Exponential Laws for Fractional Differences

By Godfrey L. Isaacs

Abstract. In Math. Comp., v. 28, 1974, pp. 185-202, Diaz and Osler gave the following (formal) definition for $\dot{\Delta}^{\alpha}f(z)$, the α th fractional difference of f(z): $\dot{\Delta}^{\alpha}f(z)=$ $\sum_{n=0}^{\infty} A_n^{-\alpha-1} f(z+\alpha-p)$. They derived formulas and applications involving this difference. They asked whether their differences satisfied an exponent law and what the relation was between their differences and others, such as $\Delta^{\alpha} f(z) = \sum_{p=0}^{\infty} A_p^{-\alpha-1} f(z+p)$. In this paper an exponent law for their differences is established and a relation found between the two differences mentioned above. Applications of these results are given.

1. Introduction. In [2, p. 186] Diaz and Osler give the following definition for $\dot{\Delta}^{\alpha} f(z)$, the α th fractional difference of f(z):

(1)
$$\dot{\Delta}^{\alpha}f(z) = \sum_{p=0}^{\infty} A_p^{-\alpha-1}f(z+\alpha-p),$$

where $A_p^{-\alpha-1}=(p-\alpha-1)=(-1)^p\binom{\alpha}{p}$. (Note: in [2] $\dot{\Delta}^{\alpha}$ is written Δ^{α} .) Since $A_p^{-\alpha-1}=O(p^{-\alpha-1})$ as $p\to\infty$, the series is convergent for every z, if f(t)= $O(t^{\alpha-\epsilon})$ ($\epsilon > 0$) as $|t| \to \infty$. Diaz and Osler show [2, p. 189], that if z and α are fixed and if (in addition to the order condition above) f(t) is analytic in a region R containing the points $t = z + \alpha - p$, $p \ge 0$, then $\dot{\Delta}^{\alpha} f(z)$ may be put in the form of a line integral round a contour in R. They ask [2, p. 201] whether there is an exponent law for $\dot{\Delta}^{\alpha} f(z)$ of the form

(2)
$$\dot{\Delta}^{r+s}f(z) = \dot{\Delta}^r\dot{\Delta}^sf(z).$$

If $s_n = f(n)$, we obtain formally, for the sequence s_n ,

(3)
$$\dot{\Delta}^{\alpha} s_n = \sum_{p=0}^{\infty} A_p^{-\alpha-1} s_{n+\alpha-p}.$$

If $\alpha = 0, 1, 2, \ldots$, the series terminates at $p = \alpha$, and gives successive "backward differences," starting (at $\alpha = 1$) with the difference $\dot{\Delta}^1 s_n = s_{n+1} - s_n$.

2. An Exponent Law. In [3] the following definition for the α th fractional difference of a sequence s_n was used:

(4)
$$\Delta^{\alpha} s_n = \sum_{p=0}^{\infty} A_p^{-\alpha-1} s_{n+p},$$

the series being supposed summable in some Cesàro sense. The definition is due to

Received January 2, 1979.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 33A70, 40A05; Secondary 65N10; Key words and phrases. Fractional differences, successive differences, exponent law, summability of series.

Chapman [1]. For $\alpha = 0, 1, 2, \ldots$, the series terminates at $p = \alpha$ and we get successive "forward differences" starting (at $\alpha = 1$) with the difference $\Delta^1 s_n = s_n - s_{n+1}$. In fact, as is easily verified,

(5)
$$\Delta^{\alpha} s_{n} = (-1)^{\alpha} \dot{\Delta}^{\alpha} s_{n} \qquad (\alpha = 0, 1, 2, \ldots).$$

If α is fractional, the formula (3) fails to make sense, since $\dot{\Delta}^{\alpha}s_n$ takes s_n off its domain; further, (5) is no help since $(-1)^{\alpha}$ is neither real nor unique.

In [3, Theorem 1] the following exponent formula was obtained for the fractional differences (4):

$$\Delta_{(C,\lambda)}^{r+s} s_n = \Delta_{(C,\lambda+s+\epsilon)}^r \Delta^s s_n,$$

where $\lambda \ge -1$, $\lambda + s \ge -1$, $r + s \ne 0$, 1, 2, ..., $\epsilon = 0$ or > 0 according to whether s is or is not an integer, and (unfortunately) r < 0 in the case $s \ne 0, 1, 2, \ldots$. Here it is assumed that the left side is summable (C, λ) . (The series giving $\Delta^s s_n$ is then automatically summable (C, μ) , where $\mu \ge \max(\lambda + r, -1)$.)

Because of the failure to relate the definitions $\Delta^{\alpha}s_n$ and $\dot{\Delta}^{\alpha}s_n$ in the case $\alpha \neq 0, 1, 2, \ldots$, it did not seem likely that (6) could be of help in finding an exponent law of the type (2). However, if we write (2) out formally we obtain

(7)
$$\sum_{p=0}^{\infty} A_p^{-r-s-1} f(z+r+s-p) = \sum_{k=0}^{\infty} A_k^{-r-1} \sum_{m=0}^{\infty} A_m^{-s-1} f(z+r+s-k-m),$$

and if we write (6) out, we get

(8)
$$\sum_{p=0}^{\infty} A_p^{-r-s-1} s_{n+p} = \sum_{k=0}^{\infty} A_k^{-r-1} \sum_{m=0}^{\infty} A_m^{-s-1} s_{n+k+m}.$$

We see that in (7) the *same* values of f are used on both sides, namely f(z+r+s-q), where $q=0,1,2,\ldots$, the jump from f(z) to f(z+s-m) occasioned by $\dot{\Delta}^s$ being overlaid by the subsequent jump due to $\dot{\Delta}^r$. Thus, if we put

(9)
$$s_q = f(z + r + s - q) \quad (q = 0, 1, 2, ...)$$

in (8), with n = 0, we obtain (7). We have thus obtained the following exponent law for Diaz and Osler's differences:

THEOREM 1. Let $\lambda \ge -1$, $\lambda + s \ge -1$, $r + s \ne 0, 1, 2, \ldots$, $\epsilon = 0$ or > 0 according as s is integral or fractional, and r < 0 if $s \ne 0, 1, 2, \ldots$. Then

(10)
$$\dot{\Delta}_{(C,\lambda)}^{r+s}f(z) = \dot{\Delta}_{(C,\lambda+s+\epsilon)}^{r}\dot{\Delta}^{s}f(z),$$

under the assumption that the left side is summable (C, λ) .

3. A "Converse" Exponent Law. In [3, Theorem 3] a "converse" result to (6) is given, which in its "convergence" form [3, Theorem 3'] is as follows:

$$\Delta_{(C,0)}^{r+s} s_n = \Delta_{(C,0)}^r \Delta_{(C,0)}^s s_n$$

the two *right* side series being assumed convergent. Here (apart from the trivial cases r = 0 or s = 0) r and s must be in the first or fourth quadrant or inside the open triangles with vertices (0, k), (0, k + 1), (-1, k + 1), $k = 0, 1, 2, \ldots$ From this we obtain the corresponding formula for Diaz and Osler's differences:

THEOREM 2. If r and s are in the set S just described,

(12)
$$\dot{\Delta}_{(C,0)}^{r+s} f(z) = \dot{\Delta}_{(C,0)}^{r} \dot{\Delta}_{(C,0)}^{s} f(z),$$

the two right side series being supposed convergent.

The last formula is useful in extending known results of Diaz and Osler. In [2, Table 2.1], they give $\dot{\Delta}^{\alpha}f(z)$ for some special functions f(z). In each case it can be seen that the two series on the right side of (12) are convergent for the value of α (= s) given, and for r and s in the set S; hence, we know that the rth difference of the expression $\dot{\Delta}^{\alpha}f(z)$ ($\alpha = s$) given in the table is just the difference $\dot{\Delta}^{r+s}$ of the function f(z). In short, the functions f(z) given in the table all satisfy the exponent law (12) with suitable restrictions on r and s.

4. An Example. As an example of the above, let

$$f(z) = z^{(p)} = \frac{\Gamma(z+1)}{\Gamma(z+1-p)}$$
.

Then by [2, Table 2.1], with s for α ,

(13)
$$\dot{\Delta}^{s} f(z) = \frac{\sin(\pi z) \Gamma(s-p) z^{(p-s)}}{\sin(\pi(z+s)) \Gamma(-p)}$$

for s > p. (It is assumed that both $z^{(p)}$ and $\dot{\Delta}^s f(z)$ are defined by continuity at points of removable singularity, and that z, p, s are chosen so as to avoid points of unremovable singularity in either of them; thus if, in $z^{(p)}$, z is a negative integer, so must z - p be, and if, in $\dot{\Delta}^s f(z)$, z + s is an integer, then p is 0 or a positive integer.) Now

(14)
$$\dot{\Delta}^r \dot{\Delta}^s f(z) = \sum_{k=0}^{\infty} A_k^{-r-1} (\dot{\Delta}^s f(z+r-k)).$$

Replacing z by z+r-k in (13), we see that $\dot{\Delta}^s f(z+r-k)$ is $O(|z|+k)^{p-s}$ as $k\to\infty$. Hence, since A_k^{-r-1} is $O(k^{-r-1})$, the series in (14) converges if r+s>p. (To avoid unremovable singularities in the terms of the series of (14) we see that if, for any k, z+r-k+s is an integer, then we must take p=0 or a positive integer; and it is gratifying to see that this happens if and only if, whenever z+r+s is an integer, then $p=0,1,2,\ldots$, which is the criterion that $\dot{\Delta}^{r+s} f(z)$ has no unremovable singularity.)

Hence the equality in (12) is true for $f(z) = z^{(p)}$ with s > p, r + s > p, and r, s in the set S (and, of course, $p = 0, 1, 2, \ldots$, if z + r + s happens to be an integer). In particular, if $p \ge 0$ and z + r + s is nonintegral, (12) is true if s > p and r > 0, a useful case. The arguments for the other functions f(z) of Table 2.1 are similar.

5. Relation Between Δ^{α} and $\dot{\Delta}^{\alpha}$. Although there is no extension of the Diaz-Osler differences (1) to sequences, for α fractional, there is an immediate extension of the differences (4) to functions f(z):

(15)
$$\Delta^{\alpha} f(z) = \sum_{n=0}^{\infty} A_p^{-\alpha-1} f(z+p).$$

Diaz and Osler ask [2, p. 201] whether there is a relation between (1) and other dif-

ferences. Now for $\alpha = 0, 1, 2, \ldots$, we can replace ∞ in (1) by α and then replace p by $\alpha - p$. This shows that by (15),

(16)
$$\Delta^{\alpha} f(z) = (-1)^{\alpha} \dot{\Delta}^{\alpha} f(z).$$

But as with s_n in (5), this has no meaning for α fractional.

Let us write for given fixed z and α ,

$$g(u) = f(2z + \alpha - u).$$

Then it is easy to verify:

THEOREM 3. If the series for either side converges, then

$$\Delta^{\alpha} f(z) = (\dot{\Delta}^{\alpha} g(u))_{u=z}$$

where g(u) is given by (17).

This enables us to calculate $\Delta^{\alpha} f(z)$ from known differences of the $\dot{\Delta}$ type. For example, let

 $f(z) = z^{(p)} = \frac{\Gamma(z+1)}{\Gamma(z-p+1)}.$

Then

$$g(u) = f(2z + \alpha - u) = (2z + \alpha - u)^{(p)} = \frac{\Gamma(2z + \alpha + 1 - u)}{\Gamma(2z + \alpha + 1 - p - u)} = \frac{\Gamma(A - u)}{\Gamma(B - u)},$$

say. Thus by [2, Table 2.1, #4],

$$\Delta^{\alpha} f(z) = (\dot{\Delta}^{\alpha} g(u))_{u=z} = \left(\frac{\Gamma(B-A+\alpha)\Gamma(A-\alpha-u)}{\Gamma(B-A)\Gamma(B-u)}\right)_{u=z} \qquad (B-A>-\alpha)$$

$$= \left(\frac{\Gamma(-p+\alpha)\Gamma(2z+1-u)}{\Gamma(-p)\Gamma(2z+\alpha+1-p-u)}\right)_{u=z}$$

$$= \frac{\Gamma(\alpha-p)\Gamma(z+1)}{\Gamma(-p)\Gamma(z+\alpha+1-p)}$$

$$= \frac{\Gamma(\alpha-p)}{\Gamma(-p)} z^{(p-\alpha)}$$

for $\alpha > p$.

By (13) this gives

(18)
$$\Delta^{\alpha} f(z) = \frac{\sin(\pi(z+\alpha))}{\sin(\pi z)} \dot{\Delta}^{\alpha} f(z)$$

when $\alpha > p$, which is a direct extension of (16) to fractional values of α .

Department of Mathematics

Herbert H. Lehman College, City University of New York Bronx, New York 10468

- 1. S. CHAPMAN, "On non-integral orders of summability of series and integrals," *Proc. London Math. Soc.* (2), v. 9, 1911, pp. 369-409.
- 2. J. B. DIAZ & T. J. OSLER, "Differences of fractional order," *Math. Comp.*, v. 28, 1974, pp. 185-202.
- 3. G. L. ISAACS, "An iteration formula for fractional differences," *Proc. London Math. Soc.* (3), v. 13, 1963, pp. 430-460.