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Analysis of Convergence of the 7-Transformation
for Power Series

By Avram Sidi

Abstract. Recently the present author has given some convergence theorems of gen-
eral nature for Levin’s nonlinear sequence transformations. In this work these theo-
rems are extended and sharpened to cover the case of power series, both inside and
on their circle of convergence. It is shown that one of the two limiting processes
considered in the previous work can be used for analytic continuation and a realis-
tic estimate of its rate of convergence is given. Three illustrative examples are also
appended.

1. Introduction and Review of Recent Results. In a recent paper, Sidi (1979),
(from here on denoted as (%)) a partial study of the convergence properties of the non-
linear sequence transformations due to Levin (1973), namely the T-transformations,
has been given. The purpose of the present work is to extend the results given in (%)
to cover the case of power series (and Fourier series), and also to improve upon them.
Since we shall be using the notation of (*) and its results, we shall give here its nota-
tion and, when needed, those results that are relevant to the present work.

Let the sequence 4 ,» r=1,2,...,be a convergent infinite sequence whose
limit we denote by A. Ty > the approximation to 4, and the constants v,, i = 0, 1,

. » k — 1, are defined as the solution of the k + 1 linear equations

k=1 .
.1 A,= k,n+Rr,Z v/r, r=mnntl,....,ntk
i=0

where R, are preassigned numbers related to the sequence in consideration; see Levin
(1973). Equations (1.1) have a simple solution for Ty, which is given by, see Levin
(1973),

o Zimo CVQXe + ) Ry
(12) B Do CGNn + TR,

(1.2) can also be written in a more compact and revealing form as, see (*),

13) A*(n*14,/R,)
. kon = AR,

where A is the forward difference operator operating on n. Once Ty, , has been
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834 AVRAM SIDI

computed, the y; can be computed recursively from, see Theorem 5.1 in (%),
i . . .
(14) ¥ A*@*+) = A¥[p**4, - T, JIR,], i=0,1,...,k—1,
=0

in this order. Note that A¥ on the right-hand side of (1.4) does not operate on the
index n of T} .

We now define two limiting processes for T ,;

(1) k is held fixed, n —> oo (Process I),

(2) n is held fixed, ¥k — oo (Process II).

In the analysis given in (*) it is assumed that the members of the sequence {4,}
satisfy

(1.5) A, =A+RfN, r=12...,

where f(x), as a function of the continuous variable x, is defined for all x = 1, in-
cluding x = oo, and as x — o, has a Poincaré-type asymptotic expansion in inverse
powers of x, given by

(1.6) fox) ~ i Bi/x', By #O.
i=0

(For Process 11 it is also assumed that f(x) is an infinitely differentiable function of x
for all x > 1 including x = o°.)

Remark 1. If the sequence 4, has the above property, then for Process II, which
is the more effective of the two processes, T , converges to A extremely quickly, as
various computations in the literature show. If, on the other hand, the sequence does
not possess the above property, then no meaningful results can be expected from T,
as computations have shown. Therefore, the property above seems to be necessary for
T to work at all.

Remark 2. As can be seen easily, if (1.5) and (1.6) are satisfied, then we can
express (1.5) in the form

1.7 A, =A+Rf(r), r=12,...,

where 13; = R, g(r), and g(x), as a function of the continuous variable x, as x — oo,
has a Poincaré-type asymptotic expansion in inverse powers of x like that of f(x) with
lim_, g(x) # 0. Therefore, ?(x) = f(x)/g(x) has the same properties as f(x). Thus,
by Remark 1, the R, in (1.2) can be replaced by ﬁr without affecting T} ,, numerically
very much.

The observations in Remarks 1 and 2 have been very useful in the derivation of
some new numerical quadrature formulas for integrals with algebraic and logarithmic
endpoint singularities, which have strong convergence properties. For details see Sidi
(1980).

The plan of this paper is as follows: In Section 2 it is shown that for some
power series with finite radius of convergence (1.5) and (1.6) hold. Furthermore, the
results of (*) are extended to cover the case of some divergent sequences. In Section
3 Process I is analyzed for the power series considered in Section 2 and convergence
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theorems for it are proved. In Section 4 a new approach to Process II is presented,
which makes the analysis of this process more amenable. Using this approach, we
prove some useful convergence theorems that show, to some extent, the mechanism
by which Process II works in some cases including that of power series considered in
Section 2, both inside and outside their circle of convergence. The results of Sections
2, 3 and 4 are illustrated with three interesting examples in Section 5.

2. Asymptotic Expansions for Remainders of Some Power Series and Extension
of Some Previous Results. Our purpose here is to show, with the help of Theorem
6.1 in (%), under what conditions Levin’s transformations can be applied to power
series. We begin by recalling Theorem 6.1 of (*), which is a special case of a more
general theorem given by Levin and Sidi (1975), for future reference.

THEOREM 2.1 (SEE THEOREM 6.1 OF (¥)). Let the sequence A, = Z, _, a,,,
r=1,2,..., be such that the terms a, satisfy a linear first-order homogeneous dif-
ference equation of the form

2.1) a,=p(rla,, r=1,2,...,

where p(x), considered as a function of the continuous variable x, as x — <o, has a
Poincaré-type asymptotic expansion in inverse powers of x, of the form

2.2) p(x) ~ xT(po + p]/x + p2/x2 +--), Py #0,

for 7 an integer <1. Let lim,_, A, = A, A finite. Assume

(23) lim p(a, = 0,
proo
and
(24) p#1, 1=-1,1,2,3,...,
where p = lim,_, .p(x)/x. Then A —A,_,, as r — o, has an asymptotic expansion
of the form
2.5) A-A, = mi:ram ~ay By + By/r + By + ).

Furthermore, from the constructive proof of this theorem it follows that B;, =
=pol@ + 1) #0.
If we now subtract a, from both sides of (2.5) and rearrange, we obtain

(2.6) A, ~A+arBy+Bfr+B,/rr+--"),
where
-B; ifi#r,
2.7 B; = , i=0,1,2,....
-B;+1 ifi=r,

Remark 1. It follows from (2.6), (1.5) and (1.6) that a very natural way to
choose R, is by letting R, = a"; see Levin (1973).
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It turns out that there is a large class of infinite power series satisfying the con-
ditions of Theorem 2.1, as the following theorem shows.

THEOREM 2.2. LetA, =2, _, a,, r=1,2,...,and suppose a, is of the
form

2.8) a, =z""w(r),

r

where z is a complex parameter, z € D C C, and w(x), as a function of the continuous
variable x, as x — %o, has a Poincaré-type asymptotic expansion of the form

29) wx) ~ x%(Wo + wy/x +wy/x2 +--0), wy #0.

Then all the conditions of Theorem 2.1 are satisfied simultaneously for (1) D = {zllz|
<1} withany a,( 2) D ={zl1zI <1,z # 1} with« <0,and (3) D = {zllzI < 1}
with a < — 1. Hence an asymptotic expansion of the form (2.6) exists.

Remark 2. The infinite series £, a, = Z;_, w(r)z"™
function F(z) in the open disc Izl < 1. The point z = 1 is usually a point of singular-
ity of this function, a branch point or a pole, while other points on the unit circle are
regular points.

Proof. As can be easily seen from (2.8) and (2.9), the radius of convergence of
the infinite series 7, @, is 1 for all values of «, which explains (1). The conver-
gence of the infinite series on the unit circle with the exception of z = 1 explains (2).
The convergence of the infinite series everywhere on the unit circle explains (3).
Hence (1), (2), (3) guarantee the convergence of 4, for the specified ranges of z.

Now the terms a, satisfy a difference equation of the form (2.1), where p(r) is
simply

! represents an analytic

(2‘10) p(r) = (ar+1/ar - 1)_15

therefore, 1/p(x) = zw(x + 1)/w(x) — 1. Now 1/p(x), as x — oo, has a Poincaré-

type asymptotic expansion which can be shown to be

(2.11) 1p(x) = (z — 1) + az/x + O(x72).

Hence p(x), as x — oo, has a Poincaré-type asymptotic expansion which is given by
1z - 1) - [ez/z - 1)?]/x + O("2), z#1,
x/a + 0Q1), z=1.

From (2.12) it follows that 7 = 0, hence p = 0, whenever z # 1 and 7 = 1 with p =
1/a for z = 1, where p and 7 have been defined in Theorem 2.1. Using these last re-
sults it is easy to verify that (2.3) and (2.4) are satisfied. This completes the proof
of the theorem.

If we now choose R,, as explained in the remark following Theorem 2.1, then
we have

(2.13) R, =2z""¢g0),
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where g(r) = w(r)r". Considered as a function of the continuous variable x, as
x —> oo, g(x) has a Poincaré-type asymptotic expansion of the form

(2.19) gx) ~ x*tT(wy + wy x +wy/x2 4+ 1),
We note that for this case R, can also be taken as
(2.15) R, = z’_1r°‘+7,

which is the dominant term of 4, — F(z) as r becomes large, in accordance with Re-
mark 2 in Section 1. In the derivation of the new numerical quadrature formulas in
Sidi (1980), the R, used are of the form given in (2.15) and not (2.13).

Remark 3. When the T-transformation is applied to a power series, Ty, ,, turns
out to be a rational function

In many cases the relation

(2.16) A, =F@E) +Rf(r)

together with (1.6), whose existence, whenever lim,,_,,,Ar exists, has been proved
above, can be continued analytically to the unit circle and its exterior. (Examples of
this will be given later.) That is, in some cases (2.16) is valid even when lim
does not exist. (We recall that in Theorem 2.1 we assumed the existence of
lim, . A4,.)

In view of the remark above, we now extend Theorems 3.1 and 3.2 in (*) to

r—>°°Ar

cover also the case of some nonconvergent sequences as follows:

THEOREM 2.3. Let the sequence A, r =1, 2, ..., (convergent or not) satisfy
(1.5), where f(x) is as explained in Section 1 and satisfies (1.6). If, in addition, R, =
O(n®) for some o as n — o, and, for k > a, k fixed,

sup |A¥((=1)"n*"1/IR 1)/ A¥(n* 71 /R )] < oo,
n
then Tk,n — A4 asn— oo, actually Tk,n -4 = O(n_k+°‘).

This theorem extends Corollary 2 of Theorem 3.1 in (%), and its proof is similar
to that given in (x).

THEOREM 24. Let the sequence A,, r = 1,2, ..., (convergent or not), f(x),
and R,, be as in Theorem 2.3 and assume that f(x) is infinitely differentiable for all
x 2 n, including x = o If, for n fixed,

supl A¥((=1)"n*"1/IR,, 1)/ A¥(n*~1 /R )| < o,
k

then Ty , — A as k — > actually T, , — A = o(k™™) for any X = 0.

This theorem extends Corollary 2 of Theorem 3.2 in (%), and its proof is similar
to that given in (x). ‘

As in (*), these last theorems can be applied immediately to oscillatory se-
quences for which R R, , <0,r=1,2,...,since for these sequences
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[A*(=1)"n* "2 /IR, | YA (¥R ) = 1,
see (), giving us an extension of Theorem 4.1 in (*).

THEOREM 2.5. Let the sequence A,, r = 1,2, . . ., (convergent or not), f(x),
and R, be as described in Theorem 2.3 and assume R R, , <0,r=1,2,....
Then when k > o, k fixed, Ty , —A = O(m **%) as n — o= If in addition f(x) is
infinitely differentiable as described in Theorem 2.4, then, for n fixed, T , — A4 =
o(k™™) as k — oo for any \ = 0.

The above theorems can now be applied to the power series that have been con-
sidered in Theorem 2.2 and the remark following it, inside and on the circle of con-
vengence. Especially when z = —1, Theorem 2.5 can be applied to the partial sums of
the infinite series Z,_, (—1Y"'w(m), where w(m) > 0 for all m and w(x) is as in
(2.9).

Although the results of Theorems 2.3—2.5 are stronger than their predecessors
given in (), they are still not the best, due to their general nature. In the next sec-
tions, we shall improve on them by making certain (realistic) assumptions about the
sequences to which Levin’s transformations are applied.

3. Application of Process I to Power Series and Fourier Series. The purpose of
this section is to extend Theorems 4.2 and 5.2 of (), which were stated and proved
for some monotone sequences, to cover the case of infinite power series such as those
that we have considered in the previous section, inside and on the unit circle, taking
into account Remark 2 in Section 2. Our new results will be stated in slightly more
general terms. They seem to be the best that one can obtain under the given condi-
tions.

THEOREM 3.1. Let the sequence A,, r = 1,2, . . ., (convergent or divergent)
depending on the complex parameter z, satisfy

3.1) A, = F(2) + R, f(r),

where F(z) is a function depending on z such that lim,_, A, = F(z) whenever this
limit exists, and

(32) R, =z""g(n),

where g(x), as a function of the continuous variable x, when z # 1 has a Poincaré-
type asymptotic expansion of the form

(33) g~ T a5, gy #0,
i=0

and f(x), considered as a function of the continuous variable x, has a Poincaré-type
asymptotic expansion of the form (1.6) with the same notation. Let Ty, n be as given
in (1.3). Then, when z # 1,

(34) Ty, —F@) = 2" U2kt D + O(m™Y)] asn—> oo
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where
(3.5) D = poBik!(1 = 1/z) 7.

Proof. Equation (3.6) in (*) reads
A [nk1 wi(n)]

3.6 _ - ,
(3.6) Ty n F(z) Ak(nk"'l/Rn)
where
k-1
@) W) = f&) = X B/
i=0

Now w, (x) = B/x* + O("¥71) as x — oo, therefore x* " w, (x) = B, /x + O(x~?)
as x — oo, consequently A¥[n* 1w, (n)] = O(n™*"') as n —> oo. Using the fact that
(3.8) Afn ™l = —1FKY[n(m + 1) - - - (n + K)],

which can easily be proved by induction, we can actually write for the numerator of
(3.6)

B9) A lw )] = CIFRURRB, + O] asn— .

As for the denominator of (3.6) we proceed as follows: since g(x) has a Poincaré-
type asymptotic expansion, so does 1/g(x) and its asymptotic expansion is given by

oo

(3.10) gx)~ 3 ex®! asx —> oo,

i=0
where €, = 1/p,. We now need the asymptotic behavior of A¥(z™"n®) as n —> oo,
First of all we have

k(,— x ik ;
(3.11) A*(z™"n®) = Z (—l)k—l <]> (n + )z,
j=0

which, as n — oo, can be shown to behave like
L3 Ar\ _;
A¥E "y = | 3 1)FT i 77 [z7"n*[1 + O(n™ )]
j=0

= (-1)*(1 - 1/2)kz7"n*[1 + O(n™1)].
Combining (3.10) and (3.12), we obtain for the denominator of (3.6)
Ak(nk—l/Rn) = AF [nk—lz—n+leon0(l + O(n_l))]
(3.13)
= DFA = 1/2)feqz " FInk o711 + O0(')] as n —> oo,

(3.12)

Substituting now (3.9) and (3.13) in (3.6) and using the fact that e, = 1/p,, we ob-
tain (3.4) together with (3.5), thus proving the theorem.

COROLLARY. If lzI <1,z #1, then Ty, n — F(z), as n —> oo, provided k is
chosen so that 2k + ¢ > 0. For |z > 1, however, T, , diverges as n — o, i.e., Pro-
cess I cannot be used for analytic continuation beyond the circle of convergence of
the inﬁni’te series considered in Section 2.
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Proof. The proof follows by observing that the right-hand side of (3.4) tends
to zero as n — oo for lzI <1,z # 1, only if 2k + ¢ > 0. For Izl > 1, however
Ty » — F(z) = O(z™) as n — oo, thus completing the proof.

Remark 1. (3.1), (3.2) and (3.3) imply that lim, , .4, = F(z) for (1) 1zI <1
for all g, and (2) |zI <1 for ¢ > 0. The corollary above tells us that T , — F(z)
asn — oo for all IzI <1, z # 1, no matter what o is, i.e., whether lim,_, 4, exists
or not, provided k is chosen large enough so that 2k + ¢ > 0.

Remark 2. Equation (3.4) tells us that for z # 1, whenever 4, converges to
F(z) as n — &, T} , converges to F(z) more quickly, in fact
T,  —F()

L g O(n™?*) asn—» oo,
A, —F(z)

Remark 3. From the expression for D, given in (3.5), we can see that problems
will arise as we approach z = 1. Indeed, there is a drastic fall in the rate of conver-
gence of T} ,, to F(z), as numerical experiments show. Also Theorem 4.2 in (*) shows
that, if lim,_, A4, = F(1) exists, we have
T, . — F(1)
A, - FQ1)

(3.14)

(3.15) =0(n%) asn— o,

as opposed to (3.14).

Going back to 4, = I, _, w(m)z™~", where w(x) is as described in the pre-
vious section, we can see that, on Izl =1, A, is a partial sum of the complex Fourier
series T _ | w(m)e'm=1)8  where we have put z = ¢/®. Hence Theorems 2.2 and
3.1 cover the case of the complex Fourier series, whose coefficients w(m) are as de-
scribed in Section 2.

THEOREM 3.2. Let the sequence A, r = 1,2, ..., satisfy all the conditions of
Theorem 3.1 with the notation therein and let v, i =0,1,...,k—1,beas in (1.1).
Then, for z #+ 1, we have
(3.16) Y= B; = 0@ **) asn— oo,

Proof. The proof of (3.16) proceeds along the same lines as that of Theorem
5.2 in (*). Equation (5.6) in (%) reads

[FG) - Ty, ,] A¥(*H/R,) + A* [n*+iRn)]

(317 ,. |
=i§> yA*@ i, i=0,1,... k-1
Now A¥@m**¥/R ) = z7"*10(n***?) as n — oo, which can be proved in a way simi-
n

lar to that in Theorem 3.1. Also F(z) = T} , = 2" 10(@m 2%¥79) as n — o which
follows from (3.4). Therefore, the first term on the left-hand side of (3.17) is just

(3.18) [Fi2) - T, ] A***YR,) = O *T) asn —> o,

Once this has been established the rest of the proof is exactly the same as that of
Theorem 5.2 in (%), therefore we shall omit it.
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We note that Theorem 5.2 in (*) covers the case z = 1 and for this case too
v, =B, =0@**),i=0,..., k-1

4. Another Approach to the Analysis of Levin’s Transformations. In Theorem
2.4 it was assumed that the sequence 4, r = 1, 2, . . . , (convergent or not) satisfies
(1.5), where f(x), as a function of the continuous variable x, is defined and is infinite-
ly differentiable for all x > 1, including x = oo, and has a Poincaré-type asymptotic
expansion of the form (1.6). We shall now assume further that f(x)/x = f(x) is the
Laplace transform of a function ¢(), which is an infinitely differentiable function of
tfor0 <t<o,ie.,

@1) f) = LIy x] = [, e o)t

Then, using Watson’s lemma, see Olver (1974, p. 71), we have

4.2) o)~ X ¢DO)x'*! asx —> oo,
i=0
where we immediately identify ¢®)(0) as B;- (Examples of this will be given in Sec-
tion 5.)
Equation (3.7) in (*) reads
A*[r*1 )]

4.3 T, —A= ,
@3 fon A*(n*"R,)

which, in view of the assumptions above, can be expressed as

A¥ [n¥f ()]
@4 Tk,n —-A= -AT(nT_T/R_n;

Now, from the theory of the Laplace transform we have, see Sneddon (1972, p. 147),
- m—1 .
(43 LI#@s x] =x"f@) = X ¢ TTDOK
i=0

Letting x = n, m = k, and applying the operator A¥ to both sides of (4.5) and using
the fact that A¥p(n) = 0, when p(n) is a polynomial in n of degree at most k — 1, we
obtain

@6)  A¥[nFf@)] = A*(L[6®P@); ]} = A"[f N e‘"'¢"‘>(r)dz].

Since the operator A* operates only on n and since

@.7) Ak = e (et - 1),

we can express (4.6) in the form

(4.8) A [*f)] = [ e - 1) ¢t

We have therefore proved the following
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THEOREM 4.1. Let the sequence A, r =1, 2, . . ., (convergent or not) be as
described in the first paragraph of this section. Then
@9) T, A= L[(e"A’k- lk)":p""(t); nl
’ (n*"'/R,)
If Eq. (4.9) is used in the analysis of Process I (k fixed, n — ), it seems that
one can obtain only those results that were given previously, so that there is not much

to be gained from (4.9), as far as Process I is concerned.

As for Process II (n fixed, k — oo), which is the more effective of the two pro-
cesses, yet the more difficult to analyze, Theorem (4.1) does seem to represent a
breakthrough. Of course, eventually one has to analyze the asymptotic behavior of
LI(e™* - 1)¥¢¥)(¢); n] and of A¥(n*"!/R,) as k —> oo, which is not an easy task in
general. The following results and the examples in the next section do, however, give
an indication about the mechanism by which Process II works and why it works so
efficiently.

LEMMA 4.1. Let ¢(¢) be analytic and uniformly bounded in the half strip S(u)
={&lRe £ = —u, |Im &l <u}, for some u > 0. Then

4.10) L[t = D*oU@); nll < MmEN [ a(n + 1) - - - (n + K)],
where M is the uniform bound of ¢(%) in S@); i.e., |p(E)l <M for £ € S(u).

Proof. Since ¢(§) is analytic in S(u), we can write, using Cauchy’s formulas,

m m! &)
@11) KO = i g %

where ¢t € [0, ). Taking the modulus of both sides of (4.11) and using the assump-
tion of uniform boundedness, we obtain

4.12) 160™)(8)) < Mm!fu™*1.

Making use of (4.12), we therefore have

@13)  IL[(e" - 14™@); n]| < Mmtu™* [ e - e a
But

J, et - e year = -1ykar <f: e—"fdt)

=EDRAK @) = k[ + 1) - - - (n + k)]

(4.14)

by (3.8). Substituting (4.14) in (4.13), (4.10) now follows.
COROLLARY. If m =k + p, where p is fixed, then

(4.15) L[~ = 1)*¢*+P)(1); n] | < MK!/(u¥k"~P),

for some constant M > O which is independent of k.

The proof of (4.15) follows easily from (4.10).
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We shall now apply Theorem 4.1 and the corollary of Lemma 4.1 to the power
series considered in Sections 2 and 3.

THEOREM 4.2. Let the sequence A, r=1,2,...,beasin Theorems 3.1and 4.1
and Lemma 4.1 with the notation therein. Then, for z real and negative and 1z| <
(ue)?,

(4.16) Tyn—F@) =0@ k" %) ask—> o0

at least, where q = uelz|™ > 1.

Proof. From the conditions above it is clear that (4.15) holds, therefore the nu-
merator of the expression on the right-hand side of (4.9) is at least O(k!'k "u %) as
k — oo. As for the denominator of this expression we proceed as follows: Since
g(m) satisfies (3.3), g(m) ~ pym™° as m —> = and has a fixed sign (that of p) for
m = m,, for some positive integer m,. Denoting

= (= j k nk—1 .
4.17) =y (j)(n+]) Fns

=

= (—1)"“(;‘)(11 + T T g 4 j),  j=0,1,2,...,k
we can write for the denominator
mo—1
(4.18) ’ -

k
IRl P '
j=0 =r3

Now since bi are all of the same sign for j = m,, and m,, is fixed, we can write

zk: bj| > Ibysejay | = <[k72]> <" + [g] >’H |zI=n=Tk/2] +1/g<n + [’E‘D

j=mg
= 0[k!(elzI™")¥k°2] as k —> oo,

which can be proved by using Stirling’s formula, k! ~ kke'k\/m as k — o, Essen-
tially, this is a O(k*)like behavior. The sum IZ7297" b1, on the other hand, can
grow at most like k”0(n + mo)" as k — oo as can readily be verified. Therefore,

k k
ZhIM XY
=0

j=mg
Combining these results for the numerator and denominator in (4.9), the result
follows.

Remark 1. By replacing (4.19) by

k
>y

j=mg

4.19)

~

(4.20)

as k — oo,

k
2 b

j=mg

m
4.19") > 1By gz s 70<a< 1,

we can show, by using the method above, that (4.16) holds with ¢ =
[&/(1 — @)] '~ *uelzI™*, provided z is chosen such that ¢ > 1. Now one can choose
« so as to make g as large as possible.

We now give a result that will be useful in dealing with monotonic sequences.
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THEOREM 4.3. Let the sequence A, r =1,2, ..., be as in Theorem 4.1 and
Lemma 4.1 with u > 1 and the notation therein, and with R, = r~%, for some a > 0.
Then

4.21) Tpn—A=0w "%y g5k — oo

Remark 2. Such a sequence is monotonic. If A, are the partial sums of the
power series considered in Theorem 2.2, then R, = r~* corresponds to the case z = 1

and for this case a finite limit exists, if « > 0. Otherwise the limit is infinite.
Proof. As in Theorem 4.2, the numerator of the expression on the right-hand

side of (4.9) is at least O(k!k ™u~*) as k — o=. Now the denominator of this ex-

pression becomes A¥(n***~1), From the calculus of finite differences we know

that, see Isaacson and Keller (1966, p. 262),

4.22) A*h(x) = h¥)(y) for some y € (x, x + k).

Therefore,
k=1

4.23) Akx% = [H (0- j)] y°7* for some y € (x, x + k).
j=0

Hence the denominator becomes
k+a-1)
(a-1)

(424)  AF@Fte ) = @=1 " for some m € (n, n + k).

Using Stirling’s approximation, we have (k + a — 1)! ~ Bk!k*~! as k —> oo, for
some B > 0 independent of k. Also m*~! > n®/(n + k). Combining all these results
in (4.9), (4.21) follows.

We now consider the v, in (1.1).

THEOREM 44. If the sequence A, r = 1,2, ... ,is as in Theorem 4.1, then

i O, — BA*@ T = [A- T, ,14*(**/R,)
j=0

(4.25) + L[ = 1)Fp*+i+ D (p); ],

Proof. Using (3.17), we just have to prove that

A¥[**ifn)] =L[(e™" - g+t D(p); n]
4.26) .
+ 3 BA*@* ), i=0,1,...,k-1.
j=0

This can be proved easily by using (4.5) with x =n and m = k + i + 1 and apply-
ing A to both sides, keeping in mind that A¥p(n) = 0 when p(n) is a polynomial
of degree at most k — 1 and that Bi =¢U0),j=0,1,....
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THEOREM 4.5. Let the sequence A,,r =1,2, ... , be as in Theorem 4.3
with the notation therein. Then, for fixed i,
@.27) Y~ B; = O@W ™ KP) as k —> oo,

where p; depends on n, o, and i.

Proof. We shall prove (4.27) by induction on i. For i = 0, (4.25) becomes

A*(n*/R ) + LI = 1)+ D(p); )

k! k!
Now [4 T, ] = 0@ * k™" **?) as k — . From (4.23) A*@n*/R,) =
A¥@** %) = m*(k + a)!/a! for some m € (n, n + k). Using Stirling’s formula, we
obtain Ak(n"/Rn) = O(k'k*%) as k — o=. Therefore, the first term on the right-
hand side of (4.28) is O ¥k "+t **2) as k —> . Using (4.15) in the corollary of
Lemma 4.1, we can see that the second term is O *k™"*1) as k — eo. Hence we
have shown that (4.27) holds for i = 0, with p, = —n + a + 2. Let us now assume
that (4.27) is true for i <m — 1. For i = m we have from (4.25),

(4.28) (70 - ﬂo) =[4- Tk,n]

AEE R, | LIET — DR () )

Tm =B = A -Ty,] k! k!

(4.29)
m—1 Ak(nk+i—j)
+ i§0 ('Yj - 6]) ! .
Using in (4.29) the same technique that was used in (4.28), we again have v,, — 6, =
O(u™*kPm) as k — oo, where p,, depends on n, o, and m. This proves the theorem.

In many interesting cases it can be shown that f(x) is a Laplace transform as in
(4.1) and that ¢(¢) satisfies the conditions of Lemma 4.1 so that (4.10) and hence
(4.15) hold. These points will be illustrated with three typical examples in the next
section.

Before closing this section, we note that Wimp (1977) has considered the prob-
lem of accelerating the convergence of some monotonic sequences of the form similar
to that considered in this sectidn, with R, = #~!. Wimp develops different transfor-
mations, in the form of linear summability methods, corresponding to different
L7(0, =) classes of the function ¢(#). (It is assumed that (1) ¢(r) € L, (0, =),

(2) $(¢) is locally integrable on (0, ), and (3) () (t)e¢c* € L,(0, ) for some € >0,
0 <c¢<1.) For finite s, for which

=1 g
;(X)‘=‘ Zl¢ (0)+0<L> as x —> oo,

= xi +1 x*

useful error bounds and rates of convergence are provided. For s = oo, which is the
case considered also in the present work and in (), though with stronger assump-
tions on ¢(#), Wimp’s method gives approximations which are very similar to T} ,
with R, = r"!. Actually Levin’s T-transformation for the sequence »
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A,r=12,...,withR, = ¥~ ! reduces to

k K\ (4 DF
Tin=2_ ("1)k+’<- _k,__An+i,

=0 J
whereas Wimp’s transformation for the sequence Bj, i=0,1,...,is
x Nk
= (k\ (e t))
B- § cop() €20
g ,-;, COG) T B

where Fk, k=0,1,...,is the sequence of approximations to B = limb,,,,Bj. As
is clear from above, for Wimp’s transformation Process I does not exist. For the case
§ = o Wimp gives bounds for B — Ek but makes no statement about convergence or
rate of convergence as kK —> oo, It seems that no such statement can be made, if no
new assumptions are made on ¢(¢), except its being an L: function.

With the assumptions that we have made on ¢(¢) in the complex &-plane, we
have been able to prove results on convergence and rates of convergence for the 7-
transformation with different types of R, and in particular with R, = r~1, which is
the case treated by Wimp. Theorems 4.3 and 4.5, only with slight changes in nota-
tion and proofs, apply to Wimp’s approximations B, too.

5. Examples. In this section we shall show, through three typical examples,
that the assumptions made in the previous sections are realistic and we shall especially
be concerned with the application of Process II to these examples, keeping in mind
the results of Section 4.

Example 1. A, =2, _, 2" m,r=1,2,.... This sequence satisfies the
conditions of Theorem 2.2 with @ = —1 in (2.7); therefore Theorem 2.2 applies to
it. Now lim,_, .4, = —(1/z) log(1 — z) = F(z), provided Iz| <1,z#1. z=11is
a branch point of F(z) and we put the branch cut along the real interval [1, o).

This being the case, Theorem 3.1 applies and T} , — F(z) = O(n2*¥=1)z" a5 n —> oo,

Taking z ¢ [1, ) and integrating both sides of the equality

;1) =Y M+

from s = 0 to s = z along a straight line in the s-plane, and dividing by z, we obtain

1z §
(5.2) F@)=4,+ ] T

ds.

Letting s = ze™¢ in the integral on the right-hand side of (5.2), the contour in the s-
plane is mapped to the positive real line in the &-plane, and (5.2) becomes

(53) Fiz)=A,+2" f: e —z) 1t

Defining R, = z"~ 1 /r, the rth term of the infinite series E;;= 1 Zm1 /m, as in the ¢-
transformation of Levin, we can express (5.3) in the form (1.5) with f(x) = xf(x),
where fix) = L[#(¢); x] and &(t) = z(z — e')’i. Since ¢(2) is analytic at ¢ = 0 and
for any ¢ > 0, provided z & [1, =), applying (4.2) we therefore obtain
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(54) R :

with B, = z/(z — 1) as predicted by Theorem 2.1, and this expansion is valid both for
Izl <1,z +# 1, and for |z| > 1,z ¢ [1, =), see the remark preceding the proof of
Theorem 2.2.

Since f(p) is a Laplace transform, it is analytic for Re p > —1, therefore so is
f(p). However, since ¢(£) is not an entire function, (5.4) diverges for all x, hence
f(x) is not analytic at infinity. On the other hand, it is easy to show that f(x) is
infinitely differentiable at x = o. This is an important property that f(x) was re-
quired to have in Process II in (I).

Now the function ¢(£) is meromorphic and its only poles are & = log z + i2nl,
1=0,%1,%2,...,i.e., all the singularities are on the straight line Re ¢ = loglz|.
Furthermore, ¢() is uniformly bounded as Re £ —> o, in fact |¢(¥)| < IzI(e* - Iz])™?
= 0(e™") as Re £ = t — oo. Hence the strip S(«) in Lemma 4.1 exists and « in de-
termined as follows: For |zl <1,u = lloglzl + iarg z| — §; for Iz| > 1, arg z #
0,u = larg z| — & for § > 0 and as small as we wish. Therefore, Theorem 4.2 applies
and consequently (4.16) holds. 7

For example, for z = -1, T, , — F(-1)= O[((n - 8)e) ¥] at least, as k —> oo.

For this case the sequence 4,,7 =1, 2, ..., is a very slowly converging oscillatory
sequence. Forz =-2,T,  —F(=2)=0O[(n - 8)e/n/2) ] at least, as k —> o, and
for this case the sequence 4,,7 = 1,2, ..., is a strongly diverging oscillatory se-
quence. -

Example 2. A, =2, _, z" '/m? r=1,2,... . This sequence satisfies the
conditions of Theorem 2.2 with @ = =2 in (2.7). Now the A4, of this example are
the partial sums of the Maclaurin series of the function

fz log(z/s)

1
Fo =3 [, 5o

where the integral is taken along the straight line in the s-plane, joining s = 0 to
s = z. Then F(z) has a branch point at z = 1 and a branch cut along the real inter-
val [1, ). By using the expansion in (5.1), we can express F(z) as follows:

s 1
1 (= logCefs)

(5.5) F@) =4+ Jg——

Making the change of variable s = ze™¢ in the integral on the right-hand side of (5.5),
exactly as in the previous example, we obtain

_ r (" ~rt ¢
(5.6) F@)=A,+z fo ¢ et_zdt,

where # = Re £. Defining R, = z~!/r® for z # 1, again as in the z-transformation
of Levin, we obtain f(x) = zx? [ € *'t/(z — e)dt, which, on using Watson’s lemma -

for x — oo, becomes

(5.7 fix) ~

z 2z
+ 1

z-1 (-12%

) Z¢[1,°°),
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as in the previous example. Hence, also for this example, we see that (1.5) and (1.6)

are valid beyond the circle of convergence of Z;,_, z™ ™! /m?. Using the fact that

(58 LIg'@); p] = pLIg(®); p] - £0),

we can express f(x) in the form f(x) = xf_(x), where f_(x) = L [¢(2); x] and ¢(¢) =
z[1/(z — ") + te’/(z — e")*]. Now this ¢(£) has the same properties as that ¢(£) of
the previous example. Therefore, the conclusion of the previous example concerning
Process II is valid also for the present example.

We now want to investigate Process II for z = 1, for which 7 _, 1/m? is a
monotonic series. For this case
t

-1

Choosing R, = 1/r as in the u-transformation of Levin, we have f{x) = xf (x), where
fx) = L[§(F); x], with ¢(f) = /(1 — e’). Again using Watson’s lemma, we obtain

(59) Fy=4,+ [, e dt.

(5.10) fix)~-— i B/x' asx — oo,
i=0

where B; are the Bernoulli numbers. Again f, = —B, = — 1, as predicted by Theorem
2.1. Now ¢(¥) satisfies all the conditions of Lemma 4.1 with u = 27 — & and there-
fore the result of Theorem 4.3 holds and T, ,, — F(1) = O((27 - 8)7%) as k —> .
Example3. A, =2, _, 1/m —logr,r=1,2,.... Itisknown that
lim,, A, = C, Euler’s constant. Denotinga, =1,a,=A4,-4, , =1/r +
log(1 = 1/r),r =2, 3, ..., we can see that 4, is as in Theorem 2.2, with & = =2 and
z = 1. Therefore, (1.5) and (1.6) hold with R, = 1/r, in accordance with (2.15).
Now let us show that, also for this case f(x) = xf(x), where f(x) = L[#(2); x]
with ¢(f) = ! — (e - 1)1,
Using the fact that Y(r + 1) = —C + Z] _, 1/m and Gauss’ formula for the
Psi function, see Olver (1974, pp. 39—40), we have

’ w [ et &t
(5.11) > Um=C+ |, <T - > dt.

m=1 et_l

Now, for the integral on the right-hand side of (5.11), we can write

o [t ~rt w [ttt
612 ye+D=, (e—t-‘-—ef_l>dt= im <5t——;_l>dt.

€0+
Making the change of variable # = r¢' in the integral [° (¢7'/f)dt, we can express
(5.12) as

- ‘ e &'t
(5.13) Yo +1)= lim [L e_"¢(t)dt+f€/re7dt].

€0+

The second integral in (5.13) can easily be shown to be equal to log r + O(e)
as € — 0 +. Letting now € — 0+, the desired result follows.
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Now ¢(£) is a meromorphic function with poles at ¢ =27,/ =1, +2, ...,
and is uniformly bounded as Re § — o, actually ¢(¥) = O(¢™!) as Re § —> oo,
Therefore, all the conditions of Lemma 4.1 are satisfied with u = 2w — 8, for 6 > 0
but as small as we wish. Hence (4.15) holds. Consequently, Theorem 4.3 holds and
T, ,—C=0(2n~- 8)7%) at least, as k —> oo

Finally, we note that the T-transformation has been applied with great success
to the sequences

r 1
4,= X u,/2", r=1,2,..., where p, = jo wie ™1 dx,
=1

m=1,2,...,and w(x) = (1 —x)*xP(-log x)’, @ + v>—1, > —1. Actually,
A, are the partial sums of the Laurent expansion at z = o of the functions F @) =
fol wx)/(z — x)dx.
For these sequences it can be shown that
1 o

13
> - asr—ree
ra+v+l i=o ,J

which is of the form dealt with in Theorem 2.2. Furthermore, it can be shown that
(2.16) is satisfied with R, = 1/(r**?*12") and for all z ¢ [0, 1]. The rational ap-
proximations, obtained by applying the T-transformation to these sequences, have
been used to derive very accurate numerical quadrature formulas without preassigned
abscissas for integrals with algebraic and logarithmic endpoint singularities of the form
J& (1 = x)®xP(~log x)’g(x)dx. These formulas have the property that for some
families of weight functions they have the same set of abscissas and they also have
positive weights; for details see Sidi (1980).

The power series dealt with in this work, in particular in this section, fall in the
category of (1) linearly convergent alternating series when z € (—1, 0) (or z € [-1, 0)
if for z = —1 they converge), (2) linearly convergent monotonic series when z €
, 1),!and (3) logarithmically convergent (monotonic) series when z = 1, if they con-
verge. For such series (and others) different linear and nonlinear acceleration methods
have been compared numerically by Smith and Ford (1979). Their conclusions for
the series of this work, with respect to four nonlinear methods, namely Levin’s u-
transformation (i.e., the T-transformation with R, = rA4,_,), the transformations of
Shanks (1955) or their implementation, the e-algorithm of Wynn (1956), the p-algo-
rithm of Wynn (1956a), and the §-algorithm of Brezinski (1971), are as follows: For
linearly convergent alternating series the u-transformation is the best, followed by the
0-algorithm and the e-algorithm. The p-algorithm fails to work. For linearly con-
vergent monotonic series the u-transformation is again the best, followed by the e-
algorithm and the #-algorithm. The p-algorithm again fails. For logarithmically con-
vergent series the p-algorithm is usually the best, the u-transformation is slightly inferior
and the @-algorithm is third best in efficiency. The e-algorithm fails to work for such
series. As for the performance of linear methods, it turns out that they are usually
less efficient than the nonlinear methods, which are applicable, and they have limited
scope.

M~
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