## A Factor of $F_{17}$

## By Gary B. Gostin

Abstract. A prime factor is given for  $F_{17}$ . The method of factoring and its machine implementation are given.

During the investigation reported here, a new factor of Fermat Number  $F_{17}$  was discovered. It is given in Table 1. The factor is significant, since  $F_{17}$  is the smallest Fermat number whose character was unknown, and since  $17 = F_2$ .

The method of factoring is similar to that of Hallyburton and Brillhart [1] and others [3], [4]. To determine whether a  $d_k = k \cdot 2^{n+2} + 1$  divides  $F_n$ , the congruence  $2^{2^n} = -1 \pmod{d_k}$  is tested. This is done by beginning with the residue  $r_i = 2^{3^2}$  for i = 5, and computing  $r_i^2 \pmod{d_k}$  which becomes  $r_{i+1}$ . This operation is repeated n-5 times. For any  $r_i$ ,  $d_k$  divides  $F_i$  if  $r_i = -1 \pmod{d_k}$ . Therefore this method tests to see if  $d_k$  divides any  $F_i$  for  $1 \le i \le n$ .

| Table 1. Factor of $F_{17}$ |                                              |  |  |
|-----------------------------|----------------------------------------------|--|--|
| n                           | Factor                                       |  |  |
| 17                          | $31065037602817 = 59251857 \cdot 2^{19} + 1$ |  |  |

This procedure was written in Compass assembly language for the CDC Cyber 175. The basic test, along with a provision to add a constant to  $d_k$  and to repeat the basic test, was written as a subroutine that can be called by Fortran. The subroutine can test up to 131,072  $d_k$ 's on a single call. The time to test a  $d_k$  is given in Table 2 for three Fermat Numbers.

| Table 2. Time to test a $d_k$ for $F_n$ |                     |                        |  |  |
|-----------------------------------------|---------------------|------------------------|--|--|
| n                                       | time (microseconds) | # residue calculations |  |  |
| 9                                       | 7.0                 | 4                      |  |  |
| 13                                      | 14.5                | 8                      |  |  |
| 17                                      | 20.8                | 12                     |  |  |

A computer generated sieve was considered for reducing the number of  $d_k$ 's tested. It was rejected, however, because the cost (time plus memory) of rejecting a  $d_k$ , by using the sieve, was more than the cost of running the basic test with  $d_k$ . Instead the following method was used.

Received April 16, 1979; revised November 7, 1979. 1980 Mathematics Subject Classification. Primary 10A25, 10A40; Secondary 10-04.

If all  $d_k$  divisible by 3 or 5, or with k even, are crossed off a list of all  $d_k$ 's, the pattern of divisors remaining is periodic with a period of thirty. Eight divisors out of each group of thirty will remain. Therefore a search of a sequence of  $d_k$ 's can be broken down into eight searches, with  $30 \cdot 2^{n+2}$  being added to the present divisor to get the next divisor in each test. Thus a sieve by 3 and 5 on a sequence of  $d_k$ 's (k odd) can be done with no additional computer time. By consulting a table of primes, it is estimated that 60% of the composite  $d_k$ 's are rejected by this sieve.

All the Fermat numbers from  $F_8$  to  $F_{46}$  were examined. A limit of  $2^{48}$  was placed on  $d_k$ , but  $d_k = 2^{48} + 1$  was factored (thus rejected) by hand. The search limit for each Fermat Number is shown in Table 3. For each  $F_n$ , the limit on  $d_k$  includes odd values of k tried while examining  $F_n$ , and even values of k tried while examining  $F_m > n$ . Therefore in every case, all divisors up to the limit reported were covered. The total CPU execution time of this program was about seven hours.

| TABLE 3. Search limit for $F_n$ |                    |              |  |  |
|---------------------------------|--------------------|--------------|--|--|
| n                               | Limit              |              |  |  |
| 8                               | $d_k = 2^{41} + 1$ | $k = 2^{31}$ |  |  |
| 9                               | $d_k = 2^{41} + 1$ | $k = 2^{30}$ |  |  |
| 10                              | $d_k = 2^{42} + 1$ | $k = 2^{30}$ |  |  |
| 11                              | $d_k = 2^{43} + 1$ | $k = 2^{30}$ |  |  |
| 12                              | $d_k = 2^{45} + 1$ | $k = 2^{31}$ |  |  |
| 13                              | $d_k = 2^{45} + 1$ | $k = 2^{30}$ |  |  |
| 14 – 24                         | $d_k = 2^{47} + 1$ |              |  |  |
| 25 - 46                         | $d_k = 2^{48} + 1$ |              |  |  |

During the search, two factors for  $F_{12}$  and one for  $F_{11}$  were also found. These were found by S. Wagstaff at the University of Illinois to be products of smaller known factors. Wagstaff also mentioned that the cofactors of  $F_{11}$ ,  $F_{12}$ , and  $F_{13}$  are composite.

I would like to express my thanks to the University of Illinois Computer Center for the use of the Cyber 175, on which the work reported here was done.

13354 Emily Road #136 Dallas, Texas 75240

- 1. JOHN C. HALLYBURTON, JR. & JOHN BRILLHART, "Two new factors of Fermat numbers," *Math. Comp.*, v. 29, 1975, pp. 109-112.
- 2. MICHAEL A. MORRISON & JOHN BRILLHART, "A method of factoring and the factorization of  $F_{7}$ , "Math. Comp., v. 29, 1975, pp. 183-205.
- 3. RAPHAEL M. ROBINSON, "A report on primes of the form  $k \cdot 2^n + 1$  and on factors of Fermat numbers," *Proc. Amer. Math. Soc.*, v. 9, 1958, pp. 673-681.
- 4. G. MATTHEW & H. C. WILLIAMS, "Some new primes of the form  $k \cdot 2^n + 1$ ," Math. Comp., v. 31, 1977, pp. 797-798.