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The Exact Degree of Precision
of Generalized Gauss-Kronrod Integration Rules

By Philip Rabinowitz

Abstract. It is shown that the Kronrod extension to the n-point Gauss integration
rule, with respect to the weight function (1 — x2)#“'/2, 0 < u<2,u#1,is of exact
precision 3n + 1 for n even and 3n + 2 for n odd. Similarly, for the (n+1)-point
Lobatto rule, with —% < u < 1, u # 0, the exact precision is 3n for n odd and 3n + 1

for n even.

1. Introduction. In this paper we shall consider the Kronrod extensions (KE) to
the Gauss-Gegenbauer integration rules (GGIR) and the Lobatto-Gegenbauer rules
(LGIR). The Gegenbauer polynomials, C¥(x), u > —%, are those polynomials which
are orthogonal with respect to the weight function w(x; u) = (1 — x2)*” and have the
following normalization [4, p. 174]

1) [ l_lw(x; WCLC)CE () dx = 8, B,

where

2 Ry, = 72T + 20D + %)/((n + wn!T ()W),
which implies that C}'(x) = k,,,x" + ..., where

3) Ky = 2"D(n + w)/(n!T(w).

C}i(x) is even (0dd) if n is even (odd). Special cases of C¥(x), perhaps with a different
normalization, are 7, (x), the Chebyshev polynomials of the first kind (u = 0), P, (x),
the Legendre polynomials (u = %), and U, (x), the Chebyshev polynomials of the sec-
ond kind (u = 1).

The n-point GGIR is given by

_ 2
@) S [ s I = 30w F0) + My (1),
l=
where we have omitted the dependence of w; and x; on u and n, x; are the zeros of
(),

)

and M,(f) is defined to be equal to f O(£)/27j! for some £ € (-1, 1). The corresponding
LGIR has n + 1 points and is given by

Cop = 22"hn”/k3m,
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n+1
© If = 3 Wif(x) +€,,M,,(f),
i=1
where the ¥, are the zeros of (1 — x*)CH*! (x), and
- 22nhn—l,u+1
) e A,

Since the weights of the integration rules considered do not play a part in the discus-

sion, we shall not treat them here except to remark that Monegato [9], [10] has shown

that the weights u; in (8) below are positive for 0 < u <1 and the v;, for 0 <u < 2.
The KEGGIR is given by

n n+l1
(®) If = El u f(x;) + IZZ‘I v f(v) + E, (),
where E (f) = 0 if fis a polynomial of degree < s and p, = 2[(3n + 3)/2]. The y,
are the zeros of a certain polynomial £, H,”(x) which we shall study in the next sec-

tion. For the moment we state a result of Szego [16] that for 0 < u < 2, the y, are
real, lie in {1, 1], and are separated by the x;. (For u # 0, the y; lie in (-1, 1).)
The corresponding KELGIR is given by

n+1 n

9) If= 3 ufx)+ 3 v, /()+ Eqn(f)’
i=1 =t

where g, = 2[(3n + 2)/2], and the y, are the zeros of En’#“(x). Thus, taking into
account that u > —%, we see that practical KEGGIR’s exist for 0 < u < 2 and
KELGIR’s, for —% < u < 1.

The first one to discover a KEGGIR was Kronrod [7] who dealt with the case
u = %, the Gauss-Legendre or standard Gauss rule. Subsequently, Patterson [13],
Piessens and Branders [14], and Monegato [11] improved on Kronrod’s original work
and extended his results to the usual Lobatto case (u = %). Barrucand [2] was the
first to point out the connection between the KE’s and the Szego polynomials £, H’u(x).
KE’s to other integration rules are discussed by Baratella [1], Kahaner and Monegato
[5], Monegato [9], [12], and Ramskii [15].

In the entire literature on this subject, it is stated that the KE’s have error terms
which vanish for polynomials of degree less than p, (Gauss) or g, (Lobatto), and in
Kronrod’s tables, he gives the error in the integration of x» by the KEGGIR with
u = %. However, nowhere is it proved that these KE’s are of exact degree p, — 1 or
q, — 1, as the case may be, that is, that there exists a polynomial of degree p, or q,,
for which the corresponding KE is not exact. Indeed, such a statement is not true for
all u. Thus, as Monegato [9] points out, the KE of the n-point GGIR with u = 0, the
first Gauss-Chebyshev rule, is exact for polynomials of degree < 4n — 1 and in fact is
identical with the KE of the corresponding (n + 1)-point LGIR, being the (2n + 1)-
point LGIR, the first Lobatto-Chebyshev rule. Furthermore, the KE of the rn-point
GGIR with u = 1, the second Gauss-Chebyshev rule, is exact for polynomials of degree
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< 4n + 1 and, in fact, is identical with the (2n + 1)-point GGIR. In the present work,
we shall show that, except for u =0, 1 in the GGIR case and u = 0 in the LGIR case,
we have the result that the exact precision of the KEGGIR is p, — 1 while that of the
KELGIR is q,, — 1. Furthermore, if these rules are of simplex type, i.e., if we can
express the error term in the form K, f @n)(g) or K,.f @n)(£), which we have not been
able to prove, then we have the following result:

n+1
(10) If = Zuf(x)+ 2 w0+ dyen M, (1),
n+1
an = S HIE) + 300D+ dyy iy, (),

where d, is easily computable and does not vanish for 0 <u <2,u # 1, and all
nz=?2. For u = 2 we have the explicit expression

2 (pt1 m, n even
12) g |nt3n+3 ’

ny
4(n +2)(n+ 1Y""n + 3", nodd,

where m = [(n + 1)/2].

2. The Szego Polynomials £, _ e We give here the main results of Szegs with
some minor modification of his notation and refer to [16] for details. See also Davis
and Rabinowitz [3, pp, 82—89] with Monegato [11].

The Gegenbauer function of the second kind, Q¥(z), defined by

() 21 0)
Ok = : dt
(13) 20 + /)f z —t
_ I'Cw -1 v —2i
Sawrw BT
where
(14) 6= [ W kO Ha,  i=0,1,...,

is analytic in the entire complex plane with a slit on the closed interval [-1, 1].
Hence

15 Q“() n+1z,yl —2_p Eyppy @) +8, P A
defining the polynomial £, ,(z) which is even (odd) for n odd (even). Thus,
(16) QM@)E, 11 ,@)=1+bz7" "2 4+ b,z7"3 4
and by the argument given in [16] or [3]

n
a7 Q#(Z)En+l,u(z) =1+ 3 001442,

i=0

for certain constants ¢y, . . ., ¢, depending on u and n. Since Q¥(z) is an odd (even)
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function if 7 is even (0dd), we have that Qk(z)E, +1,4(2) is always an odd function

which implies that ¢, = 0 if n is odd.
Now, the functions of the second kind satisfy the following relations:

(18)  lim (@G +ie) ~ QG — i) = ~im G (s ) CA ),
(19) lim (Q(x + ie) + Q¥(x — ie) = 204(x),

where 0k(x) is defined on the segment [~1, 1]. Hence

20) CEOIE 11, 00) = 3 €,Cly 1),

and w

@ OAE, 1) = 1+ 3 10100

From (20) it follows that

1
(22) f_lw(x; WCEE, ;L dx =0, k=0,1,2,...,n,

so that, by the theorem in [3, p. 77], an interpolatory integration rule based on the

zeros of Ci(x) and E, +l,M(x) is exact for all polynomials of degree < 3n + 1 which

forms the basis for KEGGIR’s.
Now, it can be shown that
Q4E) = YW "TIFA —pont Lintut 1; w2)
(23)

-

_ —n—1-2j

= Ynu _Z(:) fuW ’
]:

where z = %(w + w1), Vg = Val(n + 2u)/T(n + p + 1), Fa, b; c; ) is the usual
hypergeometric function, fou =1,

(24) fiu =@ —p/NA = pwlln+ pw+ DNy

and we have not shown the dependence on n of the f].”.
Setting w = e and x = cos 0, we get that

(25) 0f(x) = Ynu 2 f}'uTn+1+2j(x)-
j=0
Since £, +1,M(x) contains only even or odd powers of x, we can write £, +1,“(x)
in the form
m—1 )\m“Tl (x), neven,
(26) B ) = 2 N Tpyy —2i) + 1
i=0 5 )\m”, n odd,

where m = [(n + 1)/2].
To determine the coefficients A;,, we equate, in view of (21) and (25), the coeffi-
cients of Ty (x),k =1, ...,n + 1, in the product
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@7 5,‘,‘(X)E,,+1,,,(x) = Ynu <i fjuTn+1+2j(x)> <£, >‘iuTn+1—2i(x)>
j=0 i=0

to zero and the coefficient of T)(x) to unity. Here the prime means that if n is odd,
we replace D~ YAy Since T,(x)To(x) = %(T,, (x) + T,_4(x)), we see that the
A;, must satisfy the following equations

k
(28) AO”=27;"I, Zf.,ﬂkk_w=0, k=1,...,m.
i=0
Following Monegato [11], we define o, = Ai”/)\oﬂ so that Qo =1, 0, = 1 and
k-1
(29) %y = Trw = 2 Jul iy k=2,...,m
i=1
From this, we see that the o, are the first m + 1 coefficients in the series
00 [=-) —1
(30) Ut = {Z f]pu’} ,
i=0 j=0

so that we can also use (29) for indices k > m. Here also we have not indicated the
dependence on # of the A;, and 0y

3. The Exact Degree of Precision of KEGGIR’s and KELGIR’s. Let us define

(€29) [ (x) = Cj,‘(x)EnH’”(x)C#_FHk(x), k=0,...,n.
Then from (20) it follows that If, = c,h, . k- Since the KEGGIR applied to f; (x)
vanishes, we have from (8) that Epn(fk) =cphy ik, u SO that the exact precision of
the KEGGIR is determined by the first index &, say kg, for which ko # 0. Indeed,
p, =3n+1+k,. Wenow show that for0<u<2,u¢1,c0 # 0 for n even and
¢, # 0 for n odd.

Consider first the case 7 even. Substituting (25) and (27) into (21) and equating
the coefficients of T,., 2()c), we find that

v,
(32) Yntiu = 5 Powfou + MowaFra T Moo+ F Noplimsn )

= amu + amnflu + am—l,yf2u oot alufmu +fm+1,u

= amﬂ B am+l,u‘

Thus, it suffices to show that Oy ™ Uy iy does not vanish. In fact, we shall show
that the o, are strictly monotonic. For 0 < u < 1, the sequence { fj“} is completely
monotonic, i.e., (—I)kAkf]-” >0 forall jand k [17, p. 137]. Hence, by a theorem of
Kaluza [6], the sequence {o; +1, ”} is also completely monotonic and hence strictly
monotonic. For 1 <pu <2, the sequence {—fj +1,7 is completely monotonic. From
this it follows, by some results in [6], that

o ('R
i—1, 1 s -
—_ > s i=1,2,....

Oy Yit1,u
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Since Zl?f__oam converges, and in fact equals {F(1 ~u, n + 1;n + u + 1; 1)}, it fol-
lows that the sequence {a;, } is strictly monotonic. For u = 2, Szegd [16] gives an
explicit expression for the N>

33 2 1 (mx1)o
(33) N2 \/;n+3<n+3’ i=0,1,...,

which again shows that the a;, are strictly monotonic.

We now consider the case n odd. Proceeding as before, this time equating the
coefficients of T, , 5(x), we find that

Ynu
cl7n+2,u = 2 {)‘muflp, + )‘m—l,ufOM + )‘m—l,pf2u

+ )‘m—2,pf3u oot )‘Oufm+l,u}
(34)
= Qi + ampflu + am—l,u.fZ;z +eoee alufmu + fmﬂy#
= am~l,u _am+1,u'
Since the o, are strictly monotonic, it follows that ¢, # 0.
Forp=0,f,=1,j=0,1,2,...,50 that Nyq = =\, = 2n/n"/2, %
i>1and B, ., = Qn/r"?*){T,, ,(x) - T,_,(x)}, n >2. Hence

0 =0,

k
35) Cr?(x)En+l,0(x) =k, T AT, , —T,,} =-21‘ Ty = Ty}

=k,(1 - xz)U2n~1 =ky(1 - x2)Czln—1 ),

and the zeros of CO(x)E, +1,0() are the abscissas of the (2n + 1)-point LGIR for the
weight w(x; 0) which is of exact precision 4n — 1, as can also be seen from the fact
that ¢, _, is the first ¢, which does not vanish.

For u=1,fy, =1, f;; =0,7>0so that, \o; =2/+/m,%;; =0,i>0,and
E,i1,(x) = QNm)T,,,(x). Hence

(36) Co(Ey 411 () = kU, (T, 4, () = K5 Cy iy (),

and the zeros of C, (x)E,, +1,1(x) are the abscissas of the (27 + 1)-point GGIR for the
weight w(x; 1) which is of exact precision 4n + 1 and which also follows from the fact
that ¢, is the first ¢, which does not vanish.

In the case of the KELGIR, we define

BT [ =0 - x)CEH®E, ,, )CETI®), k=0,1,...,n-1,

so that Ifk = Cyhy 4k u+1- Hence, since ¢ = co(n=1,u+1)#0 for n~ 1 even,
ie., for n odd, while ¢, # 0 for n — 1 odd, we have that the (2n + 1)-point KELGIR
is of exact precision 3n + 1, for n even, and 3n, for n odd, provided that u # 0. For
= 0, we have as before that E, (x) = (2/n"/?)T,,(x), so that

(38) (1 - x? )Cr%—l (x)Enl (x) = k\l (1 -x2 )Czln—l (x),

whose zeros are again the abscissas of the (2n + 1)-point LGIR for the weight w(x; 0).
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If we now define

(¢4 -

- S n even,

(39) d,, =

a - nodd, m = [(n + 1)/2],

m—1,u m+1,u°

we have that for the Gauss case

CoVnt1,u> 1 E€VEN,

d =
(40) nu
C1Ynt2, 00 n odd,
while for the Lobatto case
CoVnm ut1 n even,
dy i py+1 =
CiVnstus1> N 0dd,

where we have suppressed the dependence of ¢o and ¢, on n and p. This leads us im-
mediately to formulas (10) and (11). For example, applying (8) with n even to fo®),
we have that

(41) Cotnt1,u = Kk 20ms 2"k 4y , B + 2,

so that

(42) K A = dn“ h"+1»“7nl~‘ - dnp,cnu .
nu 7n+l,[J. 2n+lknﬂk”+1’ll(3n + 2)1 2Pnpn!

For n odd, we consider f1(x) while in the Lobatto case we work with f, o(®) and f L ().

4. Remarks. a. Monegato [11] gives an error bound for KEGGIR’s with 0 <
u < 1. We shall show how to improve this bound slightly and extend it to the case
1 <p <2, as well as to KELGIR’s with —% < u < 1, u#0.

For n even, Monegato writes the error Ep,,(f) for f€ C3*2[-1, 1] in the form

@3) E, (f)= E‘%z’)‘v W CERE, 4, )P,
nu :

where

J— m ]
(44) En+1,u(x) = En+1,u(x)/>\ou =2 % Ty 1 ().

i=0
Hence
+ 2
(45) By (N < gt 201
Pn 25Ty P + 1DD(n + w) Pn’
where
M = L9 O and Buiyu = L lE”“’“(x),'



1282 PHILIP RABINOWITZ

For 0 < u <1, Monegato states that B, 1, <2 and replaces B, 1, by 2in (45).
Now, while this bound is the best available for 0 < u < %, we can improve on it for
% <u <1. In addition, a bound on B, Lu I8 also available for 1 <u < 2. This
follows from our observation above that

o, ={F(-pn+Ln+u+1, D} =T,,

It

(46)

— C(n + 2u) 1
T T+ + DMQu-1y w>hutl, 2.

Now for o < u < 1’0‘0;4 = l,am<0,i>0. Since

m m

By < Z(:)Iam|= 1- Zam< 1- 'Z;am,
= i=

it follows that Bnﬂ’# <2- Tn/u < 2. For 1 <u <2, we have that o, > 0, for all i
Hence B, ., , < E;’;oam <T,,- Foru=2,

s n+1\-1_n+3
2y = <1 _n+3> ) > B
i=0

For n odd, using classical arguments, we have the same bound.

In the Lobatto case, we have, similarly for » odd, that

22—2”

1) £, 0 = oy [ W i+ DO O OPF O DE,
n—1,u+1 : -

whence
al'(n + 2u + l)Bf, n
< L
(48) |Eqn(f)| = 23n+2/.t—2qn !F(n + IJ)F(M + 2) an’
where for — % < u <0, Bn,u+1 <2- Tn—l,u+1 and for 0 < u < I’Bn,u+1 < Y

Foru=1,B,, <(n+ 2)/2. As before, the same bound holds for n even.
b. The Fourier-Gegenbauer coefficients of a function f(x) are defined by

(49) FG, (1) = Iyt [ wlrs CE@f)dx,  n=0,1,. ...

As Barrucand [2] points out, the integral is most efficiently evaluated by a (2n + 1)-
point KEGGIR applied to the function C¥(x)f(x) which reduces to the (n + 1)-point
formula

n+1 n+1
(50) FG,,(f) =y 3 v, Ch)f () = 3 5,/(3)).

i=1 i=1
For u # 0, 1, we get a rule which is exact for polynomials of degree < p, — n, which
is the best possible. For assume that there existed an (# + 1)-point rule, say

51) FG,(1) =S 0,15,

i=1

exact for polynomials of degree p,, — n, n even. This would imply that
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1 n+1
(52) [ W0 ICEEIE, 1y, (0) T] G = 9 dx =0,

i=1
which contradicts our results above. Similarly for » odd.

For u = 0, the rule (50) is exact for polynomials of degree < 3n — 1, a result
which has already been reported in [8]. For u = 1, (50) is exact for polynomials of
degree < 3n + 1 which is the best. possible result, so that the highest precision is
achieved for Fourier-Chebyshev coefficients of the second kind. However, we should
warn the user that the weights v; in (50) alternate in sign inasmuch as the v, are posi-
tive and the zeros of C¥(x) separate those of E,, +1,(%), so that the C}(y,) alternate in
sign.
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