On Some Trigonometric Integrals

By Henry E. Fettis

Abstract. Expressions are obtained for the integrals

$$I_{\lambda}^{(p)} = \int_0^{\pi/2} \left(\frac{\sin \lambda \theta}{\sin \theta}\right)^p d\theta, \qquad J_{\lambda}^{(p)} = \int_0^{\pi/2} \left(\frac{1 - \cos \lambda \theta}{\sin \theta}\right)^p d\theta$$

for arbitrary real values of " λ ", and p = 1, 2.

1. The integrals

(1)
$$I_{\lambda}^{(p)} = \int_{0}^{\pi/2} \left(\frac{\sin \lambda \theta}{\sin \theta} \right)^{p} d\theta$$

and

(2)
$$J_{\lambda}^{(p)} = \int_{0}^{\pi/2} \left(\frac{1 - \cos \lambda \theta}{\sin \theta}\right)^{p} d\theta, \quad p = 1, 2,$$

are of a sufficiently general, standard type that one would expect to find them in almost any table of integrals or other reference work (e.g., [1], [2], [3]). However, a comprehensive search by the author has disclosed that (with the exception of (1) for integer " λ "), these integrals are conspicuously absent from the literature. Should any one of the above integrals arise in a practical problem (as well they might) one would, in the absence of a closed-form expression, be inclined to evaluate it either numerically or in series. However, as will be shown in the following sections, this is not necessary, as such a closed form does exist, and can in fact be found in terms of the logarithmic derivative of the gamma function, $\Psi(z)$.

2. It is evident that $I_{\lambda}^{(1)}$ and $J_{\lambda}^{(1)}$ satisfy the recurrence relations

(3)
$$I_{\lambda+1}^{(1)} - I_{\lambda-1}^{(1)} = \frac{2}{\lambda} \sin \frac{\pi}{2} \lambda,$$

(4)
$$J_{\lambda+1}^{(1)} - J_{\lambda-1}^{(1)} = \frac{2}{\lambda} \left(1 - \cos \frac{\pi}{2} \lambda \right),$$

with $I_0^{(1)}=J_0^{(1)}=0$, $I_1^{(1)}=\pi/2$, $J_1^{(1)}=\ln(2)$, from which we easily obtain, by induction, that for integer values of $\lambda=n>0$,

(5)
$$I_{2n}^{(1)} = 2 \sum_{k=0}^{n-1} \frac{(-1)^k}{(2k+1)}, \quad I_{2n+1}^{(1)} = \frac{\pi}{2},$$

Received February 5, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 33A15, 33A10.

Key words and phrases. Integrals, definite integrals, trigonometric integrals, Gamma function, Psi function.

(6)
$$J_{2n}^{(1)} = 2 \sum_{k=0}^{n-1} \frac{1}{(2k+1)}, \quad J_{4n-1}^{(1)} = J_{4n+1}^{(1)} = \ln(2) + 2 \sum_{k=0}^{n-1} \frac{1}{(2k+1)}.$$

The results (5) are well known (see [1, Eqs. 3.612-3]), while those of (6) have been previously found by the author (*Math. Mag.*, v. 39, no. 5, 1966, p. 281) but do not appear in any of the standard references, such as [1], [2], [3].

3. For p=1 and noninteger values of " λ ", the integrals (1) and (2) can be readily evaluated by complex integration of the function

$$f(z) = \frac{1 - z^{\lambda}}{z^2 - 1}$$

in the $z = \rho e^{i\theta}$ plane around the contour consisting of

I—The quadrant of the unit circle $z = e^{i\theta}$ (0 $\leq \theta \leq \pi/2$).

II—The imaginary axis extending from z = i to z = 0, and the real axis from z = 0 to z = 1.

The integral around this contour must be zero, since the integrand has no singularities within it, and is single valued throughout.

On the arc constituting part I of the contour, $z=e^{i\theta}$, and integration gives

(8)
$$i \int_{0}^{\pi/2} \frac{1 - e^{i\lambda\theta}}{e^{i\theta} - e^{-i\theta}} d\theta = \frac{1}{2} \int_{0}^{\pi/2} \frac{1 - e^{i\lambda\theta}}{\sin\theta} d\theta = \frac{1}{2} (J_{\lambda}^{(1)} - iJ_{\lambda}^{(1)}).$$

On the portion from z=i to z=0, $z=ye^{i\pi/2}$ $(0 \le y \le 1)$, and hence integration along this segment gives

(9)
$$+ e^{i\pi/2} \int_0^1 \frac{1 - e^{i\pi\lambda/2} y^{\lambda}}{1 + y^2} dy = \frac{1}{2} e^{i\pi/2} \int_0^1 \frac{t^{-1/2} (1 - e^{i\pi\lambda/2} t^{\lambda/2})}{1 + t} dt,$$

while on the segment from x = 0 to x = 1, the contribution is

(10)
$$\int_0^1 \frac{1 - x^{\lambda}}{x^2 - 1} dx = -\frac{1}{2} \int_0^1 \frac{t^{-1/2} (1 - t^{\lambda/2})}{1 - t} dt.$$

Both of the integrals (9) and (10) can be expressed in terms of the function $\Psi(z) = d [\ln \Gamma(z)]/dz$, using formulae 5 and 6 from [2, Chapter I, p. 9]. Finally, when the total integral is set equal to zero, and real and imaginary parts separated, we obtain

$$J_{\lambda}^{(1)} = \Psi\left(\frac{\lambda+1}{2}\right) - \Psi\left(\frac{1}{2}\right) - \frac{1}{2}\sin\left(\frac{\pi}{2}\lambda\right) \left[\Psi\left(\frac{\lambda+3}{4}\right) - \Psi\left(\frac{\lambda+1}{4}\right)\right],$$

$$I_{\lambda}^{(1)} = \frac{\pi}{2} - \frac{1}{2}\cos\left(\frac{\pi}{2}\lambda\right) \left[\Psi\left(\frac{\lambda+3}{4}\right) - \Psi\left(\frac{\lambda+1}{4}\right)\right].$$

4. The results (11) can be found alternatively in the following way. We have $I_{\lambda+1}^{(1)} + I_{\lambda-1}^{(1)} = 2 \int_0^{\pi/2} \sin \lambda \theta \cot \theta \ d\theta = \int_0^{\pi} \sin \frac{\lambda}{2} \theta \cot \left(\frac{1}{2}\theta\right) \ d\theta = G_1(\lambda/2),$ (12) $J_{\lambda+1}^{(1)} + J_{\lambda-1}^{(1)} = 2 \ln(2) + \int_0^{\pi/2} \left(1 - \cos \frac{\lambda}{2}\theta\right) \cot \frac{1}{2} \theta \ d\theta$ $= 2 \ln(2) + G_2(\lambda/2),$

where the integrals

$$(13) \quad G_1(\alpha) = \int_0^\pi \sin \alpha \theta \cot \frac{1}{2} \theta \ d\theta \quad \text{and} \quad G_2(\alpha) = \int_0^\pi (1 - \cos \alpha \theta) \cot \frac{1}{2} \theta \ d\theta$$

can be evaluated by a limiting process from the known result [2, Chapter I, p. 8]:

(14)
$$P(x, y) + iQ(x, y) = \int_0^{\pi} \sin^x t e^{iyt} dt = \frac{\pi}{2^x} \left[\frac{\Gamma(1+x)e^{i\pi y/2}}{\Gamma\left(1+\frac{x+y}{2}\right)\Gamma\left(1+\frac{x-y}{2}\right)} \right].$$

We illustrate the procedure for G_1 , which, since $\cot \frac{1}{2}\theta = (1 + \cos \theta)/\sin \theta$, can be written

(15)
$$G_1(\alpha) = \frac{1}{2} \int_0^{\pi} \frac{2 \sin \alpha \theta + \sin(\alpha + 1)\theta + \sin(\alpha - 1)\theta}{\sin \theta} d\theta$$
$$= \frac{1}{2} \lim_{x \to -1} \left[2Q(x, \alpha) + Q(x, \alpha + 1) + Q(x, \alpha - 1) \right].$$

After substituting from (14), combining, and simplifying with the aid of known Γ -function identities, this becomes

(16)
$$G_{1}(\alpha) = \lim_{x \to -1} \pi (1+x)^{-1} \left[\frac{2 \sin \frac{\pi}{2} \alpha}{\Gamma \left(1 + \frac{x+\alpha}{2}\right) \Gamma \left(1 + \frac{x-\alpha}{2}\right)} - \frac{\alpha \cos \frac{\pi}{2} \alpha}{\Gamma \left(\frac{3}{2} + \frac{x+\alpha}{2}\right) \Gamma \left(\frac{3}{2} + \frac{x-\alpha}{2}\right)} \right].$$

The limit is easily evaluated with the aid of l'Hospital's rule, and, upon making use of various familiar identities relating to the Γ - and Ψ -functions, we get ultimately

(17)
$$G_1(\alpha) = \pi - \frac{\sin \pi \alpha}{\alpha} \left\{ 1 + \alpha \left[\Psi \left(\frac{1 + \alpha}{2} \right) - \Psi \left(1 + \frac{\alpha}{2} \right) \right] \right\}.$$

In an exactly analogous way we find*

$$(18) \quad G_2(\alpha) = -2\Psi\left(\frac{1}{2}\right) - \frac{1 - \cos\pi\alpha}{\alpha} + 2\left[\cos^2\frac{\pi}{2}\alpha\Psi\left(\frac{1+\alpha}{2}\right) + \sin^2\frac{\pi}{2}\alpha\Psi\left(1+\frac{\alpha}{2}\right)\right],$$

and, when (17) and (18) are substituted into (12), the results combined with (3) and (4), and certain obvious simplifications made, expressions identical to (11) are obtained.

^{*} The author was unable to find either (17) or (18) in the literature.

As an exercise, the reader may verify that, when λ is an integer, (11) reduces to the previously obtained relations (5) and (6). In this regard, the numerous identities dealing with the Ψ -function of rational argument found in [3, Chapter XXIV] will prove helpful.

5. The Integrals $I_{\lambda}^{(2)} = \int_0^{\pi/2} (\sin \lambda \theta / \sin \theta)^2 d\theta$, $J_{\lambda}^{(2)} = \int_0^{\pi/2} ((1 - \cos \lambda \theta) / \sin \theta)^2 d\theta$. The first of these integrals, according to [1, formula 3.624(6) is equal to

$$\frac{\lambda\pi}{2}$$

Although it is not so stated in the above reference, this result only holds if λ is an integer. For noninteger values of λ , the integral can be evaluated in the following way: We have

(20)
$$I_{\lambda}^{(2)} \equiv \int_{0}^{\pi/2} \left(\frac{\sin \lambda \theta}{\sin \theta} \right)^{2} d\theta = \frac{1}{2} \int_{0}^{\pi} \frac{1 - \cos \lambda \phi}{1 - \cos \phi} d\phi.$$

Consider the more general integral

(21)
$$\int_0^{\pi} \frac{1 - \cos \lambda \phi}{\cosh \alpha - \cos \phi} d\phi = \frac{\pi}{\sinh \alpha} - \int_0^{\pi} \frac{\cos \lambda \phi}{\cosh \alpha - \cos \phi} d\phi,$$

and let

(22)
$$y(\lambda, \alpha) = \sinh \alpha \int_{0}^{\pi} \frac{\cos \lambda \phi}{\cosh \alpha - \cos \phi} d\phi,$$

so that

(23)
$$\int_0^{\pi} \frac{1 - \cos \lambda \phi}{\cosh \alpha - \cos \phi} d\phi = \frac{\pi - y(\lambda, \alpha)}{\sinh \alpha}$$

Now, differentiation of (22) with respect to " α ", followed by integration by parts, gives

(24)
$$\frac{\partial y}{\partial \alpha} = -\lambda \int_0^{\pi} \frac{\sin \lambda \phi \sin \phi}{\cosh \alpha - \cos \phi} d\phi.$$

Hence, since

(25)
$$\int_0^{\pi} \frac{1 - \cos \lambda \phi}{1 - \cos \phi} d\phi = \lim_{\alpha \to 0} \left(\frac{1 - y(\lambda, \alpha)}{\sinh \alpha} \right),$$

application of l'Hospital's rule gives

(26)
$$\int_0^{\pi} \frac{1 - \cos \lambda \phi}{1 - \cos \phi} d\phi = \lambda \int_0^{\pi} \frac{\sin \lambda \phi \sin \phi}{1 - \cos \phi} d\phi = \lambda G_1(\lambda).$$

Substituting the expression for $G_1(\lambda)$ from (17):

$$(27) \qquad \int_0^{\pi/2} \left(\frac{\sin \lambda \theta}{\sin \theta}\right)^2 d\theta = \frac{\lambda \pi}{2} - \frac{\sin \lambda \pi}{2} \left\{ 1 + \lambda \left[\Psi \left(\frac{1+\lambda}{2} \right) - \Psi \left(1 + \frac{\lambda}{2} \right) \right] \right\} ,$$

and since

(28)
$$\int_0^{\pi/2} \left(\frac{1 - \cos \lambda \theta}{\sin \theta} \right)^2 = 4 \int_0^{\pi/2} \left(\frac{\sin \frac{\lambda}{2} \theta}{\sin \theta} \right)^2 d\theta - \int_0^{\pi/2} \left(\frac{\sin \lambda \theta}{\sin \theta} \right)^2,$$

this integral can be expressed in a similar fashion.

6. As a final observation, it may be mentioned that integrals of the type

$$\int_0^{\pi/2N} \frac{\sin \lambda \theta}{\sin \theta} \, d\theta$$

and

$$\int_0^{\pi/2N} \frac{1-\cos\lambda\theta}{\sin\theta} \,d\theta,$$

where N is an integer, can be expressed as finite combinations of the integrals $I_{\lambda}^{(1)}$ and $J_{\lambda}^{(1)}$ with the aid of the relations

(31)
$$\frac{\sin 2M\theta}{\sin \theta} = 2 \sum_{n=1}^{M} \cos(2n-1)\theta$$
, $\frac{\sin(2M+1)\theta}{\sin \theta} = 1 + 2 \sum_{n=1}^{M} \cos 2n\theta$,

after making the change of variable θ to ϕ/N , giving

(32)
$$\int_{0}^{\pi/2N} \frac{\sin \lambda \theta}{\sin \theta} d\theta = \frac{2}{N} \int_{0}^{\pi/2} \frac{\sin (\lambda \phi/N)}{\sin \phi} \left[\sum_{n=1}^{N/2} \cos \frac{(2n-1)\phi}{N} \right] d\phi, \quad N \text{ even,}$$

$$= \frac{1}{N} \int_{0}^{\pi/2} \frac{\sin (\lambda \phi/N)}{\sin \phi} \left[1 + 2 \sum_{n=1}^{(N-1)/2} \cos \frac{2n\phi}{N} \right] d\phi, \quad N \text{ odd,}$$

with similar expressions resulting for

(34)
$$\int_{0}^{\pi/2N} \frac{1-\cos\lambda\theta}{\sin\theta} d\theta.$$

1885 California, Apt. 62 Mountain View, California 94041

- 1. I. S. GRADSHTEYN & I. M. RYZHIK, Table of Integrals, Series and Products, Academic Press, New York, 1965.
- 2. W. MAGNUS & F. OBERHETTINGER, Formeln und Sätze fur die Speziellen Funktionen der Mathematischen Physik, Springer-Verlag, Berlin, 1948.
- 3. J. EDWARDS, A Treatise on the Integral Calculus, Vol. II, Macmillan, New York, 1922; reprinted by Chelsea, New York, 1977.