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On an Algorithm for Finding a Base
and a Strong Generating Set for a Group
Given by Generating Permutations

By Jeffrey S. Leon!

Abstract. This paper deals with the problem of finding a base and strong gener-
ating set for the group generated by a given set of permutations. The concepts
of base and strong generating set were introduced by Sims [5], [6] and provide
the most effective tool for computing with permutation groups of high degree. One
algorithm, originally proposed by Sims [7], is described in detail; its behavior on a
number of groups is studied, and the influence of certain parameters on its perfor-
mance is investigated. Another algorithm, developed by the author, is given, and it is
shown how the two algorithms may be combined to yield an exceptionally fast and
effective method.

1. Introduction. An important problem in computational group theory involves
the “determination” of the group G generated by given permutations s,,s,,...,s,
on a finite set 2. As G may be quite large even when £ is relatively small, it is seldom
feasible to produce an explicit list of the elements of G. A more realistic goal is to
determine properties of the group G. We would like, at least, to be able to answer
such questions as:

(i) What is the order of G?

(if) Given a permutation g on £, is g € G? If so, write g as a word in §,,

Say vy Spe

(iii) How can an element be selected at random from G?

If {s;,8,,...,8,]} is an arbitrary generating set for G, these questions may be
difficult to answer even when || is quite small. To overcome this difficulty, Sims
[5], [6] introduced the concepts of base and strong generating set. Let G"‘la2m°‘k
denote the (pointwise) stabilizer in G of a;, a,, . . ., 0. A subset {B;,8,, ..., B}
of Q is a base for G on Q, if [63152"'Bk[ = 1. It follows that two elements of G
which agree on a base are identical. A subset T of the group G is a strong generating
set for G relative to the ordered base (8,, B,, . . . , By), if Gﬁl By-Bi_y is generated by
Gg 162611 NT fori=1,2,...,% Thus a base and strong generating set provide
generators for each group in the chain

1=Gp1058, S 081801 S €06, €G-
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In some circumstances, this makes the problem of computing in G dependent on
1261G5 5,8, Gg sy, ,| Tather than IGI.

The concepts of base and strong generating set are most useful when the base
size is small compared to the degree. Not every group has such a base; for example,
the symmetric group S, on n letters has no base with fewer than n — 1 points. How-
ever, a great many interesting groups, especially primitive groups, have very small
bases—often fewer than ten points. For example, the Janko sporadic simple groups
Jy,J,, and J5 in their representations of degrees 276, 100, and 6156 have bases with
3, 4, and 3 points, respectively. Given a small base for G on 2 and a strong generating
set relative to this base, questions (i), (ii), and (iii) are very easy to answer computa-
tionally even when [Q)| is quite large (thousands or tens of thousands); Section 5 gives
details. In fact, Sims has developed algorithms for computing centralizers of elements
[5], conjugacy classes [S], and intersections [6] in groups with a known base and strong
generating set.

Unfortunately, the original set {s;,s,,...,s,,} of permutations seldom forms
a strong generating set (relative to some base) for the group G that it generates. Usu-
ally it is necessary to add additional permutations to the set in order to obtain strong
generation. On occasion it is desirable to specify an initial segment 8, 8,, . . . , f; of
the base. This leads to the fundamental problem:

Given a set {s,s,,...,S,,} of permutations on Q and an ordered subset
* By, B, - - -, By) of 2, extend (B, B,, ..., P) to abase for G =
(84,82, ...,5,and extend {s,,s,,...,Ss,} toa strong generating set

relative to this base.

Sims’ original approach (see [6]) to this problem was based on a theorem of
Schreier [3, Lemma 7.2.2] giving a generating set for a subgroup of a group. Un-
fortunately, the Schreier generating set tends to be quite large, and this method, which
I shall call the Schreier-Sims method, requires an amount of time proportional at least
to the square of the degree (assuming the group is transitive); it seems to be limited,
except under special circumstances, to degrees of a few hundred.

Recently Sims suggested another approach (see [7] and [8]) combining aspects of
the original Schreier-Sims method with an interruptible Todd-Coxeter coset enumera-
tion algorithm. This method, which I shall call the Schreier-Todd-Coxeter-Sims (or
STCS) method, is considerably more complicated than the Schreier-Sims method; so
far, at least, no good theoretical bound on its time requirements has been obtained,
due in part to the unpredictability of coset enumeration. However, the new method
seemed likely to outperform the Schreier-Sims method; moreover, it yielded not only a
base and strong generating set but also a set of defining relators for the group in terms
of the strong generators. Sims coded a version of the new algorithm in the computer
language APL; however, limitations in the APL language prevented testing it on groups
with degrees much over one hundred, at which differences between it and the Schreier-
Sims method might become apparent.

The author has developed a fast interruptible coset enumeration program, coded
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in FORTRAN (with sections in assembler language). He has also developed a version
of the Schreier-Todd-Coxeter-Sims algorithm (in FORTRAN), which uses this coset
enumeration program. This version of STCS has been tested on a number of groups
with degrees between 100 and 10000. It contains several input parameters which con-
trol the manner in which coset enumeration is used. The influence of these parameters
on performance of the algorithm has been investigated, and an attempt has been made
to estimate optimal values for them. Performance turns out to vary considerably with
the values selected for the parameters. With appropriate choices, the STCS algorithm
seems to be quite effective on groups of degree 10000 or higher, provided that a small
base exists. It is especially fast when used to verify strong generation—that is, when
the original set (8, B8,, . . . , By) of () turns out already to be a base for G on £,
and the original set {s,,s,,...,s,,} turns out to be a strong generating set relative
to (B4, B, - - . , Bx)- When additional base points or generators are required, the algo-
rithm is somewhat slower (but still relatively fast). Unfortunately, memory requirements
of STCS are at least double those of the Schreier-Sims method; however, it may be
possible to modify the STCS method in order to reduce memory usage to approxi-
mately that of Schreier-Sims, at the cost of slightly increased execution times.

The author has developed still another method for extending B =
{By,B,...,B;}and S = {s;,58,,...,8,,}. This approach, called the random
Schreier method, combines aspects of Schreier-Sims with selection of (hopefully) ran-
dom elements from the group G. Unlike the other two methods, it yields merely a
probable base and a probable strong generating set; however, it requires exceedingly
little time, and the STCS algorithm may be used to verify strong generation (where
STCS performs best) and, if necessary, to further extend B and S. The random
Schreier method may be programmed to select involutory generators in many cases.?
When it is finished, redundant strong generators may be removed using a technique
described by Sims (see [6, p. 24]). Thus the relatively high memory requirements of
STCS can be reduced by minimizing |S|. Memory requirements of the random Schreier
method are comparable to those of Schreier-Sims. Experimental evidence suggests that
the most efficient way of extending B and S to a base and strong generating set is to
apply the random Schreier method, to eliminate redundant strong generators, and then
to apply the STCS method.

Section 2 summarizes the notation used here. Sections 3, 4, and 5 present back-
ground material necessary for the STCS and random Schreier methods. Section 3 dis-
cusses interruptible coset enumeration, Section 4 gives some simple algorithms for orbit
computations in permutation groups, and Section 5 summarizes those aspects of the
Sims theory of bases and strong generating sets which will be needed here; an analogous
concept, called a strong set of defining relators, also is presented in Section 5. Section
6 describes the author’s version of the Schreier-Todd-Coxeter-Sims algorithm, and Section
7 presents the random Schreier method. Substantial portions of Sections 3, 5, and 6

2 Many algorithms for computing in permutation groups (including STCS) require generating
sets closed under inversion. In this case, an involutory generator requires only half as much memory
as a noninvolutory one.



944 JEFFREY S. LEON

are based on work of Sims; some of this work may be found in references [S] and [6]
and in the unpublished notes [7]. Sections 8 and 9 discuss problems in implementing
interruptible coset enumeration and the STCS algorithm, respectively, on a computer.
Section 10 contains experimental results on the performance of the STCS algorithm;
in particular, the influence of the input parameters on performance is studied.

2. Definitions and Notation. This section summarizes the notation used in this
article. Let

zt=1{0,1,2,...},Z" = {0,-1,-2,. ..},

& = empty set,

|X| = cardinality of the set X,

S = symmetric group on the set .
If G is a permutation group on , let

8 = image of point y in § under permutation g of G (permutations will act on

the right; y&") = (y&)"),

v% = {¥¥ |g € G} = G-orbit of v,

r={¥1g€G,v€T},

Gﬁlﬁz“‘ﬁk = pointwise stabilizer in G of points 8, 8,, . . . , B of Q,

(T = subgroup of G generated by the subset T of G,

1 = identity element of G,

lg| = order of the element g of G.
If X is a set, let

W(X) = set of all words in X,

£(w) = length of the word w € ((X),

e = trivial word (L(e) = 0).
If x — x' is an involutory map on the set X ((x") = x), let

F(X, ") = group generated by X subject only to the relators xx’, x € X,

[w] = element of F(X, ") corresponding to w € W(X),

(X,'|R) = group generated by X subject to relators R U {xx'|x € X}

(R C W(X)) = FX, Y[R, where {[R ') is the smallest normal
subgroup of F(X, ') containing {[w]|w € R}.

If G is any group generated by a set S and if w € (U(S), let

‘w = element of G obtained by multiplying out the word w.
Assume, in addition, that S is closed under inversion and that s’ denotes s~! for
sES. Aword,r € ((S), is called a relator in G if 7 = 1. If R C (I(S) is a set of relators in
G, then G is a homomorphic image of (S, '|R) (the natural homomorp"ism maps
{[RIF)w]to w). If the homomorphism is an isomorphism, R is called a set of defining
relators for G in terms of (S, ).

3. Coset Tables and Interruptible Coset Enumeration. The Schreier-Todd-Coxeter-
Sims algorithm makes use of a process called interruptible coset enumeration. Coset
enumeration was outlined by Todd and Coxeter [10] in 1936. Let X be a finite set
with an involutory map x — x'. Let R and S be two finite subsets of W(X).

A coset enumeration (or Todd-Coxeter) algorithm enumerates right cosets in
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G =(X,'|R) of the subgroup H = (S). If the algorithm terminates, it finds |G : H|
and produces a table giving the action of X on the right cosets of H. An interruptible
coset enumeration algorithm is one that may be stopped while in progress and later
resumed from the point of interruption, possibly with additional relators or subgroup
generators. Sims presents one such algorithm in [7] (in APL); the author has developed
a fast interruptible coset enumeration algorithm (in FORTRAN and assembler).

Considerable effort has been devoted to proving that, under certain restrictions,
coset enumeration algorithms must terminate provided |G : H| is finite. These theorems
will not be needed here because of the special way in which the STCS algorithm uses
coset enumeration; in fact, all that will be needed is a formal definition of coset enu-
meration and several lemmas. The formal definition given here is taken from an ap-
proach developed by Sims (unpublished).

Sims defines a coset table to be a six-tuple T= (X, ', A, t, o, f), where X is a
finite set with an involutory map x — x' (if w = x,x, - - - x; € W(X), w’ will denote
Xty - %), and

(i) A is a finite set, t € A, 0 € A (A* will denote A — {0}),

i) f: A x X — A (if w € W(X), f(\, w) is defined inductively to be
U\, wy), x), where w = w;x),

(iii) f(0o, x) = o for all x € X,

@v) if f(\, X) = u # o, then f(u, x') = A,

(v) if X € A¥, there exists w € (((X) with f(t, w) = \.

Note that, by (iv), the word w in (v) may be taken to be reduced; also w may be
chosen with £(w) < |A#|. If [w,] = [w,] in F(X, "), then by (iv) f(\, w;) =
FOL wy) if FQ\, wy), FQ\, wy) # 0. Also by (iv), f(\, w) = u # o implies f(u, w') = X
for any w € W(X).

We think of A* as being a set of right cosets of H in G, ¢ as being the coset H1,
f(\, x) as being the image of coset A under x, and f(A, x) = o as meaning that the
image is currently undefined. Often ¢ and o are written as 1 and O respectively, and
f(Q\, x) is written as \*.

A coset table T is closed, if f(\, x) # o whenever X # o. In this case, a permu-
tation # of A¥ may be defined, for each x € X, by X: A — f(\, x). Let G denote
(X), where X = {%|x € X}.

Two coset tables T = (X, ', Aj, 4,0, /) and T, = (X, ', A,, 4, 05, f) are
equivalent if there is a 1:1 map j of A; onto A, such that f,(i(?), x) = j(f; (A, x)) for
all X and x, j(t;) = ¢,, and j(o,) = 0,. Equivalent tables differ only in labeling of
cosets.

An (R, S) Todd-Coxeter algorithm is an algorithm which transforms a coset
table T, to a table T, by a series of steps T, = Ty, Ty, ..., Ty = T, such that, up
to equivalence, T;, , is obtained from T; in one of the following ways:

(c.1) [definition of new coset]. For some A\ € Af and x € X with f;(\, x) = o;,
and some p & Ay, set Ay g = AU {u}, 44y =1, 041 = 05 f (LX) = 0,
fip1, XY =N, fip 1, ») = 0,4 if y # X', and £, 1 (n, 2) = fi(n, z) in all other
cases.
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(c.2) [deduction]. For some pair (A, w) € (Af x R) U ({;} x S) such that
w=wpxw, (x €X), u=Fi(\ wy)#0;,v = f(\, wy) # 0, f(u, X) = 0, and
f, %) = 05,36t Apyy = Apy g1 =ty 0py = 0p fr (8, %) = 9, fi4 1 @, X') = p, and
fir1(n, 2) = f(n, z) otherwise.

(c.3) [equivalence]. For some pair (A, w) € (Af x R) U ({4} x S) such that
w=w Wy, 1t = f{\, w;) # 0, » = f;(\, wy) # 0;, and u # v, let ~ be the smallest
equivalence relation on A; such that u ~ v and that f;(n,, x) ~ fi(ny, x) whenever
Ny ~ n, and f;(n,, X), f;(n,, x) # 0;. Let 7 denote the equivalence class of n. Set
Apr={nIn€AY, 0,4, =T, 0,1 =0, and f;, (n, %) =m if there exists k €
7 with f;(k, x) # o; and f;, ;(n, X) = 0;, ; otherwise. (Note f,,,_ , is well defined.)

If [Af| <M for all i, then the algorithm is called an M-coset (R, S) Todd-
Coxeter algorithm.

In a normal coset enumeration, one starts with a trivial table (i.e. A = {o,t} and
f(\, x) = o for all X and x) and a fixed M; then one applies (c.1), (c.2), and (c.3) ac-
cording to prescribed rules until one reaches a table in which all three operations are
impossible; at that time, either IA¥| = M or Tis closed. It can be shown that, in the
latter case, |G : H| = |A#| and G on A¥ is permutation isomorphic to the representa-
tion of G on the right cosets of H (which need not be faithful). In interruptible coset
enumeration, one may apply, in sequence, several Todd-Coxeter algorithms, each with a
different set of relators and subgroup generators.

LemMMA 3.1. If a Todd-Coxeter algorithm transforms T, to T,, then
(i) if‘fa(La, W) ¢ Oa, then fb("b’ W) + ob’
(i) if Fo(tg> W1) = foltas W) # 0, then fi (1, wy) = [ (1, W)

LEMMA 3.2. There exists a bound d, depending only on M and |X\, such that,
in at most d steps, any M-coset Todd-Coxeter algorithm terminates with a table to
which (c.1), (c.2), and (c.3) cannot be applied. (The number of steps is defined to be
the integer N in the preceding definition; note that the bound d is independent of R
and S.) In that table, either (i) IA*| = M or (i) T is closed and (c.3) is impossible.

Proof. If the ith step (ie. T,_, — T,) involves (c.3), there exist u, v € W(X)
with L), £(v) <M, f{y, u) # f(y, v) for j <i, and f(y, u) = fi(y;, v) for j > i. If
it involves (c.1) or (c.2), there exists u € W(X) with £(u) <M, f(y, u) = o; forj <1,
and f]-(cj, u) #o; forj >1i. Since the number of choices for u# and v is bounded in
terms of M and |X|, so is the number of applications of (c.1), (c.2), and (c.3). If
|A#¥] <M and T is not closed, then (c.1) can be performed; thus the last sentence of
the lemma holds.

The next lemma is a slight variation of a well-’known result.

LEMMA 3.3. Let Q be a finite set, S a set of permutations on 2 closed under
inversion (s' denotes s™'), L =(S8), 8 € Q,and A = f~. Let R C W(S) be a set of
relators in L, and let S C (W(S) be such that ._S’ ClLg IfT1, = (S,_'_, Ay by, 04, 1) s a
coset table in which f,(t,, w,) = f,(t5, w,) # o, implies ™ = %2, and if Ty =
S, ", Aps tys 0y, ) is a table obtained from T, by an (R, S) Todd-Coxeter algorithm,
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then

@) £5(tp> W1) = Fo (b, Wo) % 0y implies §*1 = §*2, and ¥ £, (s, w) — 6% (for
fp(tp> W) # 0y) defines a map of A} into A,

(ii) if T, is closed, y maps A} onto A.

Sometimes, in a coset enumeration, the symbol T will be used for both initial
and final tables as well as intermediate ones; in this case, T is implicitly a function of
time.

Algorithms for performing (c.3) are well known (see, for example, [1, Section 3]);
the author’s version, which seems to be quite fast, is given below. It is assumed that
A# is ordered by < such that ¢ comes first. While the algorithm is in progress, T
will denote the set of cosets in A currently known to be equivalent to smaller cosets;
initially T is empty; on termination, A — T will replace A. For v € T, b(v) will be
some coset in A smaller than v and equivalent to v. For X € A, the sequence defined
by Ao = A and A; = b(A,_,), provided A,_, € T, must terminate with A, & T for some
p>0;define b*(\) =2, Forv €T, {(v) will be the next element added to T
after v was added (or o if v is the element ¢, most recently added to T).

ALGORITHM 3.4—EQUIV(T, u, v). The coset table T is modified, as in (c.3), so
as to make cosets 4 and » equivalent.
1. If u = v, algorithm terminates.
2. Set £, = min(y, v), £, = max(u, v), T = &.
Add &, to T;set §(5,) = 0,8 = &,.
Set b(zz) =£;.
3.8et A =§,.
4. Set \* = B*(V).
5. For each element x of X with f(\, x) # 0:*
(a) Set 7 = f(\, x) .
(b) Set 7* = b*(7).
(c) Set f(\, x) = o, f(r,x") = 0.
(@) Set k = f(\*, x).
() Ifk #o:
(i) Set k* = b*(k).
(i) If k™* # 7%
Set £, = min(r*, k*), £, = max(r*, k*).
Add &, to T;set §(§o) = &, §(52) =0,

3 Computation of b*(\) is easy, provided a fast method to check if A € T is available. The
exact method depends on the data structures used. Often a doubly linked list of the points of A
is maintained. Assume that initially § and b provide such a list, that is, that § and b = 6—1 are
permutations, each with just one cycle on A, such that § (0) = t. As the algorithm progresses, 8
and b will continue to provide a doubly linked list of the points of A — T, if one sets { (b(£,)) =
§ (¢,) and b (§(&x)) = b (£5) whenever the algorithm specifies “add &, to T.” Forv &€ T, § (v) and
b(v) are as set in the algorithm. Note that § (b(A)) = X if and only if A & T.

4 The elements of X may be transversed in any order; however, for a particular x, the
condition f(A, x) # o must be checked after 5(a)—5(f) have been performed for any previous
elements of X.
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fo =&.
Set b(,) = &;.
IfFA* =&, set \* =¢,.
O Ifk=o0:
@) Set n = f(*, x).
(ii) If n # o:
(@) Set n* = b*(n).
®) If n* # 2%
Set £, = min(\*, n¥), £, = max(\*, n*).
Add &, to T;set 4($) = &,
6(22) =0, fo =§&,.
Set b(,) = ;.
Set \* = £,.
(iii) If n = o, set f(\*, x) = 7* and f(r*, x") = A*.
6. If X # o, set A = {(N) and go to step 4.
7. Set A = A — T, algorithm terminates.

When a pair 0, and o, of equivalent cosets is discovered, equivalence of b*(ol)
and b*(o,) is implied. If b*(0,) and b*(o,) are already equal, no action is required;
otherwise £, = max(b*(0,), b*(a,)) is added to T, and b(%,) is set to &; =
min(b*(0,), b*(0,)). Cosets in T are processed in the order in which they are added
to T. Processing a coset A in T involves transferring any information about A to A* =
b*(\). Information is available for those elements x of X for which r = A* is defined.
Let 7* denote b*(r). The definitions of A* and 7* are removed from the table. If
both (\*)* and (r*)*" are then undefined, (\*)* is set to 7* and (r*)*" is set to A*;
otherwise a pair of equivalent cosets has been discovered—either (\*)* and 7* or A*
and (r*)*".

4. Orbits and Schreier Vectors. Let Q = {w;, w,, ..., w,} be a finite set
with0 € Q,8 = {s),85,..., 5,,} be a set of permutations on 2, and G =
(81,85, ...,8,). This section gives a computational solution to the problem of de-
scribing the G-orbits on Q. A satisfactory description will consist of

(i) a list containing, for each G-orbit, a representative of the orbit and the length

of the orbit,

(i) a fast method for deciding if two points a; and a, of Q are in the same G-

orbit and, if so, for finding a word w in ((S) with a‘lT’ =a,,
and perhaps of

(iii) a list of the points in each G-orbit.

To facilitate (ii) above, the concept of a Schreier vector will prove useful. Let
=07 7q) be an ordered subset of . A I'-Schreier vector for S on § is
a function v:  — S U Z~ such that

(s.1) v(e) =0if a €I'C,

62) V@ =—iifa=79,%¢&{v,...,7-11%and {7}, ...,%-,}° con-
sists of exactly i — 1 G-orbits,
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(s.3) v(0) €S if « € I'C and « is not of the form of (s.2),
(s.4) for @ € I'C, the sequence defined by
a; =a,
oy = @7 if o) €5,
terminates with ¥(a,) € Z~ for some p.

A T-Schreier vector describes those orbits of G which contain some point of T".
For each such orbit, the orbit representative p is the first point of the sequence v,
Y25 - - - » V¢ lying in the orbit, and v(p) is the negative of the orbit number. For any
point a of I'G, the Schreier vector v, together with S, contains all the information
necessary to determine the orbit representative p of ¢ and to compute a word w €
W(S) with p* = . Define m,(«) to be the point o, of (s.4) and u,(a) to be the word
v(ap_ (ap_3) * -+ v(ay); then p and w may be chosen to be m,(a) and u,(a)
respectively.’ Note that Lu, (@) < |a€| < n, and for an orbit representative Yis
{u,(0)|a € yF} is a right Schreier system (see Hall [3, Section 7.2]), and
{E/v(a) la € 'y? } is a set of right coset representatives for Gy, in G. Two points a;
and a, of I'C are in the same G-orbit if and only if m,(,) = m,(a,), in which case
oc?"(“l)—lﬂ"(”) = @,. Perhaps the most interesting cases are I' = {7y, } (Schreier
vector for one orbit) and I' = Q (complete Schreier vector).

Schreier vectors have been defined for permutation groups; they are also useful
for working with coset tables. Assume, now, that S is any set with an involutory map
s— s (withSNZ™ =¢g), Qisany set, ' = (y,, ..., 74) is an ordered subset of
Q,and T=(S,’, Q, 1,0, f)is a coset table. A I'-Schreier vector v for T is a function
v: @ — S N Z~ such that

(t.1) ¥(0) =0, v(y;) =1,

(t2) v ESif a € Q¥ - {v,},

(t.3) for a € Q#, the sequence defined by

a =a,
Yy = f(ai’ V(Oli)') if V(Oti) €S,
terminates with »(a;,) = —1 for some p.
If (t.2) fails because v(e) = O for some o € Q¥, but (t.3) holds whenever v(c)) € S,
v will be called a partial I"-Schreier vector for T. Only v, is specified in (t.1) because,
by (iv) and (v) in the definition of a coset table, there is only one “orbit” on Q¥. In
fact, nothing is lost in assuming I" = {7, }; usually y, = «. For all a with »(a) # 0,
u,(a) is defined to be the word v(a,_; (@p—3) - -+ ¥(ey); then f(y,, u, (@) = a.
Always m,(a) = 7v,.
For future reference, the process of determining m,(a) and u,(a) from a Schreier
vector v, either in a permutation group or in a coset table, is formalized in the algo-
rithm below.

5 Note that S as well as v is needed to compute my(a) and (). While constructing the
Schreier vector v, one can easily produce a second vector v such that v(a) = o7 whenever wa)ES.
Then m,(a) and u,(a) can be computed from v and v without referring to S. This technique is
especially useful for groups of relatively high degree, where it may be possible to hold v and v, but
not S, in main storage.
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ALGORITHM 4.1-COSETREP (€2, S, v, a, p, w). Initially © and S are
as previously defined (in either permutation group or coset table case), v is
a I-Schreier vector for S on § (or a I'-Schreier vector or partial I'-Schreier
vector for T), and @ € Q. The algorithm sets p to 7,(a) and w to u,(a)
if () # 0; if v(a) = 0, it sets p to O.

If v(a) = 0, set p = 0; algorithm terminates.

Setp=a,w=ce.

If v(p) € Z~, algorithm terminates.

Set w = w(p)w, p = p*®)"! (p = f(p, ¥(0)") in a coset table).

Go to step 3.

SN L=

The next algorithm finds the orbit representatives and orbit lengths for G on I'C
and constructs a I-Schreier vector. If S is ordered by 5; <<s, <<- - - <<s§,,, then
W(S) may be ordered by w; <<w,,if £(w;) < £(w,) or if w;, = wosw* and w, =
wos*w* with s, s* €S and s <<s*. The I'-Schreier vector v constructed by the algorithm
has the property that, for any a € e, u,(@) = min{w|w € 0/ (S), ﬂv(a)q’ = a};also v is
unique with this property. In particular, v is a minimal length Schreier vector, that is,

’e(uv(a)) = mln{/ﬂ(W) lwe W(S)7 ﬂv(a)w = a}.

ALGoriTHM 4.2—ORBIT (R, S, T, ngy, p, I, 8, v). Initially, Q, S, and T are as
previously defined. The algorithm sets n, to the number of G-orbits on
e, p; and /; to the representative and length for the ith orbit,
5,1+...+,i_1+1, c 6,1+.“+,i to a list of points in the ith orbit (with
the orbit representative p; coming first), and v to the I'-Schreier vector for
S on £ having the minimality property defined above.

The algorithm may also be used to construct v when £ and S are part of a coset

table T=(S,’, 2, 1,0, /)

1. Set ny, = 0.
Sett=0,t, =0.
For 8= w;, wy, ..., w,,set ¥(B) =0.
Seti=1.

2. If (y;) # 0, go to step 7.

3. Setny =ny + l,pn0 =9 l"o = 1.
Set »(v;) = —ny.
Sett=¢t+1,8,=1;.

4. Settyg =1ty +1,a= 6,0.

5. Forj=1,2,...,m:

(a) Set B =a'.

(b) If »(8) = 0 (and, in case of a coset table, if B # o0):
(@) Set v(B) =;.
(ii) Set l,,0 = l,,0 + 1.
(iii) Setz=1¢+1,6,=0p.

6. If ty <t, go to step 4.

7. Ifi<g,seti=i+ 1 and go to step 2;
Otherwise algorithm terminates.
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A point of I'G will be termed “found” when it first arises, either in steps 2—3 as
an orbit representative ; or in step 5 as the image 8 of some point o previously found.
A point will be termed “processed” when all the generators have been applied to it.
Points are processed in the order in which they are found; this fact, together with the
order in which generators are applied to a fixed point « in step 5, insures that the
Schreier vector v has the minimality property discussed previously. While the algorithm
is in progress, n, denotes the number of orbits found, ¢ the number of points of ré
found, ¢, the number of the point currently being processed, §,,...,8; ,...,8;
the list of points found; and v(B) is nonzero if and only if 8 has been found.

Step 1 initializes ng, ¢, t,, and v; a variable 7 is initialized to 1. Step 2 checks
whether v, lies in a new orbit; if so, steps 3—6 construct the orbit of ;. Step 3 initial-
izes the appropriate variables to correspond to an orbit of length 1 with representative
;. Step 4 sets « to the next point to be processed, and step 5 processes a; if new
points § are found, they are added to the list of points to be processed, and the orbit
length and Schreier vector are adjusted. If « is not the last point found, step 6 branches
back to step 4 so that the next point may be processed; otherwise control passes to
step 7, which increments i and branches back to step 2 unless there are no more points
of I" to be checked.

Algorithms 4.1 and 4.2 (with T" = Q) satisfy the requirements (i), (ii), and (iii)
for a satisfactory description of the G-orbits on Q. Time requirements of Algorithm 4.2
are linear in mn when I = Q. This follows because step 1 is performed once and
steps 2 through 7 at most »n times; moreover, the time required to perform a given step
once is proportional to n for step 1 and to m for step 5 and is constant otherwise.
Assuming that the number of orbits of G on I'C is small compared to the degree 7,
the principal memory requirements of Algorithm 4.2 consist of m + 2 arrays of dimen-
sion n—one array for each permutation in S, one for §, and one for v.

In Algorithm 4.2, the set S of generators need not be closed under inversion;
however, to apply Algorithm 4.1 efficiently, inverses are necessary.

5. Bases and Strong Generating Sets. As mentioned in Section 1, Sims introduced
the concepts of base and strong generating set to facilitate computation in large per-
mutation groups. These concepts are discussed in [5] and [6]; only a summary of those
results needed for the Schreier-Todd-Coxeter-Sims and random Schreier algorithms will
be given here. An analogous concept, which I shall call strong defining relators, is in-
cluded also.

The notation below will be used continually in Sections 5, 6, and 7.

DEFINITION 5.1.

Q= {w;, w,y,...,w,} is a finite set (with 0 & ),

S={sy,85,...,8,} is a set of permutations on £,

G =(S),

B = (8,,8,,...,B) is an ordered subset of (distinct elements) of £ (possibly
empty),

G®» k+1

D = Ggpypyyr | SISEHL,
S(l)=SnGﬂ B ...ﬂ, ,1<i<k+1,
1P27"Fi-1
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HO =(sO) 1 <i<k +1,

A® = gHD 1 < <k (called the ith basic orbit),

v = {B,}-Schreier vector for S on Q, 1 <i <k,

u®d@)=u @) for 8 € AD 1 <i<k,

v® = {u(')(a) |18 € AD}, 1 <i <k (aright Schreier system of right coset repre-

sentatives for i) in HO,

ny = 1AD] = U], 1 < i<k,

={r,..., p} = subset of (W(S) consisting of relators in G,

R(i) =R N W(SD).

Although B and S need not be a base and strong generating set for G on £, it
will be useful at times to assume the following.

HyroTHESIS 5.2. (i) S is closed under inversion.

(ii) No element of S fixes B pointwise.

Should Hypothesis 5.2 fail to hold, it is necessary merely to delete the identity
from S, if present, and then to expand B until (i) holds and add inverses to S. Note
that (ii) implies S**+1) = & and |[H*+ 1| = 1.

Usually €, S, and B are known initially. Then S@ may be determined by in-
spection. Using Algorithm 4.2, A®, n;, and v(» can be computed; then u()(§) may be
found by Algorithm 4.1. In general, G is more difficult to determine. Note that, by
definition, B is a base and S is a strong generating set for G if and only if no element
of S fixes B pointwise and G = H® fori=1,2,...,k + 1. This leads to several
equivalent conditions for a base and strong generating set.

LemMA 5.3. If no element of S fixes B pointwise, the following are equivalent:

(i) B and S are a base and strong generating set for G.

(ii) H(i) =HGD fori=1,2, , k.

(iii) IH(') HOD| = n, fori=1,2, , k.

Proof. By definition, G(') = GU+1)_ If (i) holds, then H(‘) = G(') = Gi+1) =
HE*+ 1 and (ii) holds. Always G = g If (ii) holds, then G(’) = H(’) implies
G+ = G(’) H(’) = HO* D, and thus GO = H® for all #; hence (i) holds. Equiv-
alence of (u) and (111) follows from HG*+1) C H(') and |[HO®) : H(')l 1B O,

1

CoROLLARY 54. If1 <i<kand B and S(‘+ D) are a base and strong generat-
ing set for H* 1), the following are equivalent:

(i) B and SO are a base and strong generating set for H®.

() — gl+1)

(ii) H‘(ii HO+D),

(i) |HOD:HO+D| =pn,

LEMMA 5.5. Letg € S with ff =B, forl=1,2,...,p— 1. Then there is a
unique integer j with p <j < k + 1, unique words Upy Upp1s o ooy g with u, €
U@ @=p,...,j—1),and a unique element h in Sq, fixing B, . . . s Bp—1> - -
By such that g = hu;_u;_, - - - u, and either

(1) j<kand g} & AD (hence h & HD),
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Q2)j=k+1landh+#1,o0r

B)j=k+1landh=1.
If B and S are a base and strong generating set for G, then g € G if and only if (3)
holds.

The next algorithm determines j and constructs u,, u, 4y, . - _, and h. The
u;’s are chosen in the order listed; at each stage only one choice is poss1ble for u®;
thus uniqueness holds.

ALGORITHM 5.6—ELEMENT (2, S, B, {v®},p, &,j, {%;}, h). Findsj,
{u,}’};lp, and & in Lemma 5.5.
1. Setj=p, h=gb
If j > k, the algorithm terminates ((2) holds if # # 1 and (3) holds otherwise).
If vO)(B ) = 0, the algorithm terminates ((1) holds).
Apply Algorithm 4.1—COSETREP (2, S, v, 8}, p, ;) to find u;
ul ([3]) set h = hu’l
5. Setj=j+ 1and go to step 2.

bl i

Algorithm 5.6 provides an effective means for testing whether g €
U@ yk-1) ... (1) and, in the case of a base and strong generating set, whether
g € G. By uniqueness in Lemma 5.5, [U®U*=D - .. yM| = N n,. The next
lemma will be used in the random Schreier method.

LEMMA 5.7. |G| is divisible by [U® U1 ... yM| =NE n; G =
U@yE=1 . .. y() gnd |G| = X |, if and only if B and S are a base and strong
generating set for G.

Proof. As IH(:) H(1+l)| = lH(l) H(z)l W(t) H(l+l)l = n. lH(t) H(i+l)|
G| = (nk llH(') HE+ Dy g+ D) = (H 1"i) (“,—1|H(i) H(1+l)|) H&+D)|.
Hence the first assertion of the lemma holds, and |G| = ln if and only if
IH®+1| =1 and H(') = HU*D for all i, which by Lemma 5.3 is true exactly when
B is a base and S is a strong generating set. _

In the Introduction, three questions were posed about the group G; these ques-
tions may now be answered quite easily provided B and S are a base and strong gen-
erating set for G on . To find |G|, we compute n; (i = 1, 2, . . . , k) by Algorithm
4.2 and apply the formula |G| = Hf=ln,.. To test whether g € G, we apply Algorithm
5.6 and check whether alternative (3) of Lemma 5.5 holds at termination; if so, g € G
and uuy_q * - uy € W(S) with g = uguy_, + - - uy. To choose a random element of
G=Uu®yk-1... UM we need merely choose random elements of each U® and
take their product (by uniqueness in Lemma 5.5). Assuming that we have a function
A such that fL(t) returns a random integer between 1 and ¢, we compute A =
{81,015 8425 - - - 8,0} by Algorithm 4.2 and choose

u( )(ak,/l(nk))a( )(5k"l ,h(nk__l)) ) E(l)(a lyﬂi(n l))
as the random element of G (using Algorithm 4.1 to find the u()’s).

6 To carry out the algorithm, only the images of B under h are needed; however, to decide
whether 2 = 1 in step 5, the images of all of 2 are needed, unless a smaller base for (G, g) is known.
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Assume that B and S are a base and strong generating set for G on  and that
S is closed under inversion (s’ will denote s~1). In general, it is not easy to check
whether the set R of relators forms a set of defining relators for G in terms of (S, ).
Even if an (R, S(*)) Todd-Coxeter algorithm applied to a trivial table (S, ', A, . . . )
terminates with a closed table in which |A¥| = n,, we learn merely that the kernel of
the natural homomorphism of (S, '|R) onto G is contained in the subgroup generated
by SP) . To alleviate this difficulty, R will be called a strong set of defining relators
for G relative to B and (S, ), if R® is a set of defining relators for H(*) in terms of
S, Y fori=1,2,...,k.

LemMMA 58. If KSD," RD) :(SG+V) =, fori=1,2,...,k thenRisa
strong set of defining relators for G relative to B and (S, ).

Proof. Let T(*1) denote the subgroup of (S, ' |R(M) generated by SC¢+1) (to
be distinguished from H(+1), the permutation group on Q generated by S¢+1)). Then
T+ 1) js a homomorphic image of (S(+1) " |RG+1)) 55 the relators RG+1) hold in
T(i+ l). Thus |<S(i),'lR(i))| = |(S(i), 4 lR(l)) . T(i+ l)l . lT(i+ l)| <n,l(S(i+ l)’ 4 |R(i+ 1))1;
by repeated application of this formula, (S@,' |R®)| < nng oy cong=|H M), and the
natural homomorphism of (S®, " [RM) onto H® must be an isomorphism.

Note that the hypothesis of Lemma 5.8 will hold if, fori= 1,2, ..., k, an
(R®, §G+1)) Todd-Coxeter algorithm applied to a trivial coset table (S®, ', A, .. .)
terminates with a closed table in which |A#| = n,.

6. The Schreier-Todd-Coxeter-Sims Method. This section describes the author’s
version of the Schreier-Todd-Coxeter-Sims method and points out similarities and dif-
ferences between it and the Schreier-Sims method. Both methods are motivated by a
theorem of Schreier (see [3, Lemma 7.2.2]).

LEMMA 6.1 (SCHREIER). Let G be a group generated by a set S, let H be a sub-
group of G, and let U be a set of right coset representatives for H in G. For g € G,
let g denote the representative in U for the right coset Hg. Then H is generated by
{usus" ' lu € U, s € §}.

The elements usus ™" are called Schreier generators for H. If G is a permutation

group on 2 and § € , then a set of Schreier generators for G may be obtained by
choosing {u,(a)sut,(o*)"! |a € B, s € S}, where v is a {}-Schreier vector for § on Q.

Note that this set may be computed using Algorithms 4.1 and 4.2. In principle,
this solves the base and strong generating set problem (*) of Section 1, as a generating
set for each group in the sequence G, GBI s s Gﬁlﬁz"'ﬂk may be computed from a
generating set for the previous group by taking Schreier generators, and 8,, 8,, . . . , B
may be extended, if necessary, until the last group in the chain is trivial. However, the
strong generating set obtained is far too large to be of practical value. In the Schreier-
Sims and Schreier-Todd-Coxeter-Sims methods, this crude approach is modified so as to
keep the size of the strong generating set relatively small.

With notation as in Definition 5.1, both methods involve expanding B and S so
that Hypothesis 5.2 holds and then checking, fori =k, k— 1, ..., 2, 1 (in that order),
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that B and S are a base and strong generating set for ), At the time that B and
S are checked, it is known that B and S¢+1) are a base and strong generating set
for H@*1); thus by Corollary 5.4, it is necessary merely to show that Hé‘:) = HU+1)
(or equivalently |[H® : H+1)| = n,); containment in H¢+1) may be checked using
Algorithm 5.6. Should H};) # H+ 1 we obtain an element g of H(‘) - H+) At
this stage, g could be added to S, thereby enlarging HG*1); however a better approach
is available. In determmmg that g ¢ HU* 1) using Algorithm 5.6, g is written as
ht—l,-_lﬁi_2 “r Uy Withj>i+ 1,k fixing 8y, . . ., ]-_l,u(’) € UM for all 7, and
either (1) j < k and 6]" & A or 2)j=k+1and k +# 1. In either case, h € GY)
but 1 & HY). We add & to S, thereby enlarging each of the groups HU+1),

HGE*+2) H®. If j =k + 1, a new point, moved by #, must be added to B in
order for Hypothesis 5.2 to continue to hold. As # & S® for any I > j, the previous
checks of B and S P remain valid for all 7 > j; hence i is reset to j.

A general outline for the Schreier-Todd-Coxeter-Sims method follows. If refer-
ences to the set R of relators and the function M are deleted, the same outline is ap-
plicable for the Schreier-Sims method. The two methods differ in the technique for
checking H‘(;;_) = HU+1), details of which are given later.

ALGORITHM 6.2—SCHREIER-TODD-COXETER-SIMS. The notation of Definition
5.1 applies. In addition, M: Z* — Z* is a function with M(x) > x for all
x. The identity is deleted from S if present; then the sets B, S, and R are ex-
tended if necessary so that, upon termination, B is a base for G on £, S is a
strong generating set for G relative to B, and R is a strong set of defining
relators for G relative to B and (S, "). (Elements added to S lie in the original
group G, so G remains unchanged.)

1. Delete the identity from S if present.

Set my =m
Forli=1,2,...,m:
(a) Ifs, fixes B, B,, . .., By, set k = k + 1, ;. = any point moved by s;.
() Ifs;' €S, setm=m+1,s,, =57 .
(This insures that Hypothesis 5.2 holds.)

2. Seti=k.

(At any time, B and S¢+1) will be known to be a base and strong
generating set for H@+1))

3. Forl=1,2,...,k,setn,=0.

(n; = 1 will indicate that a valid {g;}-Schreier vector v for §®
on £ is known.)

4. Ifn; =0:

(2) Apply Algorithm 42—ORBIT (2, D, {8}, ny, p, n;, 8, ).
(b) Setn; =
(This constructs the ith basic orbit § = {5,} :l;l and produces a
{B;}-Schreier vector v for S® )
5. Check if Hg? = HU+1) (details later).
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If so:

(@ Seti=i-1.

(b) If i = 0, algorithm terminates; otherwise go to step 4.

If not:

(c) Find w € W(ESM), such that we H(i) but we HO+1),

(d) Write w = hit;_ya,_, - - u,+lw1th] <k+1,h fixing B, 8,, ...,

By U € U(’) for all 7, and either
() j<k, B" & AY), or
(ii) ]—k+l h+#1.
6. fj=k+1,setk=k+ 1, By = any point moved by .
Setm=m+ L, s, =h.
Ifr? #1,setm=m+ 1,5, = h~!.
Setp=p+1,r, =wui}, - ul).
Forl=i+1,i+2, «eesfrsetm; =0.
(S, R, and, if necessary, B are extended; the relator rp expresses
the new generator as a word in the previous generators n; is set
to zero when the new generator lies in S®.)
7. Seti=j.
Go to step 4.

The purpose of the ’s is to avoid unnecessary reconstruction of the Schreier
vectors in step 4. It is possible to delete all references to the n’s, in which case step
\ 4(a) is performed unconditionally. This will produce shorter relators, though with more
occurrences of the added generators. Of course, when STCS is used merely to verify
strong generation, it makes no difference.

PROPOSITION 6.3. Assuming that step 5 terminates, Algorithm 6.2 terminates.
Upon termination, B is a base for G on S, and S is a strong generating set for G rela-
tive to B.

Proof. Step 6 increases |H®| for some i with 1 <i < n; hence it can be per-
formed only finitely many times. Eventually, 7 is decremented each time through the
loop beginning with step 4; thus i must reach 0, and the algorithm terminates.

At any time, B and SU*1) form a base and strong generating set for H(+1).
This holds initially as i = k and H*+1) = 1 (by Hypothesis 5.2). In step 5, i is de-
cremented only after verifying that H(') = H*Y, in which case Corollary 5.4
applies. Step 6 enlarges H") only for l i+1,i+2,...,];s0 resetting i to j keeps
the result valid.

Thus, when i reaches 0, B and § = S are a base and strong generating set for
G = HQ),

In the Schreier- Slms method, the check that H(') = HU*+ 1 js performed by test-

ing whether each Schreier generator w = u(i)(8)s_(')(8“)’ 6 €AD, 5 5DYT of H(')
7 Redundant generators for H#(®) need not be included. If s € S(') only one of s,and s 1

need be included; also, if s was added to S in step 6, s is redundant for H' 1 .o H , where i*
denotes the value of i in Algorithm 6.2 at the time that s was added.
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lies in HG+1), The test is done by writing w in the form hu,_, * * * #;4, using
Algorithm 5.6. Ifj =k + 1 and & = 1 for every w, then Hﬂ:) = HO+D); otherwise we
obtain the word w required in step 5(c) and the factorization hu;_; - - - ;. of step
5(d). Unfortunately, checking whether & = 1 requires applying the word

u®d(@)su®(ES) uy) | - - - uz! to each of the n points of 2;® together with the fact
that there are 1 + n,(lS ) - 1) nontrivial Schreier generators, this accounts for the
slowness of the Schreier-Sims method for groups of high degree.

We may view the Schreier-Sims method as consisting of verification of each rela-
tor u®M@wu®D Gy 1uzly - - - ugt (6 € AD, s € SD). These relators suffice to prove
Hé? = HU+1); often, however, they are highly redundant. The Schreier-Todd-Coxeter-
Sims method consists of verifying only selected relators. A list R of verified relators in
S is maintained; R® will denote R N ((S™). After a new relator has been selected
and verified, it is added to R, and the group generated by S (or, more precisely, by
a set of abstract symbols in one-to-one correspondence with S@) subject to relators
R is enumerated on the cosets of the subgroup generated by S¢+ 1) allowing
M(n;) > n; cosets to be defined. Should the coset table close with n; cosets, then
H® : G+ 1) = n; and no further relators need be verified (Corollary 5 .4); otherwise
words w, and w, in (/(S®) of minimal length are found such that 1! and 1"2 are
defined and unequal in the coset table but {37"1 = BT” on §, w is set to wyw;’, and

w is written in the form h;_, * - Uy . Ifj<korh#1, then H(‘) # H0+D and
the quantities w, h, u;_,, . . ., “z+1 required in steps 5(c) and 5(d) have been found;
otherwise the relator wuz !, - - - uz! is added to R, and the coset enumeration is re-

sumed. Immediately upon resumption, the new relator is traced from coset 1, yielding
equivalence of cosets 1! and 1™2; thus new cosets can be introduced, even if M(r,)
cosets were defined at the time of interruption. It will be shown that this process
must terminate.

In the STCS method, step 5 of Algorithm 6.2 is performed as follows.

5.1. Initialize T = (S(i), ', A, 1,0, f) to a trivial coset table by setting A =
{0,1} and f(A, s) = 0 for A € {0, 1} and s € SO,
5.2. Apply an M(n;)-coset (R®, §G+1)) Todd-Coxeter algofithm to T; at termi-
nation, one of the following must hold:
@ IA*I>n,,
(i) IA*|=n; and T is closed.
5.3. If [A¥| = n,, then Hé::) = HU+1); proceed with step 5(a) in the outline of
Algorithm 6.2.
5.4. Find w,, w, € W(S®) with f(1, w,) # f(1, w,) in A, B! = 6’2 on ©,
£L(w;) > £(w,), and £(w,) minimal with respect to these properties (details
will follow).

8 1f, however, a small base for G on  is already known, then the word need be applied only
to the base points. This situation arises when we have a group E on £ with known base and strong
generating set and are trying to determine the subgroup generated by some given subset of E. The
relative efficiency of the Schreier-Sims method in this special situation merits further investigation.
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5.5. Apply Algorithm 5.6—ELEMENT(2, S¢*+1), B, (vD},i+1, ATy L u®y, h)—
to write wyw ;! = hit;_; - - - U;;, with either
Q) <k g &0,
(@)j=k+1,h#1,0r
() j=k+1,h=1.
5.6. If case (iii) above holds:
(@) Setp=p+ 1,1, =wwylugy - ugl.
(b) Apply Algorithm 3.4—EQUIV (T, f(1, w,), f(1, wy)).
(c) Go to step 5.2.
5.7. Step 5 is complete; H(') # HG+1) and the quantities w = w,w;!, i,
Uy q of steps 5(c) and 5(d) have been found.

1

]_1, ..

To complete Algorithm 6.2, a procedure for finding the words w, and w, in step
5.4 is needed. The procedure described below is essentially that given by Sims in [7],
modified to eliminate one array. A well-defined map of A* into A®) may be obtained
by f(1, w) — B¥, whenever w € W(S®) and f(1, w) # 0 (Lemma 3.3). This map
cannot be one-to-one as [A¥*| > |A(i)|; hence w; and w, exist. To find them, we ini-
tialize a map 6: A®) — A by setting 0(B;) = 1 and 6(y) = O for all ¥ # §;, and we
begin to construct a {1}-Schreier vector v for S on A, as in Algorithm 4.2. When a
new coset y is found by applying generator s, to some previous coset @ = 6(a), then
the corresponding point y of A(® ‘is found by applying s; to a. If 6(y) = 0, then 8(y)
is set to ¥, indicating that y corresponds to coset ¥ just found. If 6(y) # O, then ¥’
and 0(y) are two cosets with the same corresponding point v, and w, = u,(y) and
w, = u,(0(y)) are the words we are looking for. The fact that £(w,;) > £(w,) and
the minimality property of £(w,) follow from the fact that new cosets v are found
with £(u,(7)) in increasing order.

The details for step 5.4 are as follows.

54.1. Sett, =0,
t=1,8, =8
08) = 1,6(7) = 0 for y € AD — {8},
v(1) = -1, »(¥) = 0 for ¥ € A* — {1}.
542. Setty =ty + 1, a=8,, o = 0(a)?
543. Forl=1,2,...,m:
(@) Sety = f(@,s)).
(b) IfyY #0 and ¥(y) =0:
@) Setv(¥) =s,.
(i) Sety =o'l
(iii) If 6(y) # 0, go to step 54.5.
(iv) Set6(y) =7
(V) Sett=t+1,8,=1v

9 Note that, even after to has been incremented, ¢ < ¢; otherwise every coset found would
have been processed, and by condition (v) in the definition of a coset table, every coset would have
been found, that is, IA"| = ¢, But ¢ < n;, as t is incremented by 1 only when a new point of A®
has been found, and n; < IA#I
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5.4.4. Go to step 5.4.2.
54.5. Apply Algorithm 4.1-COSETREP (A, SD,», 7, p, w)).
Apply Algorithm 4.1-COSETREP (A, S, v, 6(), p, w,).

ProrosITION 6.4. Step 5 of Algorithm 6.2 terminates.

Proof. By Lemma 3.2, the Todd-Coxeter algorithm in step 5.2 cannot continue
indefinitely without reaching a table in which [A¥| = M(n;) > n;, or in which T is
closed and (c.3) is impossible. In the latter case, |A¥| > n; by Lemma 3.3 (since the
relators R®) hold in H®). Thus alternative (i) or (ii) in step 5.2 must hold eventually.

Step 5 contains two loops—an outer loop extending from 5.2 through 5.6 and an
inner one from 5.4.2 through 5.4.4. The inner loop is clearly finite, since ¢, is in-
cremented each time through and since 7, < # <n;. For each pass through the outer
loop, there must exist words w; and w, in W(S®), such that £(w,) < L(w,) <
M(n;) (by minimality), (1, w,) # f(1, w,) before the pass, and f(1, w;) = f(1, w,)
afterward. As there are only finitely many choices for the pair {w,, w,}, the outer
loop must be finite.

PROPOSITION 6.5. When Algorithm 6.2 terminates, R is a strong set of defining
relators for G relative to B and (S, ).

Proof. Immediate from Lemma 5.8.

7. The Random Schreier Method. The random Schreier method provides a fast
means for adding elements to B and S (notation of Definition 5.1 applies here). Each
element added expands U®)U*—1) . .. y(1) but upon termination B and S need not
be a base and strong generating set for G on . An input parameter N is supplied to
the algorithm; increasing N improves the chance of obtaining a base and strong generat-
ing set but also adds to the running time.

Assume that B and S have been extended, if necessary, so that Hypothesis 5.2
holds. Let g be any element of G. Algorithm 5.6 provides a fast method for testing if
gE UMUK ... yM) If not, g = hig;_yt;_, -+ - u, withj <k + 1,6} =B, for I<
j=1,u, € UD for all 1, and either (1) j <k and g} € AD or 2)j=k + 1 and h #
1. Just as in the Schreier-Sims and STCS algorithms, % is added to S and, in case (2),
a point moved by & is added to B; thus [U®)U*=1) . . . y(D| js increased. If g €
U®yt=1) ... gy no information is obtained. However, if a number of more or
less random elements of G are tested and all turn out to lie in U®y*-1) . .. y(1),
we suspect that U U*—1) ... y(1) = G and, by Lemma 5.7, that B and S are a
base and strong generating set for G; for if not [UMU*~1) -+ - UM| < %|G| (Lemma
5.7), and the probability that ¢ statistically random elements of G all lie in
UMyk-1) ... g js at most 277, The random Schreier method chooses elements
of G, ideally random in G, until N consecutive elements lie in U@ y*-=1) . .. y),
then it terminates.

In Section 5, a fast method for selecting elements at random from G was given;
however, this method required that some base and strong generating set for G (not
necessarily B and S) already be known. Thus, in general, the algorithm must proceed
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with elements not statistically random in G, and the probability bound given above
does not apply; nevertheless, the algorithm seems to work quite well provided some
sensible technique is used to select elements from G. In the author’s implementation,
the elements chosen are g,, g,, g5, . . . , where S is the original set S, g, = g, is a
random element from S, and inductively 4; is a random element of S, — {a'-'_ll} and
8; = &_,4;; note that only one multiplication of permutations is needed to obtain g;
from g;_,.

The step by step description of the random Schreier method which follows in-
corporates two additional features. Sometimes an upper bound b for |G| is known; in
this case, the algorithm terminates immediately if ﬂ;‘= 1 1; reaches b (in which case,
|G| = b and B and S are a base and strong generating set for G). Step 6 attempts to
obtain generators of low order, involutions if possible. This step is optional. For an
involutory generator, the inverse need not be stored; the same applies to a generator s
of order j provided one computes ﬁ"‘—l by applying s to 8 — 1 times.

ALGORITHM 7.1-RANDOM-SCHREIER. The notation of Definition 5.1 applies.
In addition, b is an upper bound for |G| (n! may always be used) and N is a
positive integer. The algorithm extends B and S; each additional element in-
creases |[UKIU*-1) . .. y(1)),

1. Delete the identity from S if present.

Set my = m.
Forl=1,2,...,my:
If 5, fixes B, B,, ..., B, set k =k + 1,3, = any point of Q moved
by s;.
Ifs','l €S, setm=m+1,s,, =s,"1.
(This assures that Hypothesis 5.2 holds.)
2. Fori=1,2,...,k,apply Algorithm 42—ORBIT(, S, {8,}, ny, p, n;, 5, v®).
If X, n; = b, algorithm terminates.
(This computes n,; and constructs »().)
3. Set n =0.
(n will denote the number of consecutive times that the condition g €
UM yt-=1) . .. 1) has held.)
4. Choose any element g of G.
Apply Algorithm 5.6—ELEMENT (%, S, B, (v}, 1, g, 7, {uP}, h).
(This writes g = fig;_,u;_, * * * #; with 1 <j <k + 1,8} =, for
1<j-1,u® ey® for all /, and either
(1) <k €20,
@ j=k+1,h#1,0r
B)j=k+1,h=1)
5. If (3) holds in step 4:
(a) Set n=n+1.
(b) If n <N, go to step 4; otherwise algorithm terminates.

6. (Optional)

(a) If (1) holds in step 4, set d = largest divisor of || for which ﬁ;’d & AD,
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If (2) holds, set d = largest proper divisor of |a|.
(b) Set h = K.
7. Setm=m+1,s,, =h.
IfR2#1,setm=m+ 1,5, =h'.
If (2) holds in step 4, set k = k + 1, §;, = any point of  moved by .
Forl=2,3,...,j,apply Algorithm 42—ORBIT(2, 5D, {8,}, 1y, 0, n;,5,v®).
(This extends S and, if necessary, B and reconstructs »¥ and n,
when necessary.)
8. If H;‘=ln, = b, algorithm terminates; otherwise go to step 4.

Sometimes, when using the random Schreier method, we know in advance (i) a
base B’ for G and possibly even (ii) a strong generating set S’ for G relative to the
base B'. In case (i), steps 4 and 5 may be performed by applying words to B U B';
only when an element is added to S (step 7) must entire permutations be multiplied.
In case (ii), the element g in step 4 may be chosen at random from G, using the method
described in Section 5; also b may be set to |G| (computable by Algorithm 4.2).

Case (i) arises in determining the subgroup G generated by a given subset S of a
group G’ with known base and strong generating set B' and S'; in this situation, of
course, B' is also a base for G. Case (ii) arises in changing the base for G. Sims gives
one method for changing the base in [6]; the random Schreier method provides an
alternate approach.

The author has not conducted systematic tests of the random Schreier method;
however, it appears to work extremely well on a wide variety of groups, solvable as
well as nonsolvable. Sometimes the value of N must be larger than would be required,
if truly random group elements were available. In the author’s experience, a value of
15 to 20 has usually been sufficient, with twice that number necessary in a few cases.

8. Implementation of Interruptible Coset Enumeration. This section describes
the author’s implementation of an interruptible coset enumeration program. As this
program is a variation of the (noninterruptible) Hasselgrove-Leech-Trotter approach de-
scribed in [1], only features differing from [1], including those related to interruption,
are treated in detail.

In the HLT method, a doubly linked list of cosets is maintained, and new cosets
are added at the end of the list. The algorithm operates in one of two modes—the
define mode or the lookahead mode; initially it is in the define mode. In the define
mode, cosets are processed in the order in which they are introduced. Processing a co-
set consists of tracing each relator from the coset. During the tracing, new cosets are
introduced, as necessary, to complete the cycle. If no more cosets can be defined,
because the table is full, the algorithm switches to the lookahead mode. In the look-
ahead mode, no new cosets are introduced, but deductions and collapses are handled
as in the define mode. The algorithm remains in lookahead mode until the first collapse
occurs (for incremental lookahead) or until the end of the coset table is reached (for
complete lookahead). If no collapse occurs during the lookahead pass, the algorithm
terminates ‘“‘unsuccessfully”; otherwise it reenters the define mode. The algorithm
terminates ‘“‘successfully” when every relator has been traced from every coset. Then
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the coset table is closed and (c.3) is impossible (see Lemma 3.2), provided that every
generator appears in some relator. (Relators of the form gg~! may be added, as nec-
essary, to insure this condition.)

The use of lookahead turns out to play a critical role in the performance of the
Schreier-Todd-Coxeter-Sims algorithm; however, neither complete nor incremental look-
ahead yields particularly good results. In the author’s coset enumeration program,
lookahead is controlled by three parameters /,, /,, and I3, where /; >0 and [, >
I3>1. In(,,1,, ;) lookahead:

(a) The algorithm enters the lookahead mode when a relator cannot be traced

because no more cosets may be defined.

(b) The algorithm remains in the lookahead mode until one of the following
occurs:

(i) I, cosets have been processed during the lookahead pass.
(ii) I, or more cosets have been eliminated through collapse during the
lookahead pass.

(c) Upon leaving the lookahead mode, the algorithm reenters the define mode
if I3 or more cosets were eliminated during the lookahead pass and termi-
nates otherwise.

Note that no lookahead, complete lookahead, and incremental lookahead correspond,
in the author’s program, to (0, 1, 1), (o0, o, 1), and (o, 1, 1) lookahead, respectively.
A value of I, between 1 and o yields a cross between incremental and complete look-
ahead. Both incremental and complete lookahead will be referred to as unlimited
lookahead, because there is no limit (other than the size of the coset table) on the
number of cosets that may be processed during a lookahead pass. Such a limit may be
imposed by choosing a finite value for /; (limited lookahead). Normally /5 is 1; how-
ever, a higher value may be used to terminate the enumeration in the event that a long
lookahead pass results in elimination of only a small number of cosets (in which case,
it may not be worthwhile to continue).

The author’s coset enumeration program (mainly in Fortran) is controlled by
several input parameters, including a coset table (with doubly linked list), an array
REL containing the subgroup generators followed by the relators, a variable RSTART
specifying the index in REL at which the relators begin, a variable MAXCOS giving the
maximum size of the coset tab\le, and variables COS, POS, and LSTTRC. Cosets are
numbered 1, 2, ..., MAXCOS, with 1 and O corresponding to ¢ and o of Section 3
respectively; coset 1 always comes first on the linked list.

Tracing of relators begins with coset COS and with the relator beginning at
REL(POS). During the tracing process, COS and POS are constantly updated to point
to the current coset and relator; when COS is incremented to the next coset on the
linked list, POS is reset to RSTART. Tracing of relators continues until one of the
following occurs:

(1) COS reaches the end of the linked list of cosets.

(2) Fewer than Iy cosets are eliminated during a lookahead pass, as in (c) above.

(3) All relators have been traced from each coset up to and including LSTTRC
(applicable only if LSTTRC # 0).
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Condition (3) is useful in resuming enumerations; should coset LSTTRC be eliminated
during collapse, LSTTRC is reset to the previous coset on the linked list.

A new enumeration is initiated by calling the coset program with a trivial coset
table and with COS and POS set to 1 and LSTTRC set to 0. Simple resumption of an
enumeration is effected by calling the coset program with COS and POS retaining their
values at the time of interruption. Resumption with added relators or subgroup gen-
erators poses additional problems. Perhaps the simplest method is to invoke the coset
program twice. In the first call, REL is set to contain the new subgroup generators or
relators, COS and POS are set to 1, and LSTTRC is set to the predecessor in the linked
list of the value of COS at the time of interruption. In the second call, REL is set to
contain all subgroup generators and relators, COS retains the value it had when the
first call terminated, and LSTTRC is set to O; the value of POS depends on how the
new subgroup generators or relators are inserted into REL (POS may always be set
to 1).

9. Implementation of the Schreier-Todd-Coxeter-Sims Algorithm. The author’s
implementation of the Schreier-Todd-Coxeter-Sims algorithm follows the step-by-step
description of Algorithm 6.2 and the subalgorithms which it calls. One exception in-
volves step 5.6(b), which is combined with step 5.2; that is, STCS does not call
EQUIV directly, but immediately upon resumption of the enumeration, the new relator
is traced from coset 1, resulting in the collapse required in step 5.6(b). Algorithm 6.2
allows the use of any interruptible Todd-Coxeter algorithm in step 5.2, the selection of
any function M with M(x) > x for all x, and the choice of any new base point @, in
steps 1 and 6. The author’s program accepts input parameters a, ,a,,1,,1,,13, k, k', and
{ﬁ]-},'-‘;l. Step 5.2 invokes an interruptible HLT coset enumeration algorithm with
(1, 1, I3) lookahead, as described in Section 8. In a resumed enumeration, the algo-
rithm is actually invoked twice, as mentioned near the end of Section 8. The function
M(x) is taken to be a;x + a,. (If a;n; + a, <n; + I, then M(n;) is increased to
n; + I3 in order to insure that |A¥| > n; in step 5.2, should the enumeration terminate
without a closed table.) The parameters k¥ and {ﬁj}jf;l specify an initial segment of
the base, exactly as in Definition 5.1; k¥ may have a value of 0. Often k' equals k;
however, it is possible to specify a higher value of k' and additional points Brs1s
Bk425 -+« -5 Bx'- These additional points become the “preferred” points to add to the
base, should expansion be necessary. The exact procedure for incrementing k and
choosing the new base point in step 6 is given below; for step 1, replace 4 by §; in the
procedure.

Setk =k + 1.

If » moves some point of {f, Bi415 -+« By}, set I to the smallest integer
with k <7<k’ and B} # B, and set ¥ = B;; otherwise set / = k" and v to
the smallest element of Q with v # .

Fort=11-1,...,k+1,set, =8, ;.

Set B = 7.

Other input parameters include the initial generating set for G, specified by m
and S, and the initial set R of relators (usually empty). R is given in the form of an
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array REL containing the relators, each relator preceded by its length; a relator of
length zero terminates the list. The program rearranges the array REL, if necessary,
so that relators in R® precede those in R — R® (i =1,2, ..., k). When new
relators are added to R, they are inserted into the array REL so that this condition
continues to hold. An array RELEND is maintained such that RELEND(;) is the end
of the last relator in R,

Three input parameters are used to impose bounds on certain quantities in the
algorithm. These parameters are used in dimensioning a number of arrays. MAXBAS,
MAXGEN, and MAXREL give maximum values for the base size k, the number m of
strong generators, and the total length of the relator vector REL, respectively. If the
algorithm cannot proceed without exceeding one of these bounds, it terminates with a
return code set to indicate the cause. The bound MAXREL is particularly useful in
eliminating wasted computer time in situations in which there is little hope of com-
pletion with available resources, as will be discussed in the next section.

10. Performance of the Schreier-Todd-Coxeter-Sims Algorithm. This section is
devoted to evaluating the performance of the Schreier-Todd-Coxeter-Sims algorithm.
Two factors definitely of interest are memory usage and execution time. If STCS is
invoked for the purpose of obtaining a presentation, the nature of the presentation
obtained also may be of interest. To the author’s knowledge, STCS is the only cur-
rently available, general purpose algorithm for finding a base and strong generating set
which is effective for permutation groups with small bases and degrees in the 100 to
10000 range. (A number of special techniques exist, but they depend heavily on the
structure of the particular group.) The purpose of this section is to explore the capa-
bilities and limitations of the STCS algorithm and to investigate how its performance
varies with selection of the input parameters and other changes in strategy, with a view
toward obtaining optimal performance from the algorithm.

A. Memory Usage. Memory requirements of the STCS algorithm are easy to ap-
proximate; for transitive groups of high degree, they are determined primarily by the
arrays whose dimensions involve the degree n. In this section it will be assumed that
the groups being considered are transitive on . Also, it will be assumed that coset
enumeration is performed with a doubly linked list, given by { and b as in Section 3;
then the major arrays required in an enumeration are 4, b, and f. For Algorithm 6.2,
the arrays whose dimensions involve n (at least when i = 1) are given below.

Array Dimension(s)
S nxm
{”(l)}lk=1 nxk

f M) x m

§ M(n)

b M(r)

0 n

) n

v M(n)
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Note that the values of ¥ and m above must be the final (i.e. largest) values of these
variables; depending on the method of storage allocation, it may be necessary to allo-
cate memory based on the assumption that k¥ and m will attain the values MAXBAS
and MAXGEN, respectively. A temporary array of dimension »n is required in a few
places, but this can overlap some of the arrays above. Thus the major arrays for STCS
involve (m + k + 2)n + (m + 3)M(n) entries. By contrast, the Schreier-Sims and ran-
dom Schreier methods use only the arrays S and {v(’)};;l plus one or two temporary
arrays of dimension n—a total of perhaps (m + k + 1)n entries.

The relatively heavy memory requirements of the STCS algorithm may be mini-
mized by several methods. One method is to choose a function M with M(x) only
slightly greater than x. Fortunately, this can be done without increasing execution
time, provided that sufficient lookahead is used; this will be discussed in Section 10B.

A second method is to minimize the size m of the strong generating set which is
produced. To some extent, a judicious choice of the initial segment to the base can
help to minimize m; if one or more of the original generators fix the first point or two
of the base, fewer additional generators may be needed to obtain strong generation.
However, the primary problem is that the STCS algorithm (as well as the Schreier-
Sims and random Schreier algorithms) tends to produce strong generating sets with re-
dundant elements. Each generator added is nonredundant (for strong generation) when
added, but it may become redundant as further generators are added. One solution is
first to use the random Schreier method (with its relatively low memory requirements)
to produce a probable base and strong generating set, then to employ the method de-
scribed in [6] to remove redundant strong generators, and finally to apply STCS to
verify the base and strong generating set. In this way, the final value of m for STCS
is minimized; moreover, it is known in advance, assuming that the random Schreier
method really produces a valid base and strong generating set. It turns out, fortunately,
that this approach also yields the best execution times.

A third method for minimizing memory usage is to keep only certain of the major
arrays in memory at one time; the remaining arrays can reside on an external storage
device. For example, only one of the two largest arrays—S and f—might be held in
memory at once. The problem with this approach is that step 5.4.3 accesses fand S,
alternately, a large number of times, resulting in an excessive number of input/output

operations. If, however, the entire Schreier vector v for the coset table T is constructed
first in step 5.4, then all references to f can be placed before any reference to S. The

changes to step 5 of Algorithm 6.2 are as follows:
(a) Before step 5.1, write out S and {v(’)}f;l on external storage.
(b) Before returning from step 5.3 to step 5(a), read in S and {v(’)};‘=l from
external storage.
(c) Replace steps 5.4.1 through 5.4.5 by the following.
5.4.1'. Write out § and b on external storage.
5.42'. Apply Algorithm 42—ORBIT (A, 8@, {1}, ng, p, 1, 8, v)—to con-
struct § and a Schreier vector v for T (Algorithm 4.2 may be termi-
nated as soon as 8,,{ +1 has been set in step 5).
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543 Fort=2,3,...,n;+ 1,set u(8,) = f(5,, ¥(5,)).
5.4.4'. Write out f on external storage; read in S from external storage.
545'. Setty=1,0(8)=1,0(y) =0 forye a® - {8},0'(1) = B,
546 Setty=t,+1,7 = LI o =v¥),a=0'Q),y= 0o, where s =
().
5.4.7'. 1f6(y) = 0, set 6(y) = 7 and 0'(y) = v and go to step 5.4.6'.
5.4.8'. Same as step 5.4.5, but replace f(o, v(0)") by v(p) in step 4 of
Algorithm 4.1.
(d) Before step 5.5, read in {v(®}X_, from external storage.
() Before step 5.6(b), write out S and {¥P}%_, on external storage, and read
in f, §,and b from external storage.
Note that this modification of the STCS algorithm employs two additional arrays—
6', which is an inverse to 8, and v, which permits use of Algorithm 4.1 without access
to S. It is not really necessary to construct the entire Schreier vector v in step 5.4.2";
the first n; + 1 entries will always suffice. At any time during the algorithm, only
arrays in one of the four groups below need reside in memory (7 denotes a temporary
array of dimension »n).

Arrays Number of entries When in Memory
(when i = 1)
[ 4b (m + 2)M(n) 51-54.1',56
fiv,v (m + 2)M(n) 542'-544'
S,v,0v,8,0,0' (m + 2)n + 3M(n) 545'-548'
S, (v} 7 m+k+1n everywhere else

Thus memory requirements for the major arrays are reduced from (m + k + 2)n +
(m + 3)M(n) to MAX((m + 2)M(n), (m + 2)n + 3M(n), (m + k + 1)n); a level com-
parable to those for the Schreier-Sims and random Schreier methods. If, for example,
M(n) = 1.2n, k = 5, and m = 10, these requirements are reduced from 33n to 16n,
approximately a 50% reduction.

The disadvantage of this modification of Algorithm 6.2 is that n; + 1 entries of v
and v must be constructed in steps 5.4.2" and 5.4.3', even though only a small fraction
of these entries may later be used. Perhaps, when n; is large, one should construct only
a fraction of v and v, say c(n; + 1) entries where ¢ < 1. Should ¢, exceed c(n; + 1)
in step 5.4.6', it would be necessary to write out S and read in f, extend v and v, and
write out f and read in S before proceeding with step 5.4.6'. As a guide to the choice
of ¢, statistics on the fraction of the Schreier vector actually used for various groups
are given in Section 10B.

Performance of this modification of the STCS algorithm, together with other vari-
ations of the algorithm, will be studied in a forthcoming article by the author.

B. Execution Time and Length of Defining Relators. This section investigates
performance of the STCS algorithm with respect to execution time and length of the
defining relators. If STCS is used in order to obtain a presentation, one might hope
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for a fairly small number of reasonably short relators; hence, the total length of all de-
fining relators was chosen as a measure of the “desirability” of a presentation. Actual
presentations obtained by the STCS algorithm for several interesting groups are given
in Table 4.

The STCS algorithm was tested (a) in building up a base and strong generating
set and (b) in verifying a base and strong generating set, produced by the random
Schreier method. As previous experience and preliminary testing indicated that (b)
gave vastly superior performance, it was investigated more extensively than (a).

Four primitive groups were chosen for the investigation. Each group was con-
structed by coset enumeration, using the presentations in [2], [4], and [9]. The random
Schreier method was employed to build up a base and strong generating set; the first
several base points were chosen at random. The procedure in [6] was used to delete
redundant strong generators (including some of the original generators). The results
were strong generating sets having little resemblance to the original generating sets.
(Conceivably the algorithm might work unusually well with the original sets because
of the short presentations involving them.) The specific groups used were as follows:

Group Order n  Point stabilizer m k  Basic orbit lengths
Hall-Janko 604,800 315 centralizer 8 4 315,80,6,4
of involution
Held 4030,387,200 2058 Sp,(4)-Z, 6 2058, 1360, 144, 10
My, 244 823,040 2024 stabilizer of 5 3 2024, 1120, 108
3-element set
Higman- 50232960 6156 SL,(16)-Z, 6 4 6156,85,32,3
Janko-McKay

These permutation groups were used to test STCS in verifying a base and strong gener-
ating set. In addition, from each group, two-element subsets were selected at random,
using the method described in Section 5, until five two-element generating sets were
obtained. To test STCS in building up a base and strong generating set, a null initial
base segment (k = 0) and these random 2-element generating sets were extended to
bases and strong generating sets; in each case k' was set ton and B,,f,,...,B; toa
random permutation of 1,2, ... ,n.

First we study performance of STCS in verifying strong generation; in particular,
the influence of the function M(x) = a,x + a, and the type (I}, I,, I3) of lookahead
will be investigated. Table 1 gives results for a wide variety of values of 2, and /,,
both with 2, = 0 and a, = 50 (I, = I3 = 0 in all cases). It is immediately evident
that @, and I, have a great effect on performance; /, is especially important. Note the
tremendous differences in performance between I, = 0 and /;, = 10 whenever a; <
1.5. Consider the upper half or lower half of the table for one group (a, fixed). The
primary variation in performance occurs in moving from upper left to lower right in
the half table. For each half table, there is a region near the center, and extending
toward the lower left and upper right, where performance is near optimal with respect
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to both execution time and total relator length. Moving down or right from this region
(i.e. increasing @, or /,) causes execution time to increase steadily, while total relator
length either remains constant or decreases slightly. Moving up or left from this region
(i.e. decreasing a, or I,) causes both execution time and total relator length to in-
crease drastically; sometimes the algorithm fails to complete even with MAXREL =
4000. (Higher values of MAXREL lead to exceedingly long execution times.) Several
conclusions may be drawn from Table 1.
TABLE 1
Performance of the STCS algorithm with
M(x) = a,x + a, and (1,, 1, 1) lookahead
(verifying strong generation)
Table entries have the form ¢t (L), where
t = execution time in seconds (IBM 370/158),

L = total length of the defining relators.
An asterisk indicates STCS failed to complete with MAXREL = 4000.

HALL-JANKO GROUP (degree 315)

a, a, 11 0 10 25 50 100 @

1.00 1 27.6 (2238) 3.4 (304) 2.2 (158) 2.4 (98) 2.1 (100) 3.3 (100)
1.10 0 20.3 (2243) 2.2 (120) 2.0 (107) 2.7 (107) 2.6 (106) 3.4 (106)
1.20 0 11.5 (1714) 2.5 (182) 1.9 (96) 2.6 (96) 2.4 (96) 3.7 (96)
1.33 0 10.6 (1530) 2.0 (98) 1.9 (98) 2.6 (100) 2.6 (100) 4.1 (100)
1.50 0 5.2 (652) 2.0 (98) 2.0 (100) 2.7 (100) 2.4 (100) 4.1 (100)
2.00 0 2.2 (98) 2.2 (108) 2.2 (100) 2.8 (100) 2.9 (100) 5.1 (100)
3.00 0 2.5 (100) 2.5 (100) 2.7 (100) 3.8 (100) 3.3 (100) 6.5 (100)
5.00 0 3.4 (100) 3.6 (100) 3.7 (100) 4.8 (100) 4.8 (100) 13.8 (100)
1.00 50 16.8 (2210) 2.8 (232) 1.9 (98) 2.5 (100) 2.4 (100) 3.6 (100)
1.10 SO 11.9 (1729) 2.6 (186) 2.0 (98) 2.8 (100) 2.6 (100) 4.6 (100)
1.20 SO 10.1 (1497) 2.1 (98) 2.1 (100) 2.8 (100) 2.6 (100) 4.3 (100)
1.33 SO 4.9 (633) 2.0 (98) 2.1 (98) 2.7 (100) 2.7 (100) 4.7 (100)
1.50 50 4.0 (432) 2.1 (98) 2.1 (100) 2.7 (100) 2.7 (100) 4.5 (100)
2.00 SO 2.2 (98) 2.3 (100) 2.5 (100) 3.0 (100) 3.2 (100) 5.7 (100)
3.00 50 2.5 (100) 2.7 (100) 2.7 (100) 3.5 (100) 3.4 (100) 8.6 (100)
5.00 SO 3.5 (100) 4.0 (100) 3.9 (100) 5.0 (100) 5.4 (100) 15.8 (100)

HELD'S GROUP (degree 2058)
L
a a1 0 10 25 50 100 ®
1 2

1.00 1 * 89 (2241) S1 (1013) 50 (1071) 23 (294) 47 (294)
1.10 (o] * 35 (907) 31 (643) 19 (294) 21 (294) 59 (294)
1.20 0 * 46 (1158) 20 (294) 20 (294) 21 (294) 75 (294)
1.33 0 * 27 (555) 21 (315) 21 (315) 25 (315) 95 (315)
1.50 0 * 20 (315) 21 (307) 21 (315) 26 (315) 93 (299)
2.00 (o] 114 (3240) 21 (319) 22 (315) 23 (315) 30 (315) 118 (299)
3.00 0 29 (398) 23 (315) 28 (315) 32 (315) 47 (299)

5.00 O 30 (315) 35 (315) 40 (315) 42 (299) 64 (315)

1.00 SO * 54 (1457) 24 (433) 22 (347) 22 (294)

1.10 50 * 38 (1026) 18 (294) 19 (294) 22 (294)

1.20 50 * 33 (788) 19 (307) 19 (294) 23 (294)

1.33 50 * 30 (712) 20 (306) 20 (315) 27 (315)

1.50 50 * 30 (712) 22 (315) 21 (315) 26 (315)

2.00 50 111 (3250) 19 (307) 23 (315) 28 (315) 32 (315)

3.00 50 24 (339) 23 (315) 37 (315) 39 (315) 49 (299)

5.00 50 29 (3195) 34 (315) 42 (315) 50 (299) 63 (315)
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TABLE 1 (continued)
My, (degree 2024)
!'l o]} 10 25 50 100 ©
b )
1.00 1 * 52 (1367) 37 (880) 13 (238) 16 (259) 21 (177)
1.10 0 * 19 (428) 14 (280) 11 (177 12 (177) 20 (177)
1.20 0 * 27 (752) 14 (301) 12 (217) 12 (177) 22 (177)
1.33 0 * 18 (450) 12 (239) 12 (217) 13 (177 23 (177
1.50 0 90 (3240) 19 (480) 11 (217) 12 (217) 12 (177 36 (165)
2.00 0 22 (637) 17 (375) 12 (217) 12 (217 12 (177) 37 (165)
3.00 0 13 (217) 13 (217) 13 (225) 14 (217) 14 (177) 46 (165)
5.00 0 15 (185) 15 (185) 16 (185) i6 (217 18 (185) 79 (165)
1.00 50 * 30 (790) 18 (441) 12 (217) 14 (200)
1.10 50 * 22 (544) 13 (238) 12 (217) 14 (177)
1.20 50 * 16 (385) 12 (217 12 (217) 12 (177)
1.33 50 * 16 (384) 12 (217) 12 (217) 12 (177)
1.50 50 92 (3011) 16 (388) 12 (217) 12 (217) 12 (177
2.00 50 24 (637) 16 (375) 12 (217) 13 (217) 13 (217)
3.00 50 13 (217) 13 (217) 13 (225) 14 (225) 14 (177)
5.00 50 16 (185) 16 (185) 15 (185) 16 (185) 19 (185)
HIGMAN~JANKO-MCKAY GROUP (degree 6156)
a, a 2 o 10 25 50 100 250 @
1.00 1 * * 132 (1213) 57 (407) 48 (296) 46 (202) 95 (296)
1.00 50 * 299 (3007) 68 (566) 39 (227) 45 (238) 44 (180) 88 (177)
1.20, 50 * 225 (2659) 61 (514) 49 (357) 40 (201) 42 (175) 109 (177)
2.00 50 * 69 (535) 41 (178) 42 (178) 49 (178) 70 (178)
3.00 50 |46 (178) 46 (178) 47 (178) 51 (178) 57 (178)

(i) For each of the four groups, optimal performance can be obtained with small
values of M(x), say 1.1x or 1.2x, provided that adequate lookahead is employed (i.e.
I, sufficiently large). Reasonably good performance can be obtained even when M(x)
has its smallest possible value, namely x + 1. This is important, since small values of
M(x) minimize memory usage.

(i) Without lookahead (i.e. /; = 0), the algorithm is nearly useless, unless
memory size is adequate to permit large values of @, (Held’s group and the Higman-
Janko-McKay group require @, about 3 for reasonably good performance).

(iii) Unlimited lookahead (i.e. I, = e°) yields poor execution times. If it is to
be employed, a; should be chosen very close to 1.

(iv) With a; = 1.1 or 1.2, the value of I, should increase as the degree n in-
creases; however, /; should be less than linear in n. For the four groups studied, at
least, l, = c\/;, with ¢ between 1 and 2, yields good performance.

(v) Increasing a; or I, beyond the values giving optimal execution times seems
to produce little if any reduction in total relator length.

(vi) Unless a; = 0, the influence of a, on performance appears to be minimal.

Table 2 gives results for a wide variety of values of (I, I,, I3), with M(x) fixed
at 1.2x + 50. The objective here is to investigate the effect of choosing I3 > 1. From
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the table, it appears that, when [/, is chosen too large, higher values of /5 reduce ex-
ecution time significantly but not to optimal levels. However, when /; is chosen cor-
rectly, higher values of I3 produce no improvement and sometimes even increase ex-

ecution time. On balance, there appears to be little advantage to values of /5 greater
than 1.

TABLE 2
Performance of the STCS algorithm with
M(x) = 1.2x + 50 and (1,, 1,, I3) lookahead
(verifying strong generation)

Table entries are as in Table 1.

HALL-JANKO HELD'S M 24 HIGMAN-JANKO-
L 1 9.2 L 3 GROUP GROUP (degree 2024) MCKAY GROUP
(degrge 315) (degree 2058) (degree 6156)
o 1 1 10.1 (1497) * * *
10 1 1 2.1 (98) 33 (788) 16 (385) 225 (2659)
100 2 2 2.3 (98) 32 (774) 17 (385) 163 (1743)
25 1 1 2.1 (100) 19 (307) 12 (217) 61 (514)
25 3 3 2.3 (100) 24 (491) 12 (217) 72 (643)
25 5 5 2.4 (100) 20 (334) 12 (217) 100 (952)
50 1 1 2.8 (100) 19 (294) 12 (217) 49 (357)
50 5 5 2.7 (100) 19 (294) 12 (217) 72 (596)
50 10 10 2.5 (100) 20 (307) 12 (217) 58 (461)
1000 1 1 2.6 (100) 23 (294) 12 (177) 40 (201)
100 10 10 2.9 (100) 20 (294) 12 (217) 78 (568)
100 20 20 2.5 (100) 20 (294) 12 (217) 45 (263)
250 1 1 3.9 (100) 33 (294) 14 (177) 42 (175)
250 25 25 3.0 (100) 22 (294) 12 (177) 41 (175)
250 50 50 2.8 (100) 21 (294) 12 (177) 42 (210)
© 1 1 4.3 (100) 71 (294) 28 (185) 109 (177)
o 25 25 3.2 (100) 54 (294) 24 (185) 90 (175)
® 50 50 3.2 (100) 46 (294) 23 (185) 79 (177)

Table 3 gives results on using STCS to build up a base and strong generating set.
It is evident that performance is not nearly as good when STCS is used in this way.!®
For M, , there is roughly an eight-fold increase in execution time. There appear to be
two reasons for this reduction in performance. The values of m are larger due to re-
dundant strong generators and to fewer involutory generators, resulting in greater total
relator lengths and correspondingly longer enumeration times. When a new generator
is added and i is reset to j in steps 6 and 7 of Algorithm 6.2, the time previously spent
in checking that Hé? = HW+ 1) for | <j becomes wasted as these checks must be re-
peated.

In the course of collecting the data in Tables 1, 2, and 3, a number of more de-
tailed statistics were obtained. Some of these yield insight into the influence of a,
and /; on performance and, in particular, into the poor results obtained with too

10 1n making the comparison, the time required by the random Schreier method and by the
removal of redundant strong generators should be considered; however, these times are minimal.
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TABLE 3
Performance of the STCS algorithm in
building up a base and strong generating set

In all cases, k = 0 initially.

For each group, data is given for five (initial) two-element
generating sets selected at random from the set of two-element
generating sets.

Execution times are in seconds on an IBM 370/158.
Always M(x) = 1.2x+50, &, =%, =1, and MAXREL = 4000.

2 3
Group % Execution Total length Basic orbit m
1 time of relators lengths (final value)

HALL-JANKO 25 5.0 191 315, 10, 64, 3 11
3.6 113 315, 160, 4, 3 12
4.2 200 315, 32, 20, 3 12
3.8 166 315, 80, 8, 3 12
6.0 320 315, 80, 8, 3 14

HELD 50 * *

* *
104 1505 2058, 136, 900, 8, 2 17
62 703 2058, 1360, 120, 12 16
170 1348 2058, 1360, 120, 12 19
HELD 200 317 1741 2058, 425, 384, 2, 6 16
115 1254 2058, 136, 300, 24, 2 18
93 871 2058, 136, 900, 8, 2 17
56 353 2058, 1360, 120, 12 16
183 1352 2058, 1360, (20, 12 19
Moy 50 156 1666 2024, 630, 48, 2, 2 14
85 1012 2024, 630, 96, 2 21
128 1477 2024, 1120, 54, 2 15
97 1751 2024, 210, 288, 2 13
102 1340 2024, 1120, 54, 2 18
Moy 200 88 904 2024, 630, 48, 2, 2 14
82 490 2024, 630, 96, 2 20
99 992 2024, 1120, 54, 2 15
81 996 2024, 210, 288, 2 13
116 1033 2024, 1120, 54, 2 18

small or too large a combination of @, and I,. The problems with @, and/or /, too
large are illustrated by the following data for the Hall-Janko group (verifying strong
generation).

a, 1.1 50 1.1 50
L 25 25 o o
Total time (sec.) 20 37 4.1 138
Nonenunieration time 0.6 0.7 0.6 0.7
Enumeration time 14 30 35 13.1
Tracing relators (define mode) 05 10 0.6 1.1
Tracing relators (lookahead mode) 0.5 04 23 10.3
Processing equivalences 04 1.6 0.6 1.7
Total number of cosets defined 1592 5343 2035 5323
Total number of cosets processed in 489 554 4484 21592
lookahead mode
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Here “nonenumeration” refers to all of Algorithm 6.2, except for the coset enumera-
tions (steps 5.2 and 5.6(b)). In the leftmost column of data, @, and /, are chosen
optimally; in the remaining three columns, one or both of them are too large. In these
three cases, the increased execution times result entirely from greater time spent in
coset enumeration. As @, increases, the total number of cosets defined increases, and
correspondingly the time required to process coincidences (Algorithm 3.4) goes up. As
1, increases, the time spent in tracing relators while in lookahead mode goes up; note
the sharp rise in the number of cosets processed in the lookahead mode. A great deal
of effort is wasted in lookahead during early enumerations, which cannot possibly
complete since a set of defining relators has not yet been built up.

TABLE 4
Defining relators produced by the STCS algorithm

HALL-JANKO GROUP
(M(x) = 1.2x+50 and (25,1,1) lookahead)

a4,

ba~%p"%a72, b3, babd b4,

(¢ lay?, watcla b, b, " Zabc2albra, 3b(ac) a2,
ada-ld-l, a-lbad-lc_ld-lczd_lb, a3, a-lczb_lc-la-lcdc_zd-lb,

ac?bd tac taa "t 3pc L4,

Pl 1 1

Moy

(M(x) =1.2x+50 and (100,1,1) lookahead)

¢, a8, (ca%ca)?, (ca)b, (cat(ca)?)?
b2, bd lcdb(cd)?ca™t, (be)?, bdcbea™*ba”3, bebd lebedba lebede,
a2, adad laba’beba ?b, a(dc)?d lcabedbd®bdbd lc,
abd~lbdbadbd®bd %bd™!, abdad”‘babdcdecbded™3, ad”‘bacdcacbdcbdbebd?c.

When a, and/or /; are too small, a different problem occurs. A new relator will
be added in step 5.6(a) of Algorithm 6.2; typically, however, only a few cosets will be
deleted in the equivalence of step 5.6(b). When the coset enumeration is resumed in
step 5.2, few new cosets can be introduced, and the enumeration leaves the define
mode almost immediately. If [, is close to zero, the lookahead pass provides little if
any help. Thus the enumeration terminates (A¥ = M(n,)), with little progress having
been made. A new relator is added, and the process repeats. As more and more long
relators are added, it becomes even more difficult to make progress during an enumera-
tion. Since each relator added requires verification, execution time for the nonenumer-
ation portion of the algorithm can grow quite long. At this stage, enumeration times
remain quite short, because the enumerations terminate so quickly. Eventually the
STCS procedure may terminate unsuccessfully because the total relator length exceeds
the bound MAXREL. If MAXREL is large enough, the critical collapse(s) will occur
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eventually, and then the enumeration will proceed to completion; by this time, how-
ever, total relator length may be so great that an exceedingly long time is required to
trace all relators in the final enumeration. For example, about 12 seconds were re-
quired to verify a base and strong generating set for M,, with @, and /, chosen opti-
mally. With g, = 1.5 and /; = 0, 90 seconds were required, 49 seconds of non-
enumeration time (probably much of it verifying relators) and 41 seconds of enumera-
tion time. A total of 145 relators were added. For the vast majority of them, fewer
than ten cosets were eliminated in the subsequent collapse (step 5.6(b)). Of the 41
seconds of enumeration time, 35 seconds were used in tracing relators; 33 of these 35
seconds were used in the final resumption of the enumeration.

One way to avoid the situation described above is to select a relatively small
(but adequate) value of MAXREL—perhaps 500 to 1000 depending on the degree and
order. If @, and /; are chosen too small for good performance, STCS will terminate
unsuccessfully but rather quickly; one may then try again with a larger value of @, or
(preferably) /;. Another approach, suggested to the author by Sims, is to add relators
selectively; that is, step 5.6(a) might be omitted when the total relator length grows
long. Note that this does not effect the validity of the algorithm; in fact, it corre-
sponds merely to use of a different coset enumeration algorithm in step 5.2. This
approach would undoubtedly reduce enumeration times but might well increase time
spent in verifying relators, already a substantial factor when @, and /; are too small.

While testing the STCS method, statistics were obtained on the amount of the
Schreier vector v actually constructed in step 5.4. It may be necessary to construct as
many as n; + 1 entries of v before finding the words w, and w,; however, when n; is
large and a, and I, are at least large enough to give optimal time performance, only a
fraction of this number usually is needed. For the four groups investigated (verifying
strong generation), the number of entries of v actually filled in was c(n; + 1), where
¢ ranged from 0.03 to 0.19, whenever n; > 250 and @, and I, were large enough. This
suggests that, in implementing the modifications suggested in Section 10A, it might be
best to construct initially fewer than n; + 1 entries of v in step 5.4.2" whenever n; is
large, as mentioned at the end of Section 10A.

Statistics also were obtained on the distribution of execution time for the STCS
algorithm. For the four groups studied, whenever @, and I, were chosen to give opti-
mal performance, the percentage of total execution time spent in coset enumeration
ranged from 70% to 80%. Thus any effort toward efficient programming (for example,
programming selected sections in assembler language) should be directed primarily
toward the coset enumeration program.

It should be kept in mind that all results in Section 10B were obtained with an
HLT coset enumeration algorithm with (I, /,, I3) lookahead. The HLT method is one
of two major approaches to coset enumeration successfully implemented for large
groups; see [1]. The other method is due to Felsch. Although the HLT method seems
to give the best performance for a majority of groups, when coset enumeration is used
in its usual way [1], it remains to be tested whether this applies also to the special way
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in which enumeration is invoked in the STCS algorithm. The use of the Felsch method, as
well as the modifications discussed in Section 10A and some other variations of the
STCS algorithm, will be discussed in a forthcoming paper by the author.
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