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The Convergence and Partial Convergence
of Alternating Series

By J. R. Philip*

Abstract. The alternating series is }::=l jpnf(n) = [j1f, with f a single-signed mono-
tonic function of the real variable x. The in are 1, their sign fixed by repetition of
the ‘template’ [j] of finite length 2p. [j] constitutes a difference scheme of ‘differen-
tial order’ D, which can be determined. The principal theorem is that [j]f is ‘partially
convergent’ if and only if limx_,.,,f(D_ 1)(x) is bounded. A series is partially convergent
when the limit as M —> o of the sum of 2pM terms exists. For [j] ‘pure’, the im-
proved Euler-Maclaurin expansion (IEM) gives the compact representation

B,,(%)

() . _ D) - 2r 2r (2r+D-1) _
@n s 2 ,;,(2") ' ©,), 1-p<6,<p.

S(p) is the sum, u(D) is the Dth ‘template moment’, and the B,, are Bernoulli num-
bers. Efficient means for practical summation of these series follow also from IEM.
In illustration, 10 alternating series with D ranging from 1 to 3 are summed using
IEM. It is found that the leading term of (A) with 6, = % gives a simple but effec-
tive estimate of sums. The paper also gives a comparison with Euler’s transformation
in the case p = 1 and discusses sums to N terms with N/2p nonintegral and finite but
large.

1. Introduction. Perception of the sum of the series Ef,v=1 u(n) as an approxi-
mation to an integral of u(x) goes back at least to Euler and Maclaurin. The present
study is based on the further perception of alternating series of various levels of com-
plication as approximations to integrals not of u(x), but of linear combinations of ap-
propriate derivatives of lu(x)l. From this viewpoint we examine the convergence, and
the practical arithmetic summation, of various alternating series.

In what follows m, M, n, N, p, q, w, W, all denote positive integers; m
and » run through 1, 2, . . ., to M and N, respectively; M and N may be finite or in-
finite; p and W are finite; ¢ runs through the values 1, 2, . . ., 2p; w may assume the
values 1, 2, ..., W. The integer D may assume the values 0, 1, 2, . . ., but may not
exceed 1 + log,p. The integer k may assume the values 0, 1, 2, . . . , but may not
exceed 1 + log,p —D. The integer i runs through the values 0, 1, . . . , k. The inte-
ger g may assume any finite value 0, 1, 2, . . . . The integer 7 may assume the values
0,1,2,...,00
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908 J. R. PHILIP

2. The Template of an Alternating Series. We are concerned with alternating
series of the form 2’,:'_:1 jn f(n), where f(n) is a single-signed function of the real vari-
able x. Without loss of generality we take f(x) positive, at least in the relevant range
of x. All j, are either +1 or —1, their signs being established through continued rep-
etition of the template [j], which specifies the sign of the first 2p terms. We require
that a template of length 2p contain just p +’s and p —’s. Both the template and the
associated series will be said to be of degree p. Examples of templates of degrees 1 to
4 are given in Table 1. Evidently, Ez.’;_l jq =0and IZI,:;I jnl < p for all N.

TABLE 1
Some templates and their properties

Template Degree Order

[31 P D

+ - 1 1
+ - -+ 2 2
+-+--+ 3 1
++---4+ 3 1
+ -4 -=--++ 4 1
+ - =+ - =-++ 4 1
+4+--=--++ 4 2
o+ -4+ - 4 3

We use the notation

N N
n=1 n=1
The sum of the first 87 terms of 2% — 3% — 4% + 5% + 6% — 7% - 8% 4+ | js
thus written S(+ — — +, (x + 1)”, 87). Template representation of a series is not
unique. For example,

SH——+, (x + 1)%,87) =2% —S(+ + — -, (x + 2)*, 86).

When the sum exists as N —> oo, we omit N and write simply S(, f(x)). We
shall omit j and/or f(x) from the notation, when we may do so without ambiguity.

We observe that, since the j,, are generated by continued repetition of the tem-
plate,

M 2P
0] S@pM) = 3~ 3 j f@p(m—1) +q).

m=1q=1
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In later sections we shall employ the more concise notation
[1F=5G f&) = X jnf).
n=1

3. Convergence, Partial Convergence, and Divergence. ’For certain alternating
series lim,,_, .. S(2pM + q — 1) exists for at least one value of g in 1 < g < 2p. We
shall call such series partially convergent.

THEOREM 3.1. A partially convergent series is convergent if and only if
lim,_, . f(x) = 0.

In this case, and in this case only, lim,, ., S(2pM + q — 1) exists for all q in
1 < g < 2p and is independent of q.

We thus employ the term ‘convergent’ in its classical sense. Our use of the term
‘divergent’ is, however, nonclassical. We describe as divergent series which are neither
convergent nor partially convergent; i.e. for which lim,,_, .S(2pM + q — 1) does not
exist for any q.

4. The Differential Order of a Template. Partial convergence of the series [j]f
evidently depends on properties of both the template [j] and the function f(x). The
relevant property of the template is its differential order.

A template is a (generally rather inefficient) finite-difference scheme. It follows
from the mean value theorem that the sum S(2p) can be represented as a linear combi-
nation of derivatives of f thus:

2p k ,
S@2p) = >:l igf@ =3 «fPtIe),
q:

i=0

@

1<D<D+k<1 +log,p, o; = finite constant, 1 < 6, < 2p.

The representation (2) is not necessarily unique. On the other hand, the differential
order of a given template, D, is uniquely determined by its properties of symmetry
and antisymmetry.

We formalize the definition and evaluation of D by introducing the gth tem-
plate moment, u(g), through the equation

2p
®) HE) = 2 jla—p-%E.
q=1

We then define the differential order (order, for short) of a template, D, as the
smallest value of g for which u(g) # 0. The order of selected templates of degrees
1 to 3 is shown in Table 1.

We note that applying (2) to (1) gives the representation

M k
@  sem =3y ¥ ofPP0pm-9,,), 0<6,,<2p-1

m=1 i=0

Reverting to (2), we introduce the concept of a pure template. We say that
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a template is pure when a representation (2) exists with X = 0, i.e. with

2p
®) S@p) = X i, f@) = ag fP)O,).
q=1

Six examples of pure templates will be found in Table 4.

The second equality of (5) enables us to evaluate a, for pure templates. We
replace each f(¢) and also f(P )(00) by its Taylor series about x = p + %. Equating
coefficients of fw )(p + 1) in the two resulting expansions gives

©® ay = u(D)/D!,

so that (5) becomes
D
sp) = 40) s ®)q,),

5. The Monotonic Function f(x). We require here that f and all its derivatives
7 be finite monotonic functions of x, at least in 1 < x <oo, fis positive and each
7 is necessarily single-signed. We require further that all decreasing f<” decrease to
zero, and that all negative increasing [ (") increase to zero. The class of functions we
admit includes the nondecreasing polynomial of degree ¢ (¢ = 0), so that we take
‘monotonic’ to embrace the cases f (") = constant = B>0and f M =0forr>t+1.
In computations later in the paper we need f ® finite in 1 — p < x < . We may al-
ways ensure this without loss of inherent generality by, if need be, discarding leading
terms of a given series and adjusting the origin of x.

6. The Alternating Series of Degree p and Order D. We investigate the series
[71f, with [j] of degree p and order D. We may rewrite (4) as

k
SCpM) = 3. oS (2pM),
) =
S2pM) = 3 fP*OCpm -6, ).
m=1

It is evident that lim,,_, . S(2pM) is bounded provided that each lim,,_, . S;(2pM) is
bounded.
The mean value theorem gives the following upper and lower bounds on

S;2pM):

M
3 fPHQm-2m+1), S FO(2pm).

m=1 m=1

The choice of upper and lower depends on the sign of f (D+i+1) 1t now follows
from the Maclaurin-Cauchy integral test for convergence [1, p. 294], [2, p. 33] that
the bounding series both converge as M —> o if and only if lim__, @+ 1)(x) is
bounded. Now, if limx_,,,fw"l)(x) is bounded, lim__, ., f(D'“"l)(x) =0fori=>1.
It follows at once that the sole property of [j] which determines the partial conver-
gence of [j]f is its differential order, D.

We have thus established the theorem.



PARTIAL CONVERGENCE OF ALTERNATING SERIES 911

THEOREM 6.1. The alternating series [j1f is partially convergent if and only if
lim,_, . f o "”(x) is bounded, where D is the differential order of the template [j] .

We then have

THEOREM 62. The alternating series [j1f is convergent if and only if
lim_, . f(x) = 0. Since D > 1, it follows from Theorem 6.1 that all series with

Since D > 1, it follows from Theorem 6.1 that all series with lim__,, f(x) = 0.
are partially convergent; so, in view of Theorem 3.1, they are convergent. Forp = 1
this theorem is simply Leibnitz’s rule [1, p. 131] that (in the present terminology)
alternating series of degree 1 are convergent if and only if f(x) decreases to zero.

Evidently, we have also

THEOREM 63. The alternating series [f]f is divergent, if and only if
lim,_, ., f (D=1)(x) does not exist.

7. Examples of Partial Convergence. Tables 2 and 3 give some examples of the
consequences of Theorems 6.1, 6.2, and 6.3. Table 2 sets out the convergence, partial
convergence, and divergence of [j]f when f{x) = (x + a)""'l/z forv=-2,-1,0,1,2.
The same table holds, of course, for any sequence of nonintegral powers v + z with
0<z<1.

TABLE 2
Partial convergence of alternating series of order D
for f’s fractional power functions

D
f 0 1 2 3 4
(x, + x"3/2 cv cv cv cv cv
(xo + x)“l/2 DV cv,3 cv,2 cv,1 cv
(xo + x)l/2 DV DV PC,2 PC,1 PC
(x, + 0372 DV DV DV PC,1 PC
(xo + x) 5/2 DV DV v DV PC
Notes: 1. Results for nonalternating series are shown in column D = 0.

2. xg > -1,

3. CV, convergent. PC, partly convergent. DV, divergent.

4. A numeral following CV or PC indicates the number of sums for these

cases given for x5 = 10 in Table 4.
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Table 3 gives similar information for certain f’s on the margins of convergence
[2, p. 351, [3, p- 43].

TABLE 3
Partial convergence of alternating series of order D
for f’s on the margins of convergence

D
£ o] 1 2 3
W=l (w) W) 1+e]7t
(x_ + x) II. &n (x_ + x)(&n (x_ + x) cv cv cv cv
o w=1 o o
i W (w) -1
[_(xo MR P x)] DV cv cv cv
-€
[Jln(w) (x, + x)] DV PC PC PC
En(w) (x, + %) DV DV PC PC
xo+x
-€
J[R.n(w) X J dx DV DV PC PC
1 1
XO
xo+x
Jln(w) xl dxl DV DV DV PC
Xo
XO-TX xo-!;xz . 'I_e
()
DV P
J J [En X dxl dx2 DV DV C
XO xO
x0+x x?+x2
W) DV DV DV DV
J 2n Xy dxl dx2

Notes: 1. Results for nonalternating series are given in the column D = 0.

2. Everywhere x is taken large enough to avoid negative logarithms.

3. ln(w)x denotes the w-fold repeated logarithm of x. Thus |n(2)x means Inln x.

4. W is finite, but may be taken as large as we please. € is definitely positive
nonzero, but may be taken as small as we please.

5. CV, convergent. PC, partly convergent. DV, divergent.

8. The Improved Euler-Maclaurin Expansion. We sum the alternating series
which interest us here by means of the following improved form of the Euler-
Maclaurin expansion [4]:

N N+%)h
Z f(xo +nh)~h*l fxo+( +%)
n=1

x+%h f(x)dx

®)
+ 3 a2 [FE Dy + k) = FOT (e, + (V + B))]

r=1
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with
1-2!72r B,,(#)
©) a,= -

rT T @y T e

The B,, are the Bernoulli numbers [2]. Values of @, for r = 0 to 6 are tabulated in
[4]. ay=-1;a, = 1/24;a, = —17/5,760; a; = 31/967, 680.
A compact result follows from (8) when the series [f]f is partially convergent

and the template [j] is pure. Putting (5) into (1), and then using (8), yields in the
limit as M —> oo,

, SD

10 SO~ 5 @pPrarertbE),  1-p<o
2P r=0
We write S®) for limy,_, ..(2PM).
For a convergent alternating series with the pure template [+ -],p=1,D =1,
ay = —1, and (10) reduces to

() S~-%3 2%qr?9@,), 0<6,<I.
{r=0
A simple estimate of S®) when [f] is pure follows from (10). Retaining only

the leading term of the expansion, replacing 6, by its midrange value, namely %, and
using (6), we obtain

@ _ _ D) PV

where we write SS,” ) for this estimate of S®°). When the series is convergent we re-
place S in (12) by S, since it is then an estimate of S. In Section 10 the efficien-

cy of (12) is tested by comparing S, or S¢P) with more precise estimates of S or s®)
found using (8).

9. Euler’s Transformation. The classical technique for summing slowly conver-
gent alternating series of degree 1 is Euler’s transformation [1, p. 144], [2, p. 62],
[5, Eq. 3.6.27]. On the other hand, the improved Euler-Maclaurin expansion (8) has
been found superior to Euler’s transformation when applied to the practical summa-
tion of series of this type [4]. Using the mean value theorem, we may put Euler’s
transformation into a form comparable to (11):

(13) S=%3 CHrOe), 1<¢,<1+r
r=0

We see that the decreasing terms leading off the improved Euler-Maclaurin expansion
(11) tend to decrease more rapidly than those of (13), at least so long as the nearest
singularity of f is not very much closer to the points x = 6, than to the points x = ¢,.
The superiority of (8) for practical summation is therefore unsurprising.
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10. Practical Summation of Convergent and Partially Convergent Series. For
the practical arithmetic summation of convergent or partially convergent alternating
series of degree p we use (8) in the following form:

) 2p

(14) S or S® ~§ll-, > @', 3 jFPG-p), F&) = [ fE)dx.

r=0 q=1
For r > 1 successive terms of asymptotic expansion (14) alternate in sign so that up-
per and lower bounds on § or S®) are readily established. If greater accuracy is re-
quired when only the first few terms decrease in magnitude, this can be achieved by
arithmetically summing leading terms of [f]f, and applying (14) to the series that re-
mains.

TABLE 4

Sums of alternating series [j] f of order D

- Sy o S5 o
£ o] b P r=1 2 3 sfp) s,f”g/s“’)
o+ V2 4. 1 o 0.15417 160 0.15417 324 0.15417 320 0.1543 1,001
PO 1 o 0.30779 2 0.30784 7 0.30784 1 0.3086  1.002
PP 1 o 0.46018 0.46066 0.46053 0.4629  1.005
PR 2 o 0.00722 9 0.00724 1 0.00723 9 0.00736  1.014
PO 2 o 0.0273 0.0283" 0.0276 0.0206  1.04
oo 3 o 0.00171 0.00199" 0.00172 0.00210  1.06
o +0Y2 o4 2 PC -0.07690 6 -0.07691 9 -0.07691 8 -0.0772  1.004
bt 2 Pc -0.3076 -0.3087" -0.3083 -0.309 1.001
b - 3 Pc -0.0072 —0.0074* -0.0073 _0.0073 0.9
+0¥ o h w4 3 pc 0.2284 0.2201* 0.2288 0.231 1.008

Notes: 1. CV, convergent. PC, partly convergent.

2. For convergent series, S(r) is estimate of § given by r + 1 terms of ex-
pansion (5). For partly convergent series, Sg?)) is estimate of S(p) given
by r + 1 terms of expansion (5).

3. An asterisk indicates a sum to the term before the numerically least. In
some other cases for r = 2 or 3 further calculations are needed to iden-
tify the numerically least term unequivocally.

4. S, and S?) are estimates of § and S(p) given by (12).

Table 4 shows for 10 alternating series the estimates of S or %) found by sum-
ming (14) to r = 1, 2, and 3. For all the series summation to r = 2 (i.e. a 3-term
sum) gives usefully close upper and lower bounds on S or S®.

All the templates of Table 4 are pure, and it is of interest to compare the mod-
ified Euler-Maclaurin sums obtained from (14) with S, or S,(}’ ), the estimates from the
simple formula (12). We see that (12) always gives the order of magnitude of the sum
correctly. The error is 1% or less for 7 series, and is less than 6% for all 10. Unsur-
prisingly, formula (12) is least accurate when expansion (14) is least accurate.
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11. The Frequency of Partial Convergence. When, for an antisymmetric tem-
plate, we have lim_ _, ., f(D"l)(x) = 0, the sum of pM terms converges as well as that
of 2pM terms, with S(*P) = §®)_ More elaborate patterns of partial convergence evi-
dently occur for templates with higher orders of antisymmetry. The character of the
relevant theorems is clear, but we shall not develop them here. We observe in conclu-
sion that the four partly convergent series of Table 4 converge for sums of 2M, 4M,
2M, and 4M terms, even though they are of order 2, 4, 4, and 4, respectively.

12. Summing Finite Series. With § (®) known, S@V) for N large but finite can
be estimated simply. We take as an illustration the series [+ — —+ — + + —] (10 + x)3/2
for N taking all integral values in 108 £ 4. To two decimals S(10%) = §(®) = 0.23,
the numerical value following from Table 4. Neighboring S(V)’s are then found by
simple addition. The resulting values are shown in Table 5. The table illustrates well
the fluctuating character of the sums of partially convergent series. Note that here
every fourth sum converges even though p = 4.

TABLE 5

Values of S(+ ——+ -+ + —, (10 + x)312, N)
for 105 -4 <N<10%+4

N S(N)

108 - 4 0.23
10% - 3 -1,000,011,999.79
108 - 2 1,500.2
100 -1 1,000,016, 500.28
10° 0.23
10 +1 1,000, 018,000. 28
108 + 2 -1,499.78
10% + 3 -1,000,022,499.85
108 + 4 0.23

13. Concluding Remarks. We conclude with some brief remarks on generaliza-
tions and extension of the present work.

(a) Our approach can be extended from binary templates to ternary ones with
the j,, assuming the values +1, 0, —1. Extension to templates with the j, taking any
finite number of values (not necessarily including +1 and 0) is possible; but series gen-
erated by such elaborate templates tend to be artificial and uninteresting.

(b) We may gen-e—r;l-iiie'arlso by relaxing the constraint that 23’; 1/q =0, but
this seems unlikely to be particularly useful or illuminating.
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(c) There is an inverse strategy for generating partially convergent alternating
series: For any given template [j], we may write

2p

s@pm) = 3 j fC2p(m - 1) + q),
q=1

where s is the sum of the mth group of 2p terms. We now choose the function s(2pm)
so that the series Z,, _ ;s(2pm) is convergent and has the sum . We then have that,
for any solution ®(x) of the difference equation

2p

sG) = 3 j flc—2p +q),

a=1
the series [;]® is partially convergent with S®) = T.
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