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Elliptic Curves of Conductor 11

By M. K. Agrawal, J. H. Coates, D. C. Hunt and A. J. van der Poorten

Abstract. We determine all elliptic curves defined over Q of conductor 11. Firstly, we
reduce the problem to one of solving a diophantine equation, namely a certain Thue-
Mahler equation. Then we apply recent sharp inequalities for linear forms in the loga-
rithms of algebraic numbers to bound solutions of that equation. Finally, some straight-
forward computations yield all solutions of the diophantine equation. Our results are in
accordance with the conjecture of Taniyama-Weil for conductor 11.

Taniyama and Weil have asked whether all elliptic curves defined over Q of a
given conductor NV are parametrized by modular functions for the subgroup I'(V) of
the modular group. The assertion that this question has a positive answer has become
known as the Taniyama-Weil conjecture. While the general question seems shrouded in
mystery and quite inaccessible at present, one can at least try to verify the conjecture
for small numerical values of N. A considerable amount of work has already been
done in this direction (cf. [4], [5], [19]—[24], [29]). However, the first nontrivial
case of the conjecture, namely N = 11, has not previously been settled. The aim of
this note is to determine all elliptic curves of conductor 11 defined over Q and so to
verify the conjecture of Taniyama-Weil for N = 11.

It is well known that the problem of finding all elliptic curves defined over Q of
a given conductor N can be reduced to finding S-integral points on certain associated
curves of genus 1; here S is the set of primes dividing V.

For certain values of IV, these diophantine equations can easily be solved by con-
gruence techniques. However, this elementary approach does not work for N = 11, and
we are forced to solve these equations by using some recent sharp inequalities for linear
forms in the logarithms of algebraic numbers.

The body of this paper is, thus, given over to solving a diophantine equation by
Baker’s method. Whilst our computations are of course specific to the particular equa-
tion we solve, our methods are quite general.

As regards the elliptic curves, we employ the usual notation and terminology.
For background and more detailed explanation we refer the reader to the surveys of
Swinnerton-Dyer and Birch [31] and of Gelbart [12]; see also Mazur and Swinnerton-
Dyer [18].

1. An elliptic curve E over a field K has a nonsingular plane cubic model
6)) y2+axy +ay=x3+a,x* +ax +ag
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with the g; in K. If the characteristic char K of K is not 2, we can replace
42y + a;x + a;) by y and 4x by x to obtain

@ ¥? =x3 4+ b,x? + 8b,x + 16b,
with
b, =a} +4a,, b, =a,a; +2a,, by =a}+4a,.
When also char K # 3, replacing y by 4y and x + b,/3 by 4x yields the familiar
Weierstrass equation
yr=4x3 —gyx g,
with
12g, = ¢, = b3 —24b,, 216g; = cg = —b3 + 36b,b, — 216b,.
The curve (1) is nonsingular when its discriminant A does not vanish. Here A is given
by
1728A = ¢ — ¢2 = (12)3(g3 - 27£3),
or equivalently,
_ —97p2
A = -b2bg — 8b3 = 27b% + 9b,b,b,
where
4bg = b,ybg — bi or bg =b,ya, —ajaza, + a2a§ - aﬁ.

These last equations define A in any characteristic. The j-invariant of the curve is
j= ci/A. The model (1) for an elliptic curve E over K is unique up to a coordinate
transformation of the form

x=u*"+r, y=udy' +su?' +1¢
with #, s, ¢, u in K, u # 0. For full details, see Tate [34].

When K = Q (or more generally for the quotient field of any principal ideal
domain) we can choose the model (1) with the @, in Z and the p-order of A minimal for
each prime p. Supposing (1) is such a global minimal model, we reduce (1) modulo p to
obtain a curve Isz over the finite field F » If the reduction pr of £ mod p is elliptic
over F » that is, if and only if A # 0 mod p, then E is said to have good reduction at
p- The bad reduction of E is measured by the (geometric) conductor

N=CondE=prP,
p

where fp =0ifp4 A (so fp = 0 for all but finitely many p), whilst fp = 1 if the
singularity is a node, and fp = 2 if the singularity is a cusp (and fp <2if p> 3;for
details see Ogg [23]). The f,, and hence Cond E, are invariant under isogeny (see, for
example, Neumann [21]).
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Three curves of conductor 11 defined over Q were already known, namely

(A) y:—y=x3-x2, =-11,
B) ¥} —y=x3-x%*_-10x-20, A=-115,
© 2 —y =x3-x% - 7820x — 263580, A =-11.

Vélu [35] has shown that these three curves are isogenous over Q, and that, up to
isomorphism, they are a full isogeny class. Conversely, it follows from results of Serre
[27] that in the present case, N = 11, the Taniyama-Weil conjecture is equivalent to
there being exactly one isogeny class of elliptic curves. (For further comment see
Gelbart [12, pp. 254—255].) Thus the conjecture is equivalent to the following theo-
rem which we prove in the remainder of the paper.

THEOREM. The only elliptic curves of conductor 11 defined over Q are, up to
isomorphism, the curves (A), (B), (C) above.

2. Asremarked above, the determination of all elliptic curves with given con-
ductor can be reduced to a problem on solving diophantine equations. Various authors
(Ogg [23], [25], Coghlan, Neumann [20], [19], [21]) have dealt with the cases N =
293% and other cases involving only small primes by showing that the elliptic curves
possess rational points of small order. Setzer [29], and Neumann [21], [22] deal with
many cases of prime conductor by showing that for p # 2, 3, 17 there is an elliptic
curve conductor p defined over Q with a rational point of order 2 if and only if p =
u® + 64 for some integer u. On the other hand, unless 3 divides the class numbers of
both Q(+/p) and Q(\/:;)—), for p = +1 mod 8 a curve of conductor p must possess a
rational point of order 2. Hence, for many p there cannot be elliptic curves defined
over Q with conductor p. When p = 17 or p = u? + 64 the curves of conductor p
can be displayed explicitly. Of course, all the results obtained are consistent with the
Taniyama-Weil conjecture.

Setzer [29], and subsequently Bélling [S], consider the case where E has no
rational point of order 2 but has prime conductor p. Then the 2-division field Q(E,)
generated by the coordinates of the 2-division points of E over Q, is a Galois extension
of Q with Galois group S5, and is unramified at all primes distinct from 2 and p. This
yields only finitely many possibilities for Q(£,) and yields elliptic curves E(u, v), where
(4, v) is an integer solution of a diophantine equation f(u, v) = +2°p® for certain cubic
forms f (depending, as does e, only on p). Conversely, each solution (u, v) of this
Thue-Mahler equation determines an elliptic curve with good reduction at all primes
distinct from 2 and p. One must then exclude those solutions with bad reduction at
2 or bad reduction of the wrong type at p. Since, conversely, each elliptic curve of
conductor p determines a solution of the diophantine equation, those curves that re-
main (if any remain) after the exclusion constitute the elliptic curves defined over Q
of conductor p.

Earlier Agrawal and Coates had obtained the same diophantine equations by a
much clumsier argument. Namely, elliptic curves of conductor p give rise to a solution
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of the diophantine equation ¢3 — ¢? = £(12)3p". Using factorization techniques this
4 6 q ]

equation can eventually be transformed into one or more Thue-Mahler equations.

Of course it is easier to show that a diophantine equation has no solutions (or,
as in the present case, no solutions satisfying certain additional conditions) than it is
to find all solutions when nontrivial solutions exist. Thus Bélling [S] has completed
work of Setzer [29] and has found all primes p < 401 for which there are no elliptic
curves defined over Q of conductor p. On the other hand, in those cases where there
are curves without a rational 2-division point it has not proved possible to determine
whether all solutions have been detected. However, we know (see Coates [7] or [30])
that a Thue-Mahler equation has at most finitely many solutions and that all solutions
can in principle be effectively found by using Baker’s method. In the present paper we
actually carry out the necessary computations in the case p = 11.

3. Let E be an elliptic curve over Q with conductor 11, and minimal model (1)
with discriminant + 117, Setzer [29] (or see [5]) shows that the 2-division field
Q(E,) contains a subfield K cubic over Q, with discriminant D = + 11 or +44. A table
of cubic fields (see for example [1]) shows that D = —44 is the only possibility, and
that K is generated over Q by a zero of

€)) x3-x2+x+1.

Let 1, w, u be an integral basis of K. Explicitly, if w is a zero of the polynomial x3
+ bx? + acx + a*d (with @, b, ¢, d rational integers) and K = Q(w), then u defined
by w? = —ac — bw + ap will do (this yields a Voronoi basis; see [9]). After a trans-
lation, if necessary, there is no loss of generality in supposing that (6, 0) with § =

uw + vy, and u, v rational integers, is a 2-division point of E. Setzer shows that

4 Ny 0w +vp) = au® + bu?v + cuv® + dv® = 23119,
K/Q

where 25 + 1 = r; we can of course takea=c=d=1,b = —1.
Conversely, given an integer solution (u, v) of (4), with (u, v, 11) = 1, let g(x)
be the minimal polynomial of 8. Explicitly
8(x) = x> + (bu — cv)x? + (acu® + (3ad — be)uv + bdv?)x
+ (a%du® + (2abd — ac*)uv + (b%d - 2acd)uv® — ad*v?),

which in the present case becomes
() glx)=x3—(u+v)x? + @ + duv—v¥)x + @ — 3utv - u?v - v3).

Then y? = g(x) is an elliptic curve given by a model of the shape (2), with discrimi-
nant A = 24(+2311%)2 - ~44 = —2121125+1, 1t remains to determine whether we
have a curve of conductor 11.

It is easy to see that the equation (4) witha = ¢ =d = 1, b = —1 implies both
u and v even. Henceforth, we write u = 2u’, v = 2v and suppress the dash. ' Then a
translation replacing x by x — 2(u' + v') yields the model

(6) > =x>+4(u + v)x? + 8u(u + 3v)x + 16(u3 + uPv + uv? — v3).
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But the equations of Section 2 show that in order that the curve have good reduction
of 2 it is necessary and sufficient that (in order that we can move from (2) to (1)) b,,
bg be squares mod 4 and b,b¢ — b2 =0 mod 4. Here these conditions are that

&(u + v) and u® + uv + ww® — v® be squares mod 4 and u*(3u — v) (u + V)

=0 mod 4, which is u(u + v) =0 mod 2. Since, plainly, (,v) =1 (recall, this is @', v")
= 1) it is necessary and sufficient that ¥ —v =1 mod 4, and u = 0 mod 2. Next, we
see that (6) is y2 = (x + (u — 5v)) (x — 4(u — 8v))?> mod 11. Hence, (6) has additive
reduction at 11 if and only if # = 3v mod 11. Summing up:

PROPOSITION. Each elliptic curve E = E(u, v) defined over Q of conductor 11
is determined by an integer solution (u, v) with (u, v, 11) = 1 of the Thue-Mahler
equation

ud — uly + uv?® + 03 =119,

where s is a nonnegative integer. Moreover, each solution of this equation in integers
u, v with (u, v, 11) = 1 gives rise to an elliptic curve E(u, v) defined over Q, and
E(u, v) has conductor 11 if and only if u =0 mod 2, u—v =1 mod 4, and u #
3v mod 11.

4. Write
) pex)=x* +x? +x-1,
and let e in R, § and & denote its zeros in C. In K = Q(¢) we have 11 =

(1 + 2€) (2 + €?)? (recall that p(x) has discriminant —44) and € is a fundamental unit.
We have

Fu, v) = u® — uPv +uv? + 03 = (u + ev) (u + 6v) (u +5v) = 115,
which implies
®) u+ev= 201 +26)°12 + €2)°2

with b, + b, =s,b,,b, >0and by, b,, b, in Z.
By the identity

(G-8)(u+ev)+(5—€)(u+dv)+(e—58)(m+sv)=0,
we have
[ _€=8 (u+_ﬁv)=8—§ (u+ev)’
€—8 (ut+tdv) €e—86 (utdv

which becomes by virtue of (8) and its conjugate equations,

§—06\ /e\rof 2 + 82 \M
©® T <—> ,
@ o n e-5/\8) \2 +¢

where v, = (e = 8)/(e = 8), 7, = (2 + 8%)/(2 + 82), 7, = §/8 and hy = b, hy =
2b, — b,. We shall write H = max(lh,l, |A, ).
Computing the complex zeros of p(x) (on a Hewlett Packard HP67) yields

€=0.543689013..., §=-0.771844 506‘. .. xi - 1.115 142508 . ..
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and |8/l = 2.4944 ..., |2 +8)/(2 + €¥)| = 09535 ...,1(6 — 8)/(c— )l =
1.2932 . ... We shall (easily) see below that , = -1; and since obviously
11—, 17207’1'” < 2, since the 7 lie on the unit circle, we deduce that we only
have two cases: (I) H=hy=>h, and (I) H=h, > |hyl. For case (I) we shall re-
quire the 11-adic zeros of p(x). Writing, formally, 8> = —11, we find (again on the
HP67)

€=5+711+4+2112 +7.113 +2.11% + - - -,

8 =8+50+1.11+2110+4112 +---

(the third zero being &' with 6 replaced by 6 = —). Since clearly
ord; (1 —v5 17307'1'1) > 0 (we suppress the necessary dashes), whilst ord, ,(e/8) = 0,
ord, (2 +8%)/(2 + €*)) = %, and ord, ((6 — 8)/(e = 8)) = %, we deduce that
hy >-1.

It is a mechanical matter to determine all solutions of (9), and/or its 11-adic
equivalent, with H small. In fact, all solutions of f(u, v) = +1 are already'provided in
[9]. The solutions with H < 20 are

hy=0 b, =b,=0 §s=0 u= v=20 and u=-1 =0
hy=1 b,=5b,=0 s=0 u=0 v= and u=0 v=-—
hy=4 b, =b,=0 s=0 u=-1v=2 and u=1 v=-2
hy =17 1=b, = s=0 wu=56v=-103 and u=-56 =103
hy=0 by=1b,=0s=1 u=1 =2 and u=-1 v=-2
hy =3 by=0,b,=1s=1 u=2 v=-3 and u=-2 v=3
hy=1 1=2,b,=05=2 u=4 v=-3 and u=-4 v=3.

Of these 14 solutions all but 4 give rise to elliptic curves with bad reduction at 2, and
u =2, v=—3 gives rise to a curve with additive reduction at 11. Hence, we obtain 3
curves of conductor 11. We list the curves obtained according to the formulas of
Section 3, the transformation required to bring them to a minimal form, and the corre-
sponding minimal models.

A u=0 v=—1 p2=x3+2x2 —4x+8 x=4x"-2, y=4Q2y'-1)

3 2

y2-y=x3-x
© u=-56 v=103 y%=x3-94x? —122180x — 13146104
x=4x+30, y=42y'-1) y* —y=x3 - x? —7820x — 263580
(B) u=-4 v=3 y?=x3+2x%-164x—1592
x=4x'-2, y=4Qy'-1) y2-y=x3-x2-10x-20

Thus, we have found the three known rational elliptic curves of conductor 11.
To prove the theorem of Section 1 it now suffices to show that the equation (9),
and/or its 11-adic analogue, has no solution with H > 20.
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5. Firstly, we remark that the quantities v,, v, and 7Y, are not multiplicatively
independent. Indeed

(-8 =—(1-¢% %1 +2e), (1-¢)3=2eQe—1)= 26,

SO

o_[(e=8\6_[1-5\6/s\ 121425\ _[8\2(24+82\"C_ 5 _¢
={—=) =|—=]) (= = = = Yo"1
27 \e-5 1-35/) \% 1+25 8 2 + 82

(It was a salutary lesson for the authors that we failed to notice this relation until it
became apparent in our attempts to simultaneously approximate quotients of 11-adic
logarithms.)

Case (). H=hy > h, and H > 20. We have by (9)

10) 11— 1509819511 < (0.216 x 2m)e2H, with A> 0.9140 . . . .

Writing y; = exp(21rz’¢i),j = 0, 1, 2, we obtain (since, say, |[Log a| < 2|1 — af if
[1—-al <)

(3)) “h0¢0 + h1¢1 - ¢2" < e—AH,

where || || denotes the distance to the nearest integer. Noting the cited relation, we
similarly have

(12) (6hg — 2)py + (6, + 6)¢, Il < 6e™AH.

Case (). H=h, > |hy| and H > 0. We have by the 11-adic analogue of (9)
and our earlier remarks

(13) ord; (1 = 7o, 177 1) = %@ + 1).

Each of the v, is of the shape y = (1 + ¢0)/(1 — ¢0) with ¢ an 11-adic integer.
Hence, the 11-adic logarithms exist, indeed explicitly

3 2.5 3.7
_ne | 11 llc+”.>.

+ —

(14) logy =log(1 + cO)/(1 — c6) = 20 (c 3 5 7

We write x = log vq/log v,. In view of the relation we have (recalling that ord,(1 - x)
= ord,, log x if ord,(1 — x) > 1/(p — 1))

(15) ord, ,((3hy — 1)x — (3h, + 3)) = %H.

6. Baker’s inequalities for linear forms in the logarithms of algebraic numbers
(see, for example, the first two chapters of [3]) yield the conclusion that (10) and,
respectively, (13) have no solutions if H is larger than some effectively computable
constant. Explicitly, we employ the recent sharp inequalities of Loxton, Mignotte,
van der Poorten and Waldschmidt [15]. These inequalities do not involve any princi-
ples additional to those described in [3]; rather they are the result of simultaneously
introducing many known refinements to the known proof techniques. We state here
only a weak partial result sufficient unto our present purpose:
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Let a;, ..., a, be nonzero algebraic numbers with K = Q(a,, ..., q,), [K: Q]
= D and [K(a'l/’, cees a;{’): K] = 2". For an algebraic number o with defining
polynomial gy X d 4.4 ay write lel® = a,Il max (1, |oal), where the product is
over the d automorphisms ¢ of Q(a) over Q, and put V, = max(|log ,|, Loglle, [},
1<r<n. Letb,,...,b, be rational integers not all zero with B = max|b,|.
Finally, let £ = eD min(V,/llog ). Write

A=1-ajt - ayn or A=bjloga, +---+b,loga,
depending on which expression is more convenient in the application under investiga-
tion. The results with which we are concerned are of the following shape:

If A# 0and |Al < e %3, some § > 0, then B is bounded by a computable posi-
tive constant depending only on §,n,D, V,, ..., V, (and E). Moreover, if p is a
prime ideal of K and pl(a, — 1), 1 <7 <7, then similarly ord, A> 6B implies such
a bound for B.

In each metric the bound obtainable is as follows: write C = 2”Dbc"d26 ™1
where b. ¢, d are described below and Q = V, ¥, - -+ V,. Then it is shown that B <
C(Log EC) (Log C). Let b', ¢, d' be positive numbers which we may suppose to be
no greater than 5, and put x = 4(n + 1)2D(Log £)~!. Then we may take b = b'x,
¢=c'x and d = (n!)~1d". To prevent overrough use of these remarks we add that
some qualifications must be made if £ is very large, but x > 1 is always safe. Of
course, a different definition to that given for £ applies in the p-adic case; the reader
should simply replace Log E by 1 in the bounds given above. In the p-adic case one
can actually obtain B Log p is less than the cited bound (where p divided the rational
prime p). We emphasize again that the quoted results are weaker than those obtained
in [15].

Applied to (10), noting the relation, the complex case certainly yields # < 10'%
and applied to (13), again noting the relation, the 11-adic case yields H < 1115, We
should remark that these bounds are not as sharp as possible and are quoted as con-

b

venient numbers only; the remainder of our proof is not sensitive to the precise size of

the bounds. It now remains for us to close the gap between 20 and these respective
upper bounds.

7. Our technique borrows from a suggestion of Ellison [10] which generalizes
an idea of Baker and Davenport [2].
Case (I). We simultaneously rationally approximate ¢, ¢, obtaining

(16) l¢; — p;fal < q~2/3, with integers Po> Py, 4.
Write 7; = q¢; — p;,i = 0, 1. Then

a7 “(horo + hlrl) —q¢, + (hopo + hlpl)" < qe_SH-

We notice that the relation implies |6g¢, |l < 8Hq ™" for q satisfying (16). Hence, if
q is sufficiently large relative to the upper bound for H, then [lq¢, || is always (very
nearly) an integer multiple of 1/6. (We noticed this phenomenon before we had found
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the relation, but dismissed it as commdence') But with q appropriately large and llgo, I
not (very nearly) zero, the inequality (17) is impossible if ge =¥ is noticeably less than
1/6. This yields a new, very much smaller, upper bound for H.
We computed
6o = 0.307 283 347 825 135 494 792 282 360 112 311 481 486 504 705

511 418 102 745 796 778 . .

¢, =—0.288 055 833 808 469 053 321 695 954 512 194 607 473 252 968
601 753 438 867 670 338 . . .,

¢, = 0.223 816 949 750 180 884 919 123 407 882 965 101 302 087 870
438 892 806 449 602 598 . . .,

and found an appropriate denominator ¢ satisfying (16)
q =975 370 958 532 758 933 226 181 218 264 710 345 131
=0.975 370 x - - - x 103

We checked g¢, and found |lg¢,|l = 0.500 000 . . . (with error < 10_19). The rele-
vant errors 1, r, were of the following order:

ro=13x:+-x10"2% , =084 x---x 10729,
0 1

Given that H < 103, (17) implies that ge=%¥ > 0.499 . . . which yields H < 100.
This constitutes a striking improvement in the upper bound for H. The next appropri-
ate denominator q satisfying (16) we chose to be

q = 4578 595;
llgo,ll = 0.167 . .., 7y =10.646 x - -+ x 1074, r, =396 x - -+ x 1074,

Then (17) implies, given that # < 100, that ge=%# > 0.12 . . . , which yields H < 20.
Hence, we have closed the gap in Case (I).
Case (II). We rationally approximate x so as to obtain two approximants

(18) ord,,(g;x —p;) =5, i=1,2 with integers p;, q; such that
(19 P14, — P4, # 0,

and 117 large relative to |p,|, q;,1=1,2. We write r = gx — p. Then
(20) ord,;(rBhy — 1) + Bhy — Dp — (3h, + 3)q) = %H.
Hence, if H = 2s, then

1) ord, ;((3hy — D)p — (3h,; + 3)q) =5

But if BH — 1)I|pl + (3H + 3)q < 117, then (21) implies

Bhy — 1)p — (3h, +3)g =0
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This equation is impossible for both the approximants satisfying (19), so we obtain
H < 2s. This yields a very much smaller upper bound for H.
We computed

x=2+611+4112+5113 +---
= 264 592 979 998 093 174 365 567 059 092 223 070 028 910 476 A40

618 661 481 A48 . ..
-and found, with s = 40,

q, = 133 337 970 558 677 219 027 = 1.333 379 x - - - x 10?7,
p; = 722 999 016 021 217 320 198 = 7.229 990 x - * - x 1029,

q, = 506 135 618 806 951 323 269 = 5.061 356 x * * * x 1029,
p, = —649 904 906 666 545 995 857 = —6.499 049 x - * - x 102°.

By the underlying theory (19) is automatic (with p,q, — p,q, = 1149), which yields
H <80 (even H < 72). Next, with s = 6, we found

q, =173, p, = -965,
q, =1802, p, =447,

and p,q, = Pyq, =~ 116, These approximants yield # < 12 which closes the gap in
Case (II).

8. All computer calculations were performed within the UNIX operating system
(Bell Laboratories) on the Australian Graduate School of Management PDP 11/70 com-
puter. The simultaneous approximation algorithm was performed using the DC and
BC systems within UNIX. DC is an arbitrary-precision integer package; BC is a simple
language with which to program DC.

We employed an efficient simultaneous approximation algorithm due to Szekeres
[32]. The principle of the Szekeres algorithm is sequential ‘Farey bisection’ of sim-
plexes. It is not known whether the algorithm necessarily succeeds (though see Cusick
[8]), but in practice it appears to provide plenty of good simultaneous approximations
at reasonable speed. It is a fortuitous feature of Ellison’s recipes [10] which we em-
ploy, that we require no guarantee that we are obtaining all best approximations; good
approximations suffice. We required 562 steps of the algorithm to obtain the large de-
nominator in Case (I); the smaller denominator appears at step 146. The solution
hy = 17 was ‘noticed’ by the algorithm which produced a particularly good approxima-
tion at step 69 (with ¢ = 106 462, but ||q¢, || very nearly zero). All calculations were
performed to accuracy of 98 decimal places.

To perform the 11-adic calculations of Case (II) we initially used the 11-ary (base
11) facility of DC. Later we wrote a package of FORTRAN subroutines for arbitrary
primes p to perform p-adic addition, subtraction, multiplication, division, logarithm and
exponential (the last to check the accuracy of the logarithm routine).
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To obtain the 11-adic approximants we use an idea of Mahler [17, p. 63]. Ex-
plicitly, we truncate the 11-adic expansion of x at term s (s = 40) obtaining a rational
integer x! <115 (If x=ay +4a,11 +a,112 +---thenx' =a,_ 11" '+ 4 _ 1152
+---+a,11 +a,.) We then approximated the rational number x!/11% by the continued
fraction algorithm. If 7/q is a convergent, then

Ix'/11° —r/ql < 1/g* and X'/11° - r/q = p/11%,

ord, ,(gx — p) = ord, ,(gx* — p) = ord, ,(11°) =5,

and pg < 11°. Choosing q,, q, as consecutive denominators implies |p,q, — P,q,| =
11° as asserted.

Thus, we approximated the rational number
x'/115 = 0.885 804 116 510 898 324 820 924 074 001 525 676 118 468 587 . . .

and selected appropriate pairs of consecutive convergents. For discussion of rational
approximation in the p-adic case we refer the reader to Mahler [16], [17], Schneider
[26], and Bundschuh [6].
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