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Recurrence Relations for the Coefficients
in Chebyshev Series Solutions
of Ordinary Differential Equations

By T. S. Horner

Abstract. Systematic methods are presented for obtaining recurrence relations for the
coefficients in Chebyshev series solutions of linear differential equations, of first to
fourth order, with polynomial coefficients. Polynomial approximations to certain ra-
tional functions are also discussed.

1. Introduction. In Morris and Horner [10], the Chebyshev series solution of
a linear fourth-order homogeneous differential equation was discussed in relation to
eigenvalue problems associated with simple boundary conditions. That investigation
provided a systematic method for obtaining the recurrence relation for the coefficients
in a Chebyshev series solution. The ideas are now applied to the solution of both
homogeneous and inhomogeneous equations of orders one to four. It is also shown
how the same approach can help in obtaining Chebyshev series expansions for certain
rational functions.

In the literature, there are many tables of Chebyshev expansions for mathemati-
cal functions, especially the elementary functions and the special functions. Among
such tables are those of Clenshaw [3], Clenshaw and Picken [4], Abramowitz and
Stegun [1], Luke [7], [8], [9] which all include references to further sources. Many
of the authors solve differential equations in order to find Chebyshev expansions, and
the methods are fairly standard. Nevertheless, the equations are often solved on an
ad hoc basis, and the aim here is to provide the data for quick and systematic con-
struction of recurrence relations for the Chebyshev coefficients. Indeed, the data can
be used to automate the solution of equations of appropriate type, but care should
be taken, for example, to investigate singular points of the equation, the convergence
of the solution, and the number of terms needed for a desired accuracy. In general,
any automatically generated recurrence relation should also be investigated analytically.

The equations to be solved are of the form

1 dﬁy
(1.1) 2 px) g =8kx), 1=12,34,
=0 =~ ¥

with suitable initial or boundary conditions.
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894 T. S. HORNER

1 is the order of the differential equation,

pg(x) is a polynomial, and for most of the problems will be quadratic,

and g(x) is a continuous function, assumed to be expressed in Chebyshev series
form.

The Chebyshev polynomial of the first kind, T, (x), is used, where

1.2) T,(x) = cos(n cos 'x).

The differential equation is solved on the interval —1 < x < 1, to give a series
as in Eq. (2.2) below. A change of variable can lead to solutions on other intervals
as will be seen in later sections.

2. The Method of Solution. The method of solution is the same as that in
Morris and Horner [10], and is stated briefly with regard to the solution of a second-
order equation.

Let
Pyx)=c¢; +c,x + c3x?,

Pi(X) =c4 +csx + cx?,
Po(x) =c,; +cgx + chz.
Thus, Eq. (1.1) becomes
d?y

@2.1) (c; +cpx +c5x?) d? +(cq +cgx +cex?) % +(cq + cgx +cgx?)y = g(x),
-1<x<1.
Let
‘ = 1
(2.2) y(x) = kgo a; T, (x) = 58 +a T,(x) +a,T,(x)+- -,
and let
(23) gx)= 2 & T).
k=0
The derivatives y(")(x), r = 0, 1, 2, are similarly given by,
@4 Y@ = X' T,

k=0
to include (2.2) when r = 0.
The following two results are used:

@s) (xPT, () = ,-_i:, (g)rk_p“j(x),
which is a generalization of the simple recurrence relation

2Tp(x) = T, (x) + T) (),
and

(2.6) o aD, —a), = 2k,
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which is a consequence of the fundamental theorem of calculus, and the integral
[ Tty dx = BTy, @)k + 1) = (1 = 8 )T, Gk = 1)}
Whenever a subscript is negative, the interpretation is .
a®) = 4"

The general method for solving (2.1) is then to substitute (2.3) and (24) to
obtain, after equating coefficients of T, (x), followed by repeated use of (2.5) and
(2.6), the recurrence relation

k+m k+m )
> Z ‘-';Wz(— = X Witk,7 8i

@7 S U e , k=0,1,2,.
TWEA*) = w7 g(*)
where W{) = (wg‘)) is the 9 x 9 matrix in Table 1,
w,(k) is the jth column of Wg"),
= [c;, €35+ -5 Cols
2T = P P P, 8

T
g(k) = [gk_m,..u,g]p""gk"'m]'

The maximum value of m is 4, but is related to the length of the vectors
a®) and g, each of which has 2m + 1 components. Often in practice, m can
be taken to be less than 4, because some of the multipliers {w(")} and {c;} are
zero.

Once the general form of the recurrence relation is known, a suitable trunca-
tion point in the series (2.2), is chosen, (say at @,), so that the series solution is
sufficiently well represented by the resulting polynomial. Then the appropriate
equations from (2.7), together with equations representing the initial or boundary
conditions, are solved for ag, a,, . . ., a,. (See Clenshaw [2], [3], Fox and
Parker [5].) This is often done by solving an explicit set of algebraic equations
using standard methods such as Gaussian elimination, or iterative methods such as
successive overrelaxation. A common method involves back substitution in the re-
currence relation, followed by normalizing of the coefficients, using the initial or
boundary conditions. The actual method for solving the algebraic equations for
{a;} will not be considered further, but it is important that a stable, accurate
method is selected.

Differential equations of other orders can be solved in the same manner.

Thus, let pg(x) in Eq. (1.1) be written

a8

pg(x) = Zo Cag*™>

a=

where dg is the degree of pg(x) and will be usually taken as 2, but where there
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is allowance for higher degree polynomials. Now (1.1) can be written
1 dg
(2.8) 3 3 e, ﬁx“y(ﬁ) = g(x),
=0 a=0

where y(®) = dfy/axP.
The recurrence relation from this equation is then found as

k+m 1 dB -
i—%m ﬁZO aZo Ca,gWi-k,a,8 ( %
.9) =k— =0 a=
k+m
- k _
o ; W'(_’)"O,Ogi’ k=0,1,...,
i=k—m

or

cTW,(k)a(k) = wgf(),Tg(k).

¢ is the vector with elements {ca’ﬁ}, in the order of their occurrence in the
differential equation (2.8).

W}k) = (wl(.”;),ﬁ) is a matrix of 2m + 1 rows, and Efs:o dg (=7, say) columns,
these columns {wa’ﬁ} being ordered to correspond to the ordering of the elements
of c. The 2m + 1 rows of W,(k) are numbered from —m to m, rather than from 1
to 2m + 1, to take account of certain quasi-symmetry properties of the matrix.

The value of m depends on the degrees of the polynomial coefficients {pg(x)},
and is given by m = max(a — 8 + /). When all the coefficients are quadratic, then
m =1+ 2, and E;s=o dg = v = 3( + 1), and hence the order of W,(k) is 21 +5)
x (31 + 3).

The above notation is illustrated in Table 1, in relation to the second-order
differential equation with quadratic coefficients.

3. The Matrices { W§k)}. Although it is desirable to have the matrices {W,(k)}
in explicit form, as in Table 1, it is impractical to exhibit such matrices for large I.
Thus with a modified notation for the elements of each matrix, namely writing
wl(’f!)p = w(i, a, §), the nonzero elements of rows 0 to m, are given below. If the
value of any element of W,("), (I > 0) is f(k), then the element found by reflection
about row 0, is — f(— k); and the entire matrix can be constructed.

The main tabulation below, corresponds to quadratic coefficients { pﬁ(x)}.
Sometimes, further elements of W,(k) are given at the foot of a table.

The elements are tabulated from the higher-order derivatives to the lower, but
with the polynomial coefficients being written in increasing powers of x. Except
for subsection 3.5, (I = 0), the scaling of the elements is standardized so that there
are no fractional numerical elements when all the polynomial coefficients are qua-
dratics.

3.1. Nonzero Elements in the Lower Part of Wﬁ“-(7 x 6).

w(0, 0, 1) = 8k

w(l,1,1) =4k + 1)
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w(0, 2, 1) = 4k
w(2,2,1) =2k +2)
w(1,0,0)=—4
w(0,1,0)=0
w(2,1,0)=-2
w(l,2,0)=-1
w(3,2,0)=—1.

The above elements correspond to quadratic coefficients {p, (x), po(x)}. How-
ever, for the first-order equation all the elements of the matrix are given by simple
formulas. In fact,

Wi, a, 1) = 58‘; <1/2(a°‘_ l.)> * +1),

w(i, @, 0) = ;ia 3(1/2(“ _al. _ 1)) - (%(a _"‘,- + 1))2 ,

where the combinatorial symbol (’}) is zero if » < 0, r > n, or r is noninteger.
3.2. Nonzero Elements in the Lower Part of Wg") -9 x9).

w(0, 0, 2) = 16k(k — 1)(k + 1)
w(l, 1,2) =8k — 1)k + )k + 2)
w(0, 2, 2) = 8k(k? - 3)

w(2, 2,2) = 4k — 1)k + 2)(k + 3)
w(1,0,1)=-8(k - 1)k + 1)

w(0, 1, 1) = 8k

w2, 1,1)=—4k - 1)k + 2)
w(l,2,1)=-2k - 3)(k + 1)

w3, 2, 1) =-2(k - 1)k + 3)

w(0, 0, 0) = -8k

w(2, 0, 0) = 4(k — 1)
w(l,1,0)=-2(k + 1)
w(3,1,0)=2(k-1)

w(0, 2, 0) = —2k

w(2,2,0)=-2

w(4,2,0)=Fk-1

w(l, 3,2)=6(k + 1)k* +k—4)
w(3,3,2) =2k - 1)k + 3)k + 4)
w(0, 4, 2) = 6k(k? — 5)

w(2, 4,2) = 4k + 2)(k? + 2k - 5)
w(4, 4,2)= (k- 1)k + 4)k + 5)
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w(0, 3, 1) = 6k
w2, 3, 1) = —2(k - 2)(k + 2)
w(4,3,1)=—( - 1)k + 4).

3.3. Nonzero Elements in the Lower Part of Wg") <(11 x 12).

w(0, 0, 3) = 32k(k — 2)(k — 1)(k + 1)(k + 2)
w(l, 1, 3) = 16(k — 2)(k — 1)(k + 1)(k + 2)(k + 3)

w(0, 2, 3) = 16k(k — 2)(k + 2)(k*> — 7)
w(2, 2, 3) = 8(k — 2)(k — 1)(k + 2)(k + 3)(k + 4)

w(l, 0,2) = —16(k — 2)(k — 1)(k + 1)(k + 2)

w(0, 1, 2) = 32k(k — 2)(k + 2)
w2, 1,2) = —8(k — 2)(k — 1)(k + 2)(k + 3)

w(l, 2, 2) = —4(k — 2)(k + 1)(k* — 3k — 16)
w(3, 2,2) = —4(k — 2)(k — 1)k + 3)(k + 4)

w(0, 0, 1) = — 16k(k — 2)(k + 2)
w(2,0, 1) = 8(k — 2)(k — 1)(k + 2)

w(l, 1, 1) = —4(k — 2)(k + 1)(k + 5)
w3, 1, 1) = 4(k — 2)(k — 1)(k + 3)

w(0, 2, 1) = —4k(k? — 10)
w(2,2,1)=—-12(k - 2)(k + 2)
w(4,2,1)=2k-2)k - 1)k +4)

w(l, 0, 0) = 12(k — 2)(k + 1)
w(3,0,0) = —4(k - 2)(k — 1)

w(0, 1, 0) = — 12k
w2, 1,0) = 4(k — 2)k + 2)
w4, 1,0)=—2(k - 2)(k — 1)

w(l, 2, 0) = 2(k — 4)k + 1)
w(3,2,0) = (k- 2)(k + 5)
w(s, 2, 0) = —(k — 2)(k — 1).

3.4. Nonzero Elements in the Lower Part of W‘("‘) -(13 x 15).

w(0, 0, 4) = 64k(k — 3)k — 2)(k — 1)(k + 1)(k + 2)(k + 3)
w(l, 1, 4) = 32(k — 3)(k — 2)(k — 1)(k + 1)(k + 2)(k + 3)(k + 4)

w(0, 2, 4) = 32k(k — 3)(k — 2)(k + 2}k + 3)(k* — 13)
w(2, 2, 4) = 16(k — 3)(k — 2)(k — 1)(k + 2)k + 3)(k + 4)(k + 5)

w(l, 0, 3) = —32(k — 3)(k — 2)(k — 1)(k + 1)(k + 2)(k + 3)

899
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w0, 1, 3) = 96k(k — 3)(k — 2)(k + 2)(k + 3)
w2, 1, 3) = — 16(k — 3)(k — 2)(k — 1)k + 2)(k + 3)k + 4)

w(l, 2, 3) = —8(k — 3)(k — 2)(k + 1)(k + 3)(k® — 5k — 32)
w(3, 2, 3) = —8(k — 3)(k — 2)(k — 1)(k + 3}k + 4)(k + 5)

w(0, 0, 2) = —32k(k — 3)(k — 2)(k + 2)(k + 3)
w(2,0,2) = 16(k — 3)(k — 2)(k — 1)(k + 2)(k + 3)

w(l, 1, 2) = —8(k — 3)(k — 2X(k + 1)(k + 3)(k + 8)
w(3, 1, 2) = 8(k — 3}k — 2)(k — 1)k + 3)(k + 4)

w(0, 2, 2) = —8k(k — 3)(k + 3)(k* - 22)
w(2, 2, 2) = —8(k — 3)(k — 2)(k + 2)(5k + 19)
w(4, 2, 2) = 4(k - 3}k — 2)(k — 1)k + 4)(k + 5)
w(l, 0, 1) = 24(k — 3)(k — 2Xk + 1)(k + 3)
w(3,0, 1) =—8(k — 3)(k — 2k — 1)(k + 3)
w(0, 1, 1) = —48k(k — 3)(k + 3)

w(2,1,1) = 8(k - 3}k — 2)(k + 2)(k + 5)
w(4, 1, 1) =—4(k - 3)(k — 2k — 1)(k + 4)
w(l, 2, 1) = 4(k — 7Xk — 3}k + 1)k + 4)
w(3, 2, 1) = 2(k — 3}k — 2)(k + 3)k + 11)
w(5, 2, 1) =—2(k - 3)(k — 2)(k — 1)(k + 5)
w(0, 0, 0) = 24k(k — 3)(k + 3)

w(2, 0, 0) = —16(k — 3)(k — 2)(k + 2)
w(4,0,0) = 4k — 3}k — 2k — 1)

w(l, 1,0) = 4(k — 3)(k + 1)k + 8)

w(3, 1, 0) = —6(k — 3)(k — 2)(k + 3)
w(5,1,0) =2k - 3}k —2)(k — 1)

w(0, 2, 0) = 4k(k? — 19)

w(2,2,0)=—(k - 17)k — 3)k + 2)

w(4, 2, 0) = —2(k - 3)(k — 2)(k + 5)

w(6, 2, 0) = (k — 3)(k — 2)(k — 1).

3.5. The Matrix W(()"). If y is the rational function given by
4o o
;Z CaoX™ (¥ = X' gT(), -1<x<1,
a=0 k=0

then the Chebyshev series expansion for y can be found from the recurrence relation
(29), with the nonzero elements of W((,") being given by

w(i, a, 0) = 2% <%(a°‘_ i)>'
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4. Numerical Evaluation of X' a}c’ )Tk(x). The standard evaluation for the
finite sum

n
fex) = Z a; Ty (x)
k=0
is that of Clenshaw [3].

Let bn+2 = bn+1 =0
and calculate
“.1 by=a, +2by,, ~bry, k=n,...,1,0.
Then
f(x) = %(by — by).

This result is easily proved using
T (x) =Ty (x) + T) ().

Clenshaw, and Smith [12] show how the numerical values of f"(x)/r! can be
evaluated using similar schemes, and Hunter [6] points out how the method is re-
lated to synthetic division for evaluating a polynomial and its derivatives.

With b}, = %a,, k=0,1,...,n,
let by p , = bpyy, =0
and calculate
“.2) b, =2} +2xbl, b, k=n-r...,1,0.
Then

f(r) X r
20 = i - o),

forr=0,...,n.

Then (4.2) incorporates (4.1), and the values of f and its derivatives can be
evaluated.

At the points x = 0, + 1, the particular values for f, and its derivatives, are

)= 3 1y,

i=1
FO) =3 CF@- Dy,
43) ‘=:
') =42 1)Y*1i%a,,,
i=1
r"o0)y=4 i GO NGE+ 1)+ Day,y -

i=1
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oo

f(l) = Z' aia
i=0
@4) fy=3" ia,
i=1

rm=1 5 6-nea+ e,
i=2

ey =3 e,

i=0

@.5) =2 (1tiia,

i=1
ren=1 fi 1 - DG+ e,

For many simpie applications the values of a solution and its derivatives at
x = 0, £ 1 are sufficient for implementing initial and boundary conditions. How-
ever, the author has successfully used (4.1), (4.2) with the back-substitution method,
to impose conditions at any points.

5. Examples. As foreshadowed in the Introduction, the existence of the ma-
trices {W,(")} removes the need for a separate approach whenever a differential
equation with simple polynomial coefficients is solved in Chebyshev series. As ex-
amples, expansions are obtained for aJ,(x)/dv, the derivative of the Bessel function
with regard to order, and for the integral [ J,(f)dz. Expansions for J,(x), J,(x)
are also obtained as steps in the calculations.

In order, these functions have series expansions:

;.1) J,(x) = (hx) i D*Cax)** /[T + k + 1],
k=0
i?—v J,(x) = J,0e)n(%x)

(5.2) o
— ) Y C1FCE)* Ry + k + DRI + k + 1)],
k=0

(3) [, T0dr = oaxy 2 3 (- 1)5a0)?* [k + 2% + DIE £ & + 1)].
k=0

I'(v), Y(v) are the gamma and digamma functions, respectively.
5.1. J,(x) and aJ,(x)/dv. With suitable initial conditions, J,,(x) is a solution
of the differential equation

x2y" +xy' + (x2 - )y = 0.
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Writing J,,(x) = (%x)"u,(x), then
5% J,(x) = (%x)"{uv(x)ln(%x) + ga; u,,(x)} = J,(0)ln(%x) + (4x)” 53; u,(x).
Hence, on comparing this with (5.2),

2@ == T 1Ry + & + DIITE + &+ D).
k=0
Writing u = u,(x), w = 3u,(x)/dv, then u and w, which are even functions
of x, satisfy the differential equations

xu" + Qv+ 1 +xu=0,

with u(0) = 1/T(» + 1), [¢'(0) = 0], and
xw" + @+ D' +xw=-2

with w(0) = — (v + 1)/T(» + 1), [W'(0) = 0].
An equation satisfied by the odd function u'(= du/dx) = v, is

xv" 20+ 1 +xv=-u

with [v(0) = 0], v'(0) = —%/T(w + 2).
The series

u(x) = i' o T (x/c),  vx)= 2 "B Ti(x/c),
k=0 k=0

wx) = 2 1 Tuxfc), —-c<x<g
k=0

are then found, after a change of variable, x — cx, by solving the equations
xu" + Qv+ '+ cxu =0, u(0) = 1/T@ + 1),
"+ 20+ 1 +c2xv=—cu, V'(0)=-%c/Tw+2),
aw” + Qv+ Dw' +c%xw=—-2cv, w0)=-y@+ 1)/TE+1),
where -1 < x < 1.
The recurrence relations for { o, }, {8}, { v, } are
Ak + Day_3 + (k= D{4k + 1)k + 20— 1) — ? }oy_,
+k+ 1D){4k - Dk =20+ 1)~ Yoy, + k- Doy, 5 =0,
k=3,5...,
Ak + 1Bz + (k — D{4k + 1)k + 20) - *}B,_,
+ (k + D){4k — 1)k = 20) = c? Wy + Pk — 1By
=—2c(k + Day_, +dckay —2c(k — Doy_,, k=2,4,...,

Ak + Dy + (k- D{ak + Dk +20—1)—c?}y,_,
+E+ DAk - DE-20+ 1) = Yypy, + k= Dy,
= —dc(k + 1)By_, + 8ckBy —4c(k — DB_,, k=3,5,...,

together with the appropriate initial conditions.
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In Abramowitz and Stegun [1], ['(x), Y(x) are tabulated for x = 1(0.005)2
and x = 1(1)101. However, values of I'(x), ¥(x), for general x can be found by
using a Chebyshev series for 1/T'(1 + x), 0 < x < 1, given by Clenshaw [3]. Not-
ing that

d_ 1 __y(d+x)
Cdx T(1 +x) ra +xy’
then Egs. (4.1), (4.2), and the recurrence relations

Fee + 1) =xI'(x), Y+ 1))=Y+ 1/x,

lead to the values of the gamma and digamma functions for any x for which the
functions are defined.

5.2. The Integral fy J,(¢) dt. Writing f§ J,(£) dt = (%x)"*!z, then it follows
that the even function z satisfies

22"+ Gu+apz” + Qv+ D +2) +x% + @+ Dxz =0,
2(0) = 2/T(w +2), z'(0)=0, z"(0)=-1/[2(v + 3)I'( + 2)].
The Chebyshev expansion
x)= 2 o Ty (x/c),
k=0
is found by letting x —> cx, and solving the equation
x2Z" + @v + Az + Qv+ 1) +2)" + x4+ v + 1)ePxz =0,

z(0) = 2/T(v + 2), Z'(0) =0, z"(0) = —c2/[(v + 3w + 2)1, -1<x<1.
The recurrence relation is

Ak + Dk + 2)(k +v—3)a,_,
+2(k = 2)(k + 2){2(k + )k + v = 1)k + 20 = 2) ~ (v — 2) Jay_,
+ 2k{ 4k — 2)(k + 2)(k* = 20> + v = 1) = *(K* + 3v — T)}a,
+ 2k + 2)(k — 2){2(k -~ 1)k —v + 1)k — 20 + 2) + (v - 2)}ay,,
+2k-1)k-2)k—v+3ap,,=0 k=4,6,....

Conclusion. The matrices { Wf")} have been presented as a means of quickly
establishing the recurrence relations for the coefficients in the Chebyshev series solu-
tions of certain differential equations.

Second- and third-order equations were solved in the examples, and first- and
fourth-order equations can be solved in a similar way. The examples were of initial
value type, but boundary value conditions can be simply applied.

Linear differential equation eigenvalue problems can be formulated algebraically
as in [10], but shooting methods can be used successfully for both linear and non-
linear problems. A subsequent paper will report on these problems.
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