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Outline of a Proof That Every Odd Perfect Number
Has at Least Eight Prime Factors

By Peter Hagis, Jr.

Abstract. An argument is outlined which demonstrates that every odd perfect number
is divisible by at least eight distinct primes.

1. Introduction. A positive integer is said to be perfect if it is equal to the sum
of its proper divisors. Over a period of time spanning more than two thousand years
only twenty-seven perfect numbers have been discovered, all of them even. Whether
or not any odd perfect numbers exist is a very old and as yet unanswered question.
Many persons have investigated the properties which must be possessed by an odd per-
fect number (if one exists), and particular attention has been paid to the question,

“If N is odd and perfect how many prime divisors does N have?” et R denote the
number of distinct prime factors of the odd perfect number N, and let P(K) denote
the set of all odd perfect numbers with exactly K distinct prime factors. In 1888
Sylvester proved that R > 5 (so that P(K) is empty if K < 4), and in 1913 L. E. Dick-
son showed that P(K) is finite for every natural number XK. In 1972 Robbins (Brook-
lyn Polytechnical Institute) and Pomerance (Harvard) each wrote a doctoral disserta-
tion in which he proved that R = 7. For a more complete history of these matters
and references to the literature the interested reader is referred to [8]. It should,
perhaps, be mentioned here that Pomerance [10] has shown that no member of P(K)
can exceed (4K)e(4K)e(2)e(K)e(2) where (x)e(y) = x”.

In the present paper a proof is sketched that R > 8. The complete proof, in
the form of a hand-written manuscript [3] of almost two hundred pages, has been
deposited in the UMT file. Our plan of attack is simple. We assume the existence of
an odd perfect number with exactly seven prime divisors and then show that such an
assumption is untenable. In conjunction with the result of Pomerance-Robbins men-
tioned above this yields the desired result.

2. Some Notation. In what follows we shall try to be consistent in our use of
the following notation. &, b, ¢,... and a, 8, 7, . . . will be used to represent non-
negative integers with odd primes being symbolized by p, q, 7, . . . . M will denote
an odd integer with the property that if pIM, then p > 100129. N will represent an
odd perfect number, and » will represent an odd perfect number with exactly seven
distinct prime factors. If p?I N, we shall call p® a component of N. The largest prime
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factor of NV will be denoted by P. The dth cyclotomic polynomial will be symbolized
by F; (so that, Fp(x) =1+x+x%+---+xP71). Asusual, o(k) will denote the
sum of the positive divisors of the positive integer k. We shall write h(k) = o(k)/k so
that k is perfect if and only if A(k) = 2. h(p™) = lim,_, ,h(P®) = p/(p — 1) and it is
easy to see that:

1) 1<hE®) <h@®)if0<a<b<oo

(i) h(@*) <h@®)ifp>qand 0<a< oo, 1 <h < oo

(i) r(@P{1p%2 - - - p;.‘l) = h(P*h@P3?) - - - h(p;.’i) if the p; are distinct primes
and 0 < g; < oo

3. The Key Steps. We shall now state, and in a very few cases prove, the most
important results which lead to the conclusion that every odd perfect number has
eight prime factors. The nomenclature is that of [3].

From Theorems 94 and 95 in [7]:

(2) q|F,(p) if and only if k = q® - E(p; q), where E(p; q) is the exponent to

which p belongs modulo g. If 8 > 0, then gl F,.(p); if B = 0, then q = 1(k).

As a special case of (2) we have:

(22) If q is a Fermat prime (g = 2° + 1) and k¥ > 1 is odd, then ¢|F,(p) if and

only if k = ¢® and p = 1(g).
(4) If k > 3, then F(p) has at least one prime factor g such that g = 1(k).
(This result is (21) in [5]. Other references are given in 1.8 of [8].)

The next result appears in [6].

(15) If ¢*IF,(11), then q > 228,

If N is odd and perfect, Euler showed that

(22) N =piop5t - - - pit, where p, = a, = 1(4) and 2lg; if i > 0. We shall

follow Pomerance [8] and usually write p, = m and ¢, = m.  is called
the special prime divisor of N.
Since N is perfect, o(V) = 2N; and since ¢ is multiplicative and o(p®) = I1F,;(p),
where dl(@ + 1) and d > 1:

t t
23) v =[] ot = [T [T
i=0 i=0 d

Here d runs over the divisors of @; + 1 which exceed 1. The set of p, in (22) is iden-
tical with the set of odd prime factors of the F,(p;) in (23).

If P is the largest prime factor of NV, it is proved in [4] that

(25) P> 100129.

The following result is proved in [2]:

(28) If 3-5-11IN, then SIN. Also, pA Nif 13 <p <71.

1.13 in [8] states that

(34) If 17°IN and 17°4 (7 + 1), then NV has (at least) two prime factors =

1(17). (We note that 103 is the smallest prime = 1(17).)

PROPOSITION 6.1. If 3|N and 5°|N where b + 0, 1, 2, 6 or 13, then o(5%)
(and N) is divisible either by two primes = 100129 or by a prime q = 100129 such
that q £ 1@) or 554 (g + 1).
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PROPOSITION 6.2. If 3IN and 5%16(N/n™), then N has (at least) three prime
factors = 1(5).

Proof. Let p® and ¢® be nonspecial components of N such that 5210(p%g®). If
51 o(p®) and 5l 6(¢®) and N does not have three prime factors = 1(5) it follows from
(2) and (2a) that F(p) = 5¢° and F4(q) = 5p°. Thus, 5¢° = 1(p) and ¢° = 1(p),
and it follows that 1 = 55¢%% = 55(p). Therefore, pl3124 so that p = 11 or 71.
Since 111F4(71) it follows that 3 - 52 -11IN which contradicts (28).

If 5216(p®), then from (2), (2a), (4) and (23) we see that Fs(@)IN, F, (p)IN
and N has three prime factors (including p) = 1(5). O

PROPOSITION 63. If 3IN and 5%|a(N/7™), then N has (at least) four prime
factors = 1(5).

PROPOSITION 64. If 3IN, 52| N (where b > 0) and N has at most two prime
factors = 1(5), then 5°72|(w + 1) and 7 1 o(5%).

PROPOSITION 6.5. Suppose that 3 5|N and the special component of N is n™.
If 3l(m + 1), then w = 1(7); if 5|(m + 1), then 7 = 1(11).

Proof. Assume first that 3|(m + 1). From (23), (F,F3F¢)m)I2N. If m = 6(7),
then 71F,(m); if m =2, 4(7), then 7|F3(); if m = 3, 5(7), then 7|Fg(m). Since
3-5-71N, we see that 7 = 1(7). If 5/(m + 1) then (FyFsF o)mI2N. If m=
10(11) then 111 F(); if n =3,4,5,9(11), then 111F(m); if 7=2, 6,7, 8(11),
then 111F, o(r). Since 3-52- 111N, it follows that 7=1(11). O

The next result is due to E. Z. Chein [1].

PROPOSITION 6.6. If 3% |6(N/n™), then N has (at least) four prime factors =
1(3).

If n is a seven-component odd perfect number, then according to Theorem 2 in
[9] either

(35) 3-5lnor3-7ln

ProposITION 7.1. If p®ln and p # =, then 5* 1 o(@®).
PROPOSITION 7.2. If w =5, then 5ln.

Proof. Suppose that 5™ ln where m = 1(4). From Proposition 7.1 and (35)
at most 5 5lo(n/7™) so that m < 13. From Proposition 6.5, m # 5 and m #9. If
m =13, 0(5'3)/2 = 3-29-449-19531In and, from Proposition 7.1 and (2a), at most
5°|n. This contradicts the assumption that 5'3lln. Therefore, m = 1. O

PRrOPOSITION 7.3. Let P8 lln where P is the largest prime factor of n, and assume
that P # n. Then 3% 4 o(P€). If 321l0(P€) then n has (at least) four prime factors
=1(3). If 32l 6(P?) and n has exactly four prime factors = 1(5), then 5\n and sln
where s = 1(3) and P > s > P\/3.

PROPOSITION 7.4. If m™ is the special component of n, 3*4 (m + 1).

PROPOSITION 8.1. Ifm =S5, then 374 n.
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PROPOSITION 8.2. If F, ;(p) = 3q" and p|F,x(q), where K = 1 or 2, then p =
13 or 757.

PROPOSITION 83. If 3-5|n, then m # 17.
PROPOSITION 84. If 3*|a(n/n™), then n has (at least) five prime factors = 1(3).
PROPOSITION 9.1. If 381n, then m=—-1(3) and m # 5.

PROPOSITION 9.2. If 52ln (b = 2) and n = —1(3), then 3%In or 3%In or
3'2|n. If3'21n then m > 511757.

PROPOSITION 9.3. If 7|n and 38\n, then n > 13121.
PRrOPOSITION 10.1. If 5|n, 7™ n and 7 = + 1(5), then 52 t (m+1).

PRrOPOSITION 10.2. If 5%lin (b > 0) and 5% 4 o(n™), then n has (at least) two
prime factors = 1(5), one of which exceeds 100129.

PROPOSITION 103. If 5|n and p® and q® are nonspecial components of n, then
5310(p®) and 5310(¢®) is impossible.

PROPOSITION 11.1. If 1 =—1(5) and 5Pl (n + 1), then at most 5% |n and at
most 53 |a(n/m™). Moreover: if B < 4, then 5%\\n; if 8 = 4, then 5%n and n >
100129; if B > 4, then w = 100129.

PROPOSITION 12.1. If 5'%In, then n has a nonspecial prime factor > 100129.
PROPOSITION 12.2. If 3'2|n, then n has a nonspecial prime factor > 100129.
PROPOSITION 13.1. If 7ln, then 111n or 131n.

Proof. Let n = 3%7°p°q%*s'P where p < q <r <s <P. Since F;3)=13
and F,(3) = 112, we may assume in what follows that @ # 2, 4, 8.

If a = 6, then 0(3%) = 1093|n. If a = 10, then 0(3'®) = 23-3851n and, from
Proposition 9.3, m = 13121. If a > 12, then m > 13121 and, from Proposition 12.2,
n has a nonspecial prime factor = 100129. Thus, s = 1093 and, since
h(3*7710937100129°23%29°31") < 2, we see that if p # 11 or 13, then p = 17
or 19.

Suppose that p = 19. Then g = 23 and r = 29 since otherwise k(n) <
h(377719710937100129°237317) < 2. Since 127|F4(19), 791F;(23) and
671F;(29), we see that (19-23-29)*|n. If 7%lin, then

h(n) < K(377%219°237291093°100129%) < 2.

If 741n and a = 6, then h(n) > h(367%19%23%29%1093) > 2. If 7*In and a > 10,
then h(n) > h(31°7419423%29%) > 2. These contradictions show that p # 19.
Suppose that p = 17. Then g = 19 or 23 since
h(B=7717°10937100129729%31) < 2.
If 17lln, then 7 = 17, and from Proposition 9.3 3%lln. From (34) it follows that A(n)
<h(3°7717-19°1093°100129°103") < 2. If 172lin, then o(17%) = 307In, and
h(n) < h(3*7°17219%30771093°100129™) < 2. We conclude that 17%|n.
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Now suppose that 72lln. Then g = 19 since 1910(72). Also, r = 47 since
h(3%7217%192432) > 2 and A(377%17°19°1093°100129°53°) < 2. Since
2310(3'°) and r # 23, we see that a # 10. If a = 6, then

h(n) > h(37%17%1924721093) > 2.

If 2> 12, then A(n) < A(37°7217°19747°13121°100129%) < 2.

If 7% |n, then ¢ = 19. For if g = 23 then either A(n) > h(3® - 7417%23231%) >
2 or A(n) < A(377717723710937100129737%) < 2 since there are no primes be-
tween 31 and 37. Also, r <53 since #(3°7717°19710937100129759%) < 2. Therefore,
either @ = 6 and h(n) > h(367417%1921093 - 53) > 2 or @ > 10 and
h(n) > h(3197*17419%532) > 2 (192 #n since 6(19%) = 3-127). These contradic-
tions show that p # 17 so that p = 11 or 13. O

PROPOSITION 14.1. 11-13 1n.

PropoSITION 16.1. 3:7-131n.

ProrosiTION 181. 3:7-114n

PROPOSITION 20.1. 3-524n.

ProrosiTioN 21.1. 5ln

LEMMA 21.2. If 3*ln, then 11'2lnand P> V =228 + 1.

Proof. Assume that n = 3*5-11¢%*s/P8. From Proposition 6.6,
g=r=s=P=1(3). Since 2(3*5-11°10012972117223%229%) < 2, it follows
from (28) that 73 < ¢ < 199. Since A(3%5-11°73°100129°5407°5413) < 2,

r < 5347. Now, let ¢ be the smallest prime factor of ¢ + 1. Of course, F (1 ln
Since 71F;(11), 32211F(11), 431F,(11), 157971F , (11) and since 3221 = 15797

= 2(3) we see that ¢ > 13 so that 11'2In, F,3(11) = 1093 - 3158528101,
F,,(11) = 50544702849929377, and F, ¢(11) = M where M ~ 6.11 - 10'® and every
prime factor of M exceeds 107. Therefore, if 7 < 19, we see that P > \/1_1/1- >10° > V.
If t > 23 and F,(11) is not square-free, then, from (15), P> V. 1f t > 23 and F (11)
is square-free, then F,(11) = q%PW where 0< a, 8 <1 and W has at most two prime
factors (since n has exactly seven prime divisors). Therefore, W = F,;(11)/qr >
1122/(199 -5347) > 7.6 -10'6 and P > /W > V. O

ProrosiTioN 212. 32ln.

THEOREM 22.1. Every odd perfect number has at least eight distinct prime fac-
tors.

4. Concluding Remarks. The referee has informed me that E. Z. Chein in his
1979 doctoral dissertation (Pennsylvania State University) has also proved Theorem
22.1. It might be pertinent to point out that the present author announced the re-
sult of this paper in a talk at the 81st Annual Meeting of the American Mathematical
Society held in Washington, D. C. in January, 1975. An abstract appeared in the
January, 1975 issue of the Notices of the American Mathematical Society.
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