ties
elllAllx!ll IA7TN 1A X!l

ol x) = max = A ) =
can be reduced to unity by the use of an appropriate scaling of the rows in conjunc-
tion with partial pivoting. Thus, 6(4, x) and 7(4, x) are measures of ill-scaling for
the system of equations. The proper scaling, however, cannot be determined efficient-
ly, and it is the purpose of this paper to show that iterative refinement eliminates the
effects of poor scaling, thus making Gaussian elimination numerically stable.

4. Error Bounds. We obtain bounds on the residual and the error for each ite-
ration of iterative refinement in terms of 4, b, u and anonymous quantities bounded
above by functions of n only. (Very detailed bounds are given in Skeel (1977).)
Both single and double precision accumulation of the residuals are considered.

Iterative refinement is defined as follows, where subscripts denote iterates rather
than components of vectors:

x, = value of A71b computed by column pivoting,

form=1,2,...,

r,, = computed value of Ax,, — b,

d_ = value of A~ r

' \» computed by column pivoting,
X1 =X = dpy.

It is also convenient to define
X, =0, ry ==b, d,=-Xx,.

The residual r,,, is to be computed with the subtraction performed last. For s.p.ra.
the computation is done in single precision and for d.p.r.a. the computation is done
in double precision followed by a conversion of the result to single precision. It is
assumed that the relative roundoff error of double precision arithmetic is bounded
by u? and that the relative error of conversion is bounded by u.

It is quite easy to show that Gaussian elimination followed by one refinement
in single precision is a stable algorithm according to our definition of stability. First,
the computed solution x, satisfies Ax; = b + g,, where g, = O(1). Second, the
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computed residual
r,=Ax, -b+f, =g t+f,

where
If,| <nuldllx, | + uldx, — bl + O@?) = nuldllx| + o?).
Third, the computed error d, satisfies
l4d, —r | <uC,l14lld;| = 0@w?),
and hence,
Ad, =gy + f; +O0@?).

Fourth, the refined solution
X, =x, —d,; +h,,

where |, | <ulx, —d,| =ulx| + O@?). Thus,

Ax, —b=—f, + Ahy + O@?) and |dx, - bl <(n + Duldllx] + 0@?),

which together with 141 1x,| = 141lx| + O(x) implies stability according to Theorem
2.1. Miller and Wrathall (1979) note that this result is true even without pivoting, but
Miller (1977) suggests that it tells us much more about asymptotic notions of stability
than about Gaussian elimination. Therefore, we perform a more detailed analysis that
indicates the size of the stability threshold u(n).

The error analysis that follows is quite laborious, and there are three reasons for
this:

(i) generality. Results are obtained for any number of iterations with either
s.p.r.a. or d.p.r.a., and they are applicable to any of the three stability measures with
any absolute norm.

(ii) sharpness. The lemmas and Theorem 4.4 seem to give the best possible
bounds of the type we seek.

(iii) adaptability. The analysis is easily modified so that it applies to row pivot-
ing instead of column pivoting.

The reader may wish to skip to the discussion following Theorem 4.4.

Error bounds for an iterative process are usually obtained by bounding the
(m + Dth iterate of some quantity in terms of the mth iterate of this quantity. The
quantity which is selected for this purpose affects the sharpness of the results; a good
choice seems to be the exact residual of x,, — d,,, which we denote by q,, -

LEMMA 4.1. Define q,, ,, = A(x,, —d,,) — b. Then form =0, 1,2,...,
|q,,+,| <uCgldllx,, — x| + (nu + c;u?)IAl x| + uuC, 141147 A1 Ix],
assuming cluK(A“l) < %, where
_ u fors.pra.,
u=

u? fordp.ra
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Note. The quantities

A+ [ +w)” —1]1/u® —nju for s.p.r.a.,
= A +u)1 +u®»[Q +u?) -11/u*> -n fordpra.,

0 for s.p.ra.,
C4 =
1+u fordpra,
cs =n + (c3 + ¢ )u?/u,
Ce =Cy + (1 + csufu)( + uC,lAl1A™]),
C, = (n + cyu*/u)C,,

are bounded above by functions of »n only.
Proof. The computed residual

(4'1) rm=Axm_b+fm’

where

£, < (nu + cu»)Allx, | + (u + cyu?)lAx,, — bl

< (nu + cgu®)Allxl + cguldllx,, — x| +uld(x,, —x)I.

From (3.1) the computed error d,, satisfies
Ad,, -1, =g,, wherelg, |<uC,lAl147'r, |if c,uk(4™) < %.
Using (4.1) to eliminate 7, gives
Ax,, —d,,)-b=f, —&,, where lg, |<uC,lAl(lx,, —xI + 147'1If, 1),
whence
|Gy 41| <uCylAllx,, —x| + T +uC, 1411471 DIf,, 1,

from which the theorem follows. O
In the next lemma we obtain bounds on the residual and error for X,, 41 in
terms of q,,, , ;-

LEmMmMA 42. Form=0,1,2,...,
AR, 11 =0 < T +uldlla™ g, , | +uldllx]

and

X, 41 —xI <+ w47 g, ., +ulx].

Proof. The new iterate x,, ., =x,, —d,, +h,, ., where |n, 1<
ulx, —d,|. Equivalently x,, ., =A7'q,, ., +x +h,,, where |, 1<
uld™'q,, | + ulx|, from which the lemma follows. OJ
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Lemma 43. Form=0,1,2,...,
14y, 1| < CgLATLAT 1Y uC, o141 Ix] + gl Al lx] + u2C, | A1 Ix]
+C, 1 A1LA 1Al Ix],
assuming cgux(A™") < 1.

Note. The quantities

Cy = (1 +u)Cy,
cg = ICgll,
Cy =Cg + ¢4,

Cio = Ce + (nufu + cqu)l +uC, 14114711,

Cyy = —uCglAlla™ 1y 1C,,

Cy, = (I —uCglAllA™ 1y (nCy + C;),
are bounded above by functions of » only.

Proof. Substituting the second inequality of Lemma 4.2 into that of Lemma
4.1 yields

g, 41| <uCqylAllA7111g, | + nilAl x| +u2CylAlIx| +uuC, 14114711141 xI,

assuming cluK(A_l) < %. The proof is completed by induction on m. The lemma
is true for m = 0 because of Lemma 4.1. Assume it is true for m. Then it is also
true for m + 1 because of the above bound on lg,, | in terms of lg,,|. O

THEOREM 44. Form=0,1,2,...,

LA, 41 =X < Cp3uCglANAT Y uC, (141 Ix]
+ @+ mu)lAllx] +uCp 4141 1x]
+uuC, 514114711141 1x|

and

Ix,, .1 —xI < 147 @Cg 141147 Y uC g 1A1Ix] + ulx|
+nulA7 Al x] +u?14781C, 141 1x]
+uulA711C glal a7 1Al Ix],

assuming csuK(A"l) < %.

Note. The quantities
Cy3 =1+uldlla™|,

Cia =C13Cyy,
C,s =nl+C;C,,
Cie = +u)C,,,

Cyq = (muafu)l +(1 +u)Cy,,

are bounded above by functions of » only.
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Proof. Follows from substituting the inequality of Lemma 4.3 into those of
Lemma 4.2. O

We note that iterating until convergence yields a qualitatively better error bound
than performing a fixed number of iterations because for any fixed value of m the
“iteration error” (or ‘“‘convergence error’’) term cannot be absorbed into any of the
other terms. This is true for both s.p.r.a. and d.p.r.a. Also, the error bounds indicate
that convergence comes more quickly for s.p.r.a. than for d.p.r.a., which is not surpris-
ing.

From Section 3 and Theorem 4.4 we get the following bounds for the norm of
the residual:

ldx, — bl < c ull4llx!l,

lim IAx,, —bl < (n + Dull4llxIl + ¢, gu? 11411471114l x| for s.p.ra.,

m—>oo

and

lim I4x,, = bl <(u + cyqu®)l1AllxII for d.p.ra.,

m—>oo

provided that csuK(A"l) < %. For the norm of the error we get the bounds

lx, —xl <cyulA™ IN1AlxI,

lim lx,, =xI <nullA7 AT + ullx]

m—>oo

+ c,“u2 NA7TNNIANA7 Al for s.p.r.a.,
and

tim llx,, —xI <ullxl + ¢,,u®> 14" WI1A411x! I for d.pra.,

m—>o
provided that cguk(4™!) < %.
Note. The quantities

c, =G, 1,
c1o = 1C  1A1IxIN/N1ANIAT AL X + IC
Cho = Il + Cpy +uC, 1A11A7I,
¢y = 1C 5 1Al I/ITATIAT AL + 1C g,
Cyp = Inl + Cyy +uC glAI1A7TII,

157

are bounded above by functions of » only.

Remark. From Theorems 4.1 and 3.1 of Jankowski and Wozniakowski (1977)
one obtains the following results: Consider a linear equation solver which determines
a solution x satisfying

Ix —xI < c,zu cond(4)llxl,

assuming that the ¢,;u cond(4) < %, where cond(4) = 147 Il 141l. The use of iter-
ative refinement with this linear equation solver yields iterates x,, , ,, m = 1,2, ...,
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for which the residual norm

(caqu + cysu? cond?(A)) AN IxI  for s.p.ra.,

l4x,, ., — bl <
cyeullANlxIl for d.p.ra.

and the error norm

Ix,, ., — %I <ulxll + ¢, ,u cond(A)lxll + ¢, g(cyou cond(4))” * Ixll

provided that ¢,qu cond(4) < }%. The principal way in which these bounds differ
from the ones following Theorem 4.4 is the use of norms in place of absolute values.
Another significant difference is the term czsuzcond2(A) instead of ¢, gu*k(4™") in
the bound on the residual norm, which is due to different assumptions on the accura-
cy of the linear equation solver.

5. Backward Error Bounds. We establish the numerical stability of Gaussian
elimination with iterative refinement by suitably bounding the backward error 7.
Similar bounds on nR and nf can be obtained by substituting the bounds of Theorem
4.4 into those of Theorems 2.2 and 2.3. The best possible bounds of the type we are
seeking lead to monstrous expressions that are difficult to interpret. Thus, we com-

promise by using only the quantity k(4~') and the quantity

4 el lAllx!

04, x) =max —————
(W x) = max =l

which was introduced at the end of Section 3 as a measure of bad scaling for column
pivoting. For example, the quantity

lATA7 AL X
A1 lx]

is replaced by k(47!)o(4, x) even though this may be a severe overestimate.-

max

THEOREM 5.1. Form=0,1,2,...,
i1 S C3ulcgu(Ad™1))"o(A4, x) + u + nu
+ c33u%0(4, x) + c3uux(A)o(A4, x),

assuming that
¢) gulcguk(A™)) k(A7 )o(A, X) + cqur(d™") + c5, (4™ )o(4, ) < %.
Note. The quantities
c30 = IC;51IC 1,
c14 = IC 41,
¢y = IC 4,
c16 = IC 6,
c3y =n+ @mlC ;I +ulCglik(d™),
3, = 2[cz0 + (u + ni)e, k(A1)
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¢33 =2[cya +l(u + nu)/(uo(4, x))],
C34 = 2[c; s + (u + nu)/ul,
are bounded above by functions of n only.
Proof. 1t follows from Theorem 2.2 that

- lA(x,, +, — x) . lAlx, ., —xI
M1 =\ X Al Il :

Theorem 4.4 yields the bound

|A(e -x)l _
max -(—I'"Aﬁ—l—l < cyqu(cguk(A™1))" o(4, x) + u + nu
x

+ ¢, 4u%0(4, x) + ¢, suux(A~1)o(4, x)
and the bound
lAllx, ., —xI
max -|A"'—|’;1|— < ¢, gulcguk(A~1))" k(A" )o(4, x)
X
+u + ¢y uk(A7M)o(4, x),

from which the theorem follows. [
Without any iterations of iterative refinement we have

Ny < c35u0(d, x) if c36k(A™1)o(4, x) < %,
but for one iteration with s.p.r.a.
ny, S(n + Du + c3,u*k(A7 )04, x)  if c3gur(A)o(4, x) < %.

Hence, just one iteration of iterative refinement with just single precision accumula-
tion of the residuals is enough to make Gaussian elimination stable. This may seem
to contradict the usual advice [Forsythe and Moler (1967), p. 49] that “It is absolute-
ly essential that this residual 7, be computed with a higher precision than that of the
rest of the computation.” Actually, there is little conflict because it has been shown
that poorly scaled systems may be solved with an effective precision of much less
than single precision. However, the restriction cux(4~!)a(4, x) < % indicates that a
big reduction in the backward error may not be realized for badly scaled problems
which are very ill-conditioned unless the precision is high enough.
Note. The quantities
€35 = C3, + 1 +nufu + cy3u + cyux(A™r),
C36 = €16 T C3/0(A, x) + c5,ufu,
€37 = €35¢5 + C33/K(AT") + c34ufu,
are bounded above by functions of n only.
For iteration until convergence with d.p.r.a.

lim n,, <u +c;gu’0(d, %) if cguk(d™') + c3uvk(A oA, x) < %.

m-—»oco
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This is a significant improvement over the single precision case due to the relaxation
of the restriction on the size of k(4~1) and o(4, x). This is an important advantage
for problems which are both poorly scaled and ill-conditioned.

Note. The quantities
c3g = njo(4, x) + ¢35 + c34uk(471),
€30 =Ve31/2,

are bounded above by functions of » only.

6. Gaussian Elimination with Row Pivoting. Sections 3, 4, and 5 consider the
use of column pivoting; this section considers instead row pivoting and complete pivot-
ing.

Here the basic result, shown in Skeel (1979), upon which our error analysis de-
pends, is that the solution x computed by row pivoting satisfies

4% ~ bl <uldlCy, IZI.

Straightforward modifications of the results for column pivoting yield corresponding
results for row pivoting. For example, Theorem 4.4 holds for row pivoting if

lA1Cy 4 is substituted for every occurrence of CI.IA| and k(4) for k(A~1). Without
iterative refinement we obtain the following stability bounds:

_ Alebel o
u max ————— u?),
TS s X ]
ANl

<co u —— + 0?),

" S5 14l Ix! 0 @)
-1

7 Segu AL |

AT AN

What is most interesting about these bounds is that it seems that row pivoting
is not R-stable. To see that this is actually true, consider

oo o] =)
A= and b= .
3x10Y 0 0

Using rounded #-digit decimal arithmetic, the computed solution is

. 33---3x107"
x = .
333
For the maximum norm the backward error
ldx — bl
=
IAllxil,,
which is an arbitrarily large multiple of the unit roundoff error u = % x 10' ™.
Concerning stability or E-stability, either column or row pivoting could be arbi-

trarily better than the other. Nevertheless, it is interesting that the error bounds for
row pivoting contain the quantity x(4), which also arises in the bounds for nF given

+0(1072%) = 10" x 107* + 0(107%7),
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in Theorem 2.3; whereas, the error bounds for column pivoting contain k(4™1),
which can be arbitrarily different from x(4). For example, for
1 M

A=
1 M+1

Ko(A™1) = 4M + 3 while k (4) = 2M? + 4M + 1.

Row pivoting (like column pivoting) can be made stable by an appropriate
scaling of the columns; but because the proper scaling cannot be determined efficient-
ly, iterative refinement could be useful for eliminating the effects of the poor scaling.

Complete pivoting is both column and row pivoting, and it satisfies the error
bounds of both. Hence, the convergence of iterative refinement for complete pivot-
ing requires only that either csuK(A_l) < % or c5guk(A) < %. The example just
given shows that this requirement is much less restrictive than the convergence condi-
tion for either type of partial pivoting.
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