MATHEMATICS OF COMPUTATION, VOLUME 35, NUMBER 151
JULY 1980, PAGES 875892

Recursive Algorithms for the Matrix Padé Problem

By Adhemar Bultheel

Abstract. A matrix triangularization interpretation is given for the recursive algo-
rithms computing the Padé approximants along a certain path in the Padé table,
which makes it possible to unify all known algorithms in this field [5], [6]. For
the normal Padé table, all these results carry over to the matrix Padé problem in a
straightforward way. Additional features, resulting from the noncommutativity are
investigated. A generalization of the Trench-Zohar algorithm and related recursions
are studied in greater detail.

1. Introduction. Let K{z] be the set of formal power series over a ring K with
indeterminate z. For ease of exposition, we restrict K to be the ring of n x n matri-
ces, though a more general setting is possible [3].

Let d°P(z) denote the degree of a matrix polynomial P(z) and ord Z(z) the or-
der of a formal power series Z(z), i.e.

N
d°PZ)=N*Pz)= )Y p2*, pPy#0,p, €K k=0,1,...,N,
k=0

and

od Z@) =M Z(z2)= X rz*, ry#0,rn€Kk=MM+1,....
k=M

For given nonnegative integers M and N, and some F(z) € K[z], the right Padé
approximation problem consists in finding two matrix polynomials PIM/¥ l(z) and
QM/N1(z) such that
(@) d°PM/NY ()< M, d°QIM/N](z) < N,

(b) PM/N1(z) and QIM/N1(z) have no common right divisor of degree > 0,
(c) the right (R-) residual ZIM/N1(z)  defined by

ZWMIN1(z) = Fz)QIM/N1(z) — pIM/N](3)
satisfies
ord ZIMINI;)>M+ N+ 1, and

| (d) the constant term g§M/N1 of QIM/N1(z) equals I
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876 ADHEMAR BULTHEEL

PMINT))QM/N1(z))~1 is denoted by AM/NV1(z) and is called the (M, N) right
Padé approximant (RPA) of F(z). Such RPA’s need not exist for all M, N = 0; but
for ease in exposition, we suppose they all do.

Suppose F(z) = Z7—¢ szk is given and that for two integers M and N we have
the following expansions of R-numerator, R-denominator and R-residual of the (M, N)
RPA of F(z)

M N
k=0 k=0

ZIMINT () = i: PLMINT MAN+ 14k
k=0

Requirement (c) boils down to the following block system of equations:

TIM/N] pIMIN] 0
ﬂ)M/Nl Q[M/N] = 0 + zZIM/N]1 iy ZIMINT = 0 ,
TIM/N] 0 RIM/N]

which is a shorthand notation for

- - - - -
fo piM/N] 0
f1 ) fo . p{M/Nl
n ' Fues . I;}(WM/N] 0
fM:I- 1 fM. fu-N+1 .ZI(I,M/N]— 0 0

a | = +
fM:O—N . | Y _fI}VM/N]- 0 0
Tman+1 fu+1 9 riMIN]
»fM+N+2 rgM/Nl
‘L: - _ . L: i
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The R-numerator coefficients in PIM/N1 and the R-residual coefficients in
RWMIN] may be recovered from PIM/N1 = TIMINIQIMINT 354 RIMIN] =
TELM IN ]Q[M IN] , once Q[M /N1 is known. The denominator coefficients must satisfy

gV = and TIMNIQIMINT =g

where T([,M /N1 has dimension Nn x (V + 1)n and O has dimension Nn x n. Equiva-
lent forms of this set of equations are

(2a) TIM/N-1] [ng/N] qllvM/Nl]t =—[fy+1 o fuenlt
(2b) TIM+1NIQIMINT = [g ... 0 JJM/NT|t GIMIN] — [
and

o) TIMINIQIMINY — [pIMIN] g ...0]%,  g[M/N] =

where the superscript ¢ denotes the block transpose of a block matrix and

l-fﬁ. N
TUAT =1 for I, J = 0.

~ '

Ij]+1 " fI

(A negatively indexed f must be taken as zero.)
Equation (2a) has a solution if

fM+l

TIM/N~-1] TIM/N-1]

and

fM+N

have the same rank. Clearly, det TIM/N-11 +£ 0 js a sufficient, but not a necessary,
condition for this to happen. However, to avoid any possible difficulty, let us suppose
that F(z) is such that det TI™/N1 0 for all M, N > 0, which we call the R-normality
condition. It implies e.g. that f;, is nonsingular, so that the inverse formal power series
F(z)"1 exists. It also implies that q,[VM/N 1 p][wM N1, p([)M /N1 and r([,M /N1 are all non-
singular for M and N > 0. Consequently, we could, instead of the normalizing condi-
tion q([,M /N1 = I'in (d), also consider a monic normalization for the R-denominator or
a monic or comonic normalization for the R-numerator. Indeed, the purpose of (d) is
to guarantee that (QIM/V1(z))~! exists (therefore, q([,M /N1 should be nonsingular) and
to pin down the arbitrary constant right factor that remains as a degree of freedom in
the R-numerator and R-denominator if only (a), (b) and (c) were imposed. From now
on we use as a normalizing condition either (d1) q([,M /N1 = I (comonic normalization)
or (d2) q}VM /NT = I (monic normalization).

The foregoing can be adapted for a left Padé approximant (LPA). If we use the
same notations as for the RPA, but transfer the superscript [M/N] from right to left,
then the LPA equals e.g. [M/N14(z) = (IM/N1Q(z)) ! (IM/N1 P(z)) and the L-numera-
tor [M/N ]P(z) and the L-denominator [M/N1Q(z) must satisfy
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(af) d°MINIpzy < M, d°MINIg@z) < N,
(%) M/N1pz) and MV 10(z) have no common left divisor of degree > 0,
(c)) the L-residual IM/N1Z7(z) = IMIN1g(z)F(z) — [M/N] p(z) satisfies

ordMN1Z(z)>M+ N+ 1 and

@ [M/N]qo = [ for a comonic normalization or [M/N]qN = [ for a monic

L normalization.
The analog of system (2a) is

(2at) [[M/N]q1 [M/N]qN] lM/N—lsz._[fM_'_1 "'fM+N]

with [M/N1Tt = TIM/N]  The block systems (2a) and (2a’) are essentially different
since (BC)" # C'B? for general block matrices B and C.

Some further notational conventions and definitions are resumed. J denotes the
block permutation matrix

with I the n x n identity matrix and J of appropriate dimensions.

For a block column vector V, ¥ is the block reciprocal vector: V=uv

[2] denotes an empty matrix, i.e. matrix of dimension n x 0,0 x nor 0 x 0
as will be appropriate.

If S(z) is a formal power series or a polynomial, then by S (without an argu-
ment) we mean the corresponding block column vector of its coefficients.

€, j=0,1,2,...,are the block unit vectors. ¢ is a block column vector of an

appropriate number of 0 blocks, except for the jth block row, which is [, ..

nXn
The chopping operators “1and _| are defined as
1= [0le; e, ~-rey]l and _I=[e; e, - eNld].

A square block matrix W is called block persymmetric if JW'J = W. A block
Toeplitz matrix is an example of a block persymmetric matrix. Remark that although,
in general, there is no relation between the rank of a block matrix W and the rank of
W?, it is clear that for a block persymmetric matrix T, T? = JTJ and T have the same
rank. Consequently, the R-normality condition coincides with its L-dual version.

It takes little effort to prove that [M/M¥14(z) = AIM/N1(z) (see eg. [3]), so
that we can use [M/N] to denote the (M, N) Padé approximant (PA) without L- or
R-specification. If the normality condition is satisfied, then all the PA’s [M/N],

M, N > 0, exist and they can be arranged in a matrix having [M/N] at the intersec-
tion of row M and column V. This matrix is called the Pade table of F(z). Under the
above conditions F(z) and its Padé€ table are called normal.

We will give algorithms to find the solutions of (2) or (2%) or of related problems
when the indices M and NV are varying such that the PA’s [M/N] make up certain paths
in the Padé table. There are L- and R-versions of the algorithms, depending on
whether the L- or R-numerators and denominators of the [M/N] are computed.
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We use also the notions of right and left continued fractions (RCF and LCF).
A RCF is denoted by

a,| a, =, a
a0+'(——|+r-'+-~=ao+ DR Tl
bl b2 k=1 bk
and we mean by it the (ordered) set of convergents {cn}: with ¢, = P, O Ln>o,

and

P,=1 Py=a, P, ,=P_ja,,,+Pb,, fori=0,

0.,=0, Q=1L Qy1=0; 184, +Qib;y, fori=0.
A LCF is denoted by

a a > |.a
---+'|£-[+ ll—I+0a= > }k—‘+ a
2b lb k=1 kb 0
with convergents {,¢c = nQ"lnP}: , where
P=1 (P=oa, ;4 P=;4a; P+ b;P foriz=0,

-12=0, o@=1 ;4,107 ;414; 4,0+ ;4,0,0 fori=0.

Unless stated otherwise, the nomenclature will have to be understood in block
sense wherever appropriate, e.g. a row will refer to a block row, triangular will mean
block triangular, etc.

2. Paradiagonals. Suppose we want to compute the kth paradiagonal of the
Padé table, defined by

D, = {[k +j/il}j=o ifk>0 andby

D, =1{lil-k+j1}Z, ifk<0.
Let us start with £ = 0. Take the systems (2b) with a column permutation,
then we have to solve recursively forj =0, 1, ...,

3) (T[k+i+1/i]_])(JQ[k+i/i]) = ej,.&kﬂ/il =HY, = er;.

Here and in the following, the right-hand side (RHS) of = will be an abbreviation for
the left-hand side (LHS) where obvious identifications must be made.

The matrices H; are Hankel matrices; and if we rename fy , ;. ; as by, j =
0,1, ..., then we have the following nesting property for the family H;

5 v,
Hjs1 = t with Hy = ho, Vi = [y = Bayjial-
Vilhaj+2

The recursive solution of the family of Hankel systems (3) can be found as in the
scalar case (see [5], [6] for details), and you have that forj=0,1,2, ...,
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Y

-1 Y
-1 7 -1/, ’ -1
@) Y1 = vl O Jri=ar~ ol” UL
d 0
with
T [Aeini
r [P
T _ % Py B Vl't—llh2i v
r [k+j/i1 hipq o hy; Y; = t i
i ry<t j+1 2j+1 Vi

and initial conditions

Y0=I’ Y—1=[¢]> ro=h0, r(,)=h1, ’—1=I’ r'1=0.

This corresponds to the following triangularization of H),

I & [Y] To., 0
S.. il % "\
) Hy - = * . T.
0 N‘ [Ri] ;\
™

with Dy, = diag(rg, 74, ..., ry) and ZN unit lower triangular. Y; = é[k”/” by def-
inition, and from (1) it can be seen that R; consists of the first nonzero blocks of
ZUe+i] i e the first N — i + 1 nonzero R-residual coefficients of [k + i/i]. It is
not difficult to verify that the L-denominator of the PA can be found from a similar
scheme. If we denote by ;Y the reciprocal L-denominator vector ,¥ = [¥*i/t 10 and

=HNUy = ZNDN’

by ;R the first N —i + 1 nonzero rows in the corresponding L-residual vector [¥*i/11Z,
then

I, o”
w0 RN
— el - W
t'. = N t = H, = U
(5% Yo Hy R LyHy =DpyUy,
* .. 0 Wk
I “NT

with 5N = diag(g?, 17, ..., y7) and ﬁN unit upper triangular. The factorization (57)
corresponds to the one proposed by Rissanen [13].
Notice that

) LyHyUy =Dy =Dy,

thus that

Q) Hy' = UyDy'Ly and Hy =LyDyUy
and also

(7N =Uy' and ZN =Ly
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But now, unlike in the scalar case, U, # Ly in general.

The above result can be summarized as follows: The L- and R-denominators
make up the triangular factors of H, A—,l , while part of the corresponding residuals make
up the triangular factors of H,; itself. Notice also that (6) expresses the biorthogonality
of the reversed L- and R-denominators.

Besides the LDU factorization of Hy,, given in (5) and (5%), we could also look
for a UDL factorization of this Hankel matrix. The triangular factors that appear then
are not nested as are the triangulars in (5). All the nonzero elements depend upon N.
Suppose we have

~ ™
0 A
SO [P
(8) = *

*lya T
Y; ) x \“I 0
i

-~

o

By taking the first column in (8), one obtains a system like (2c). From this, it can be
seen that Y™ is the reciprocal R-denominator of the PA [k + N + 1/N] with a
monic normalization and PI(\I,v ) = [pg,v)] is the coefficient of highest degree in the cor-
responding R-numerator. This proves part of the more general result that relates all
the columns Y,.(N ) and P}N ). i=0,1,...,N, in a similar way to the PA’s in the anti-
diagonal {[k + 2N + 1 —j/j] }].Iio. This will be explained further in Section 4.

The paradiagonal D, for £ <0 can be computed in two ways. Either we first
compute the inverse formal power series F(z) ", and then the recursion (4) can be
used unaltered or we change the initial conditions of (4) and use the F(z) series again.
Let us explain both possibilities.

If [M/N] is the (M, N) PA of F(z) with R-denominator Q[™/N1(z) and R-
numerator PIM/N ](z), then from the definitions it follows that, up to some normaliza-
tion, QIM/N1(z) is the R-numerator and PIM/N1(z) is the R-denominator of the
(N, M) PA of F(z)~!. The R-denominator recursion in (4) when applied to the
F(z)~! series is actually an R-numerator recursion for the F(z) series.

The other possibility is to let the derivation of the algorithm for £ = 0 go
through, except that [k + j/j] as an index is replaced by [j/—k + j] and the initializa-
tions are adapted correspondingly. The latter have to be

. fO

ro = [f1 k41l Yo ’6 =
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and Y is the solution of

HyY = [0 0ro]"
-k

with the last row of Y, equal to . Remark that Y|, is found by simple solution of a
triangular system, which corresponds to finding the first —& + 1 terms of the formal
series for F(z) .

Back to k = 0 now. (4) gives recursively the denominators in D, , but we could
use the same recursion coefficients for the computation of the residual columns. This
follows e.g. from (5). The recursion coefficients in (4) only depend upon the diagonal
and lower dlagonal of I ~Dy» defined in (5). Thus, it seems more natural to compute
the columns of L ~Dy than to compute the columns of Uy. This corresponds to a
continued fraction approach [4]. The recursion follows directly from (4) and (5) and
can be found e.g. in [13]. It is not different from the scalar case [S5], [6]. We in
fact then compute the RCF

2
U,z u,z?
[k/0] k-1 "7 | 2 J
©) P tz H+ v,z + |7 + v,z

with

_ -1 e ! ’ A
u; = ~r_5r_, and v =-r_ 0y t Ti—aUp)-

There is of course a similar LCF version for the computation of the L-numerator and
L-denominator of the PA.

As an example we give the recursion for the right-hand side R = I ~NDy of (5).
Call the nonzero part in the ith column of R R;fori=0,1, ..., N, then R; consists
of the N —i + 1 first rows of a column vector 4;, having 2(V — i) + 1 elements. The
recursion for the columns 4; is as follows:

l=[[0..-0]t, r—-l=I’rLl=0’
_————
2N+2

Ao =[hg - hyNl', 1o =hg, 1y =hy,
and fori=0,1,...,N—1,
(10) Appy =04 gy +4) + 1A, )

;1 and v; 4 as in (9) and 7; and 7} are the first two elements in 4;. It is an easy
exercise to rewrite this algorithm as a “row-by-row” algorithm so that one need not
fix N beforehand and that the increase of NV to NV + 1 only requires the computation
of an additional row. Such an algorithm in the L-version can be found in [13, (2.9)].

In the following we will refer to the recursion (4) as an algorithm to compute
the upper-triangular factor Uy, for H.,;l » where H); is some given Hankel matrix. Sim-
ilarly, the recursion (10) will be referred to as an algorithm to compute the lower-
triangular factor L, ~Dy of (5) for a given Hankel matrix Hy,.
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3. Descending Staircases. The computation of the staircases

Tk={[k+j/j], [k+1 +j/j]};';0 ifk=+0
and

Te = Uk +1 Lk + 14132, ifk<-0*

which are interleavings of two adjacent diagonals, introduces no novelty with respect
to the previous section and the scalar case. The same factorizations as in Section 2
may be obtained for the Hankel matrix H,, along with a shifted Hankel matrix H; =
TUe+i+2/i17 (g > +0) or H, = TU+1/~*+i+11 (k < -0). Remark that for k >+0

HY,=[0--07]"=HY,=[p; 0 0]"

This proves the assertion about YJ(VN ) given after relation (8).
The recursion (4) now falls apart into two steps alternating between D, and
Dy +1 with * = sign k. For more details consult [5].

4. Antidiagonals and Ascending Staircases. With the same techniques as used in
Section 2, we see that for the computation of the antidiagonals

B = {[k—jfil}}eo fork=>0
the solution of the systems
(Jle—i/i])Q[k’-i/i] =[0--0 pl[cl_c_']ji/i]]t, j=0,1,...,k,
aan .
= = 1 k—=j/i ] —_
=G;Q, = ¢;p; with q}¥ 7/ =,
are involved. G; is again a Hankel matrix and system (11) is of the same form as 3).
The recursion (4) remains valid with obvious notational transcriptions. The factoriza-
tion corresponding to (5) now has another Padé interpretation. The upper-triangular
factor in the LHS has I as diagonal elements and contains in its columns the unre-
versed and monically normalized R-denominators, while the lower-triangular matrix in
the RHS contains reversed R-numerators.
From their definitions (3) and (11) it follows that the following relation exists
between the Hankel matrices G and H™**
}I](k) = TV[k+j+ l/]]J = J(JT[k+2j+ l—]/]])J — JG](k+2j+ l)J

Thus, relation (8) becomes
G+t xT = JPI,

where X is the lower-triangular and P the upper-triangular of (8). This is a factoriza-
tion of the form (5) and from the above interpretation it follows that the columns of
X are reversed R-denominators of D, and that the columns of P are the corresponding
R-numerators.

* A path with negative index in the Padé table is the reflection in the main diagonal of the
corresponding positively indexed path. Since the reflection of Ty is not Ty any more, we distin-
guish between T +0 and T _o as above.

** We use a superscript between brackets to indicate the diagonal that is involved.
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The diagonals
E = {li/-j —kl}j= fork <O

are nothing else but the £_, diagonals in reversed order. The elements of these diag-
onals can be found by applying the same computations as for the E_; diagonals on
the F(z) ™! series.

Remark that the duality emanating from the algorithms (4) and (10) for D,,
computing the triangular factor in the LHS (denominators) resp. RHS (residuals) of
(5), becomes, when using similar algorithms for E,, a duality between denominators
(LHS) and numerators (RHS). The algorithm (4) for E_, (k > 0) using the Fiz)™1
series thus computes the RHS triangular factor of (5) from right to left, instead of
from left to right as algorithm (10) does when computing £, (k > 0) using the F(z)
series. The matrix interpretation confirms this result. Note that G, =J TlO/k]  with
Tl0/k] 4 lower-triangular Toeplitz matrix, based on the coefficients of the series F(z).
The inverse of T1°/¥1 js again lower-triangular Toeplitz, based on the coefficients in
the series F(z) !, i.e.

@)=t = TOKIE,
Thus, if G, (F)U(F) = L(F) with U upper- and L lower-triangular, then
JUFY = (JG(F) T T)JLFE)).
Compare this with
LF™) = GFHUF™),
then it follows that

JUF) = LF~Y) and JLF) = UF™).

The ascending staircases, defined as
Up = (LK —jfil, k= 1-j/i1}}=o , [0/k]} for k>0,

and

Uy = LU~k =11, Uk -7 - 11}y, [k/0]}  for k <O,

can again be handled in a similar way. Like for the diagonals, the algorithms are
directly transcribed from the scalar case [5], [6].

5. Rows, Sawteeth and Related Algorithms. For the row L, = {[k/il};Zo
(k > 0) we must find R-denominators from the set of systems

T[k+l/]]Q[k/j] = e],r][k/j] = T']Q] = ejrj, or

(12)
Tlk/i glk/il = eopl.[k/]] =T,0; = eop;-
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The following nesting of the Toeplitz matrices is essential

(13)

with #; = fi 114, and T, ; similarly with £;=¢,_;,i=0, 1, ..., instead of ¢;.
The recursion for the R-denominators are [5] (monic normalization)

0
(14 0 -1 Q] -1 -1
) Q41 = | Q-1|Pisapi H | |7 Ti-1Pi1 Py
) 0
0
with
p; Wi
= . Qi
t
Ty i

and initial conditions
Q,=101, py=1 r,=-1
Q=1 pPo=1t_y, To=lo-

The matrix factorization interpretation is the following

I"*I— rO\ 0
ENEY .
Ty L] = * | =TyUy =LyDy
0 [Ri]}
I N
(15) with Dy, = diag(ry *** ry), or
. Py
: 0 L*
Iy * [ = < =IyLy =UyDy
ol
;. 0 R
1' e e * I po

with 5N = diag(py " Pg)- Uy and I n contain the R-denominators, LDy con-
tains part of the corresponding R-residuals (the lowest degree nonzero coefficients)

and ﬁNﬁN (part of) the corresponding R-numerators. The recursion coefficients in
(14) are constructed from the diagonal elements in Dy, and 51\1-
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The corresponding L-version of (15) is
(157 NLNT=nNDpU and U T =, D ,I***

with yT =Tk, yT =T} nUand Nﬁ are upper-triangular and L and NZ are
lower-triangular. We have

(16) Ty =LyDyUy' and NT=TL = L7t yD U

Instead of the LDU factorization of Ty and T as given in (16), we could also
look for an UDL factorization, viz.

L. 0 pN“*H
S ’s’ i _ .
Ty r = : * =TyLly = UyDy

with Dy, = diag(py *** D)

From the second factorization in (15) we see that the O, are R-denominators
for row L, ,; with a comonic normalization and P, the corresponding R-numerators.
A similar L-dual is

@18) ~UNT = NDyL.
Comparing (15), (16), (17) and (18) and using JT5J = T, we get

Ty = LyDyUy' = UyDyLy?
(19)
= (I NU W) yDIY(J yLT) = (J ;LYY (J yDIY(JT N UT),

from which we conclude that doing the LDU factorization of T, requires in fact the
same computations as the UDL factorization of T}, and conversely.

Note also e.g. that Ly, =J ,U~"J, where Ly, contains the R-residuals for L, as
columns and U contains reversed L-denominators for L, , ; as rows, etc.

With the notations already introduced we have

—I T -1' q—l
0 0
”’ * ‘; _ U..IJ
(202) ILv=1 1. = '_5_,-‘ =Jy
* o |- * ~1,-

*** The graphical representation is derived from (15) by taking the block transpose, using
the rules for the ordinary transpose and transferring the indices from right to left.
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with R; = R,r;"! (normalized residuals) and

I . T [, ]
.10 LoE,
—1 ’ * * i£, T
(20b) Uy = - = L= | =T NLT
o . 0o -
L 1] L 1]

with ;P! = ;p "' ,P" (normalized numerators) and

(20¢) Dy, = diag(rg " ry) = diag(op *** yP) =J yDJ
etc.
The factorizations of Ty and T ! then are

p— P~ — r —
I~ 0 -l ¥y 0 1: *
.. .. N pt
o N <P
Ty = *[ ] 7; —
i Q“ \“ ’~~
- * QI - 0 rA-,- L 0 ~I
(21a)
- -— - T r— —
I\ * [ _ N{ 0 1: 0
By S R
\‘ ~vi * s’~ *Q“
= ;‘ wir '.___Nt_
R ", ,.R .
. . \ ).
0 ”\I 0 ’~0r * \I
L 4L 4L a
and
P ar 1T, 7
I\“* Q r(')_‘l 0 1:“ 0
% *x°.
—1 : * .« 1 —z=
Ty = r t
N <L is .
O s\ O ‘~‘ 1 * \‘
I 'y I
e — e - - p=
(21b) - - - - - -
I - I
. 0 rt 0 .
. N, . ~
. .. L . !
S eo-1 .. ,'Q
= [ ]‘ lr~ | S M
i S R N
‘\ 0 ‘v 1 0 ..
I o” I
L 4 L d 0 -

Also,

(22) (J yONT\ Uy = diag(rg = 7y),
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which expresses the biorthogonality of { ié}ﬁ’ and {Q,.}f,v w.r.t. Ty [2].

We are now able to derive a lot of alternative algorithms for (14). The recursion
coefficients of (14) depend on the diagonal elements in D, and 51\' (see (15)). In
(14) they were found as inner products. We could now replace one or two of the in-
ner products by recursions for the columns of Ly Dy or of ﬁNﬁN' The way this is
done is trivial and in the style of the derivation of (10). Computing both Ly D, (re-
siduals) and ﬁNﬁN (numerators) by recursion makes the explicit evaluation of Uy, or
what is the same L n (both contain the same denominators), superfluous. This
would be a continued fraction algorithm as given in [4].

If we want to compute two adjacent rows L, and L, ,,, then we have several
possibilities like sawtooth variants, etc. [6]. The most elegant is probably (see also,

(11, [13], [15], [18])

— - - -
o] [a
Qi1 = - a; witha; =p; 'p;,
_Qi_ [ 0]
-1 o1
Q; 0
(23a) Qiy1 = - B; with B; = r7'7; and with

o] 19

- . .

p; H p; Wi

=1. Q; and =1 Q;.
T vy 7 Vi

V;, W; and ¥, have been defined earlier and W,-’ = [ty **-t_;]. Q; is a monically nor-
malized denominator for L, and Q; is a comonically normalized denominator for
Li4+1- In the scalar case is 7; = p; (see (20)) and this coefficient can be found by re-
cursion, viz.

(23b) Tipr =1 107 oy = 1~ Bay).
(23b) remains true in the matrix case, but the recursion for p; becomes
(23¢) Ei+ 1= Ei - pir,'—lz' = Ei(l = a;B;).

Because iﬁ =r, and Ei =;51=0,1,...,it only requires little effort to find
simultaneously the other triangular factors of T J'V_l , containing the L-denominators ;Q
and ,-Q. Indeed, (23) becomes in its L-version

i+1Qt= [OiQt] —ia[iét 0], ,-01=,'P,'—ﬁ—1,

- -1
irad o

a3 i+107= ;0" 0] —;8[0,07, 8
2
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and also
irr == pp T == f)
Some further simplification is possible. Using the persymmetry of NT"I, it is

possible to find that (see [1]) ;» = p; and ;7 = ;. So that (23) and (23%) can be
summarized in the following scheme that is to be executed in parallel.

Initialization
To =1%o of =1o
Q=00 =1 0Q0=00=1

fori=0,1,2,...

pi=lt_; 4,410, =p=,0%t_y -t ]

- = 410 = T = Ot v 1t
rp= It 110 =1 =0, -+ 1]

o =r7'p, o= pr; !
’31 =rx—171 iB=17tr—l
0] ’Q" Rk ':Q‘r
Qi+l Qi - az i+ 1Q = iQ -«
. L. S U
. _[o][e
i+ 1 - B Q'= -8
' | 0 ] ;Q".. l . | 0] ' 1~ |
ripr =1 — By iv1r = — 08,7
= - ;8;0)r; =, —o;8)

This scheme computes the triangular factors of Tﬁl and NT'I; see (21). It is like the
algorithm in [1] and is a generalization of the block Levinson algorithm [11], [17]
which computes row L, in a Laurent-Padé table [10] and in that case also reduces to
the recursion for the Szeg6 orthogonal polynomials [14], [9], [7]. A continued frac-
tion-like approach [4] gives the extension of the ladder-form analog [12] of the
Levinson algorithm, and this computes the triangular factors of Ty, and 5T themselves.

A derivation of the algorithm can be found in [13] e.g. We will do the work
over again because it will give a better insight in what is happening in Padé terms.

Set A, = Ly Dy with Ly Dy, as in (15). Thus, A contains R-residuals; and if

we call its elements a;, then
200
a a
10 11
%N0 4y anN ]
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with

aii=[ti...tO][QitO...0]f=ri[_l_€l_/i], 0<j<i

Using the previous scheme to compute Q;, we obtain ¢, = ¢;, =0, 1, ..., and re-
cursively for i > 0,

vy = [t 16110}, 0+ 0]*
(24a) = [ti tO] [0 th 0--- 0]t_ [ti tO] [éit 0--- O]tai

T G-, T Gi-1,j%

Thus, @;_, ; = [t; *** 1] [Qf 0 -+ 0] is the (k + 1 + i)th coefficient in the R-
residual that corresponds to Q, thus a;_, ; = ,[ffr_l,-/" 1.
The recursion for a;; is similar

40 = Ly
and
8501 = [tiyq " to] [0y, 0 0]
(24b) = [ti+1 ...tO] [éito "'O]t— [ti+l ...tO] [0 thO ...O]tﬁi

= a; ~ ayb;.
= _ [k+1)j] — = Y
Clearly, r; = rlk 1] = a; and_r]- = kil = aj;.

From (24) we obtain the r; and 7;, but to find the other two coefficients p; = ;p
and p; = ;r, needed to compute a;, B;, ;o and ;8, we have to do another factorization.
Indeed, the coefficients p; and @ are found from the factorization (17), i.e.

EN contains the R-numerators for row k + 1. We number the elements of EN in re-

verse order, so that

[ -

byn  byn-1 by
7 by_1,n- '
TNLN = .:~~ 1 E
L \boo_
with
by=1lto - t][0---0 Q1" =p{ii1{l,, o<j<i

Using again the recursion for Q,, we get

bi0=t_i, i=0,l,2,...,
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and
5i.1'+l = [ty " t—i] [0---0 th+1]t
(25a) = [to t—i] [0---0 Qit O]t - [to t—i] [0---0 th]tﬁj
= Ei—l,i —b;_4,iB;

with b, = [tg --- ;][0 -0 Qf]* = p,[,’f_/(i,]_l-). Thus, b;; are R-numerator coeffi-

cients for the kth row L, of the Padé table. They can be found by the recursion:

big =1_;1
and
by =t "t ][00 Qir“]t
(25b) = [to 1y 1[0+ 0 Q1 = [tg -+~ t_;_4][0 -+ 0 0! 0%,
= by ~ by,

and p; = ;p = b;; and p, = ;r = b;;.

(24) and (25) put together give an algorithm to find the RCF coefficients of the
PA’s that are in row L, without any inner product evaluation. The scheme is sum-
marized as

Qoo = 1o boo =1t
oo = 1, boo =14

fori=0,1,2,...

_ 1= _ -1
B;=a; a; o; =by; by

%10 = Liva bivi1,0 =11
1,0 = tiva biyr1 0=t i2

fori=1,2,...,i+1
Ay1,j = %51 4 j-1% biy1,;=byj—1 ~ ;181

81 1,; = Gp1,j—1 ~Girn,j—1Bi—1 | Bir1,j = Div1j-1 ~ Dir1,j-1%-1

Herein we compute the left triangular factors in the UL factorization of Ty, = Tik+1/N]
and Ty, = TU¥+2/N1 and the left triangular factors in the LU decomposition of Ty
and Ty, = TIk/N] The right triangular factors in these decompositions are obtained
when using a similar scheme for the left residuals and numerators.

As before, we can apply the algorithm on the series F(z) ! to obtain recursions
for columns or vertical sawteeth in the Padé table.
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6. Conclusion. Via a matrix factorization interpretation of recursive matrix-
Padé algorithms, there is no problem to carry over all the algorithms from the scalar
case, provided the matrix-Padé table is normal.

Some variants of the algorithms given by Akaike [1] and Rissanen [13] for the
factorization of Toeplitz matrices are given a Padé€ interpretation. In this way we ob-
tain generalizations of the Levinson-Wiggins-Robinson [11], [17] algorithm and the
so-called ladder form algorithm [12] for linear prediction.
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